English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Contribution of oceanic and vegetation feedbacks to Holocene climate change in Central and Eastern Asia

MPS-Authors
/persons/resource/persons37130

Dallmeyer,  A.
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37123

Claussen,  M.
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
A 2 - Climate Processes and Feedbacks, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations;

/persons/resource/persons37286

Otto,  J.
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

cp-6-195-2010.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Dallmeyer, A., Claussen, M., & Otto, J. (2010). Contribution of oceanic and vegetation feedbacks to Holocene climate change in Central and Eastern Asia. Climate of the Past, 6, 195-218. doi:10.5194/cp-6-195-2010.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-F67D-F
Abstract
The impact of vegetation-atmosphere and ocean-atmosphere interactions on the mid- to late Holocene climate change as well as their synergy is studied for different parts of the Asian monsoon region, giving consideration to the large climatic and topographical heterogeneity in that area. We concentrate on temperature and precipitation changes as the main parameters describing monsoonal influenced climates. For our purpose, we analyse a set of coupled numerical experiments, performed with the comprehensive Earth system model ECHAM5/JSBACH-MPIOM under present-day and mid-Holocene (6 k) orbital configurations (Otto et al., 2009b). The temperature change caused by the insolation forcing reveals an enhanced seasonal cycle, with a pronounced warming in summer (0.58 K) and autumn (1.29 K) and a cooling in the other seasons (spring: -1.32 K; winter: -0.97 K). Most of this change can be attributed to the direct response of the atmosphere, but the ocean, whose reaction has a lagged seasonal cycle (warming in autumn and winter, cooling in the other seasons), strongly modifies the signal. The simulated contribution of dynamic vegetation is small and most effective in winter, where it slightly warms the near-surface atmosphere (approx. 0.03 K). The temperature difference attributed to the synergy is on average positive, but also small. Concerning the precipitation, the most remarkable change is the postponement and enhancement of the Asian monsoon (0.46 mm/day in summer, 0.53 mm/day in autumn), mainly related to the direct atmospheric response. On regional average, the interactive ocean (ca. 0.18 mm/day) amplifies the direct effect, but tends to weaken the East Asian summer monsoon and strongly increases the Indian summer monsoon rainfall rate (0.68 mm/day). The influence of dynamic vegetation on precipitation is comparatively small (< 0.04 mm/day). The synergy effect has no influence, on average.