Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multiscale asymptotics analysis for the mesoscale dynamics of cloud-topped boundary layers

MPG-Autoren
/persons/resource/persons37347

Stevens,  B.
Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
A 2 - Climate Processes and Feedbacks, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2010jas3469.pdf
(Verlagsversion), 925KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Owinoh, A. Z., Stevens, B., & Klein, R. (2011). Multiscale asymptotics analysis for the mesoscale dynamics of cloud-topped boundary layers. Journal of the Atmospheric Sciences, 68, 379-402. doi:10.1175/2010JAS3469.1.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-F4C0-5
Zusammenfassung
This paper presents the derivation of a model to explore the coupling between the dynamic and thermodynamic processes of a cloud-topped boundary layer on mesoscales using a formal multiscale asymptotic approach. The derived equations show how the anomalies in the heat, moisture, and mass budgets in the boundary layer affect boundary layer motions, and how these motions can organize and amplify (or damp) such anomalies. The thermodynamics equations are similar to those that have been suggested in mixed layer studies; that is, the evolution of the thermodynamics variables depends on the surface heat and moisture fluxes, cloud-top radiative cooling rate, temperature, and moisture jumps across the capping inversion. However, these equations are coupled to the dynamics equation through the entrainment rate at the top of the cloud deck. The entrainment rate is parameterized from results obtained in laboratory experiments and clearly shows the dependence on the velocity perturbation, which in turn strongly depends on the horizontal gradient of the thermodynamics variables. The derived entrainment rate is applicable when the thermal jump at cloud top is sufficiently weak and the velocity jump is on the order of the velocity perturbation. Aside from some initial analyses of the main balances in steady-state solutions, the mathematical properties and physical characteristics of the system of equations will be explored in future papers.