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Abstract

The strength of a memory trace is modulated by a variety of factors such as arousal,
attention, context, type of processing during encoding, salience and novelty of the experience.
Some of these factors can be modeled as a variable plasticity level in the memory system,
controlled by arousal or relevance-estimating systems. We demonstrate that a Bayesian
con"dence propagation neural network with learning time constant modulated in this way
exhibits enhanced recall of an item tagged as salient. Proactive and retroactive inhibition of
other items is also demonstrated as well as an inverted U-shape response to overall plastic-
ity. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Long-term memory (LTM) formation in everyday life often occurs incidentally
without explicit intention to remember the information processed. It has been sugges-
ted that memory formation is the dynamic consequence of information processing and
system plasticity [10]. Research indicates that speci"c kinds of information processing
contributes to LTM-formation, including meaning-based, context and relational
processing and factors like emotional signi"cance and attentional allocation (for
recent reviews see e.g. [15]).
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Endogenous processes activated by experience can modulate memory strength
in terms of recall probability [7]. For example, emotionally arousing [1] or
humorous [13] experiences are generally better remembered than less a!ective
experiences, and hormones and neuromodulators can a!ect how strongly experiences
are retained [6]. The novelty of a stimulus also plays an important role. The
von Restor! e!ect consists of improved recall or recognition of an item (the isolate)
that is distinct or di!erent from the others in a set, while the other items are less well
recalled (retroactive and proactive inhibition) [14]. While this has mainly been
studied in human list recall, a similar e!ect has been observed in rats [11] and
monkeys [8].
Some of these factors can be interpreted in the framework of memory consolidation

as a relevance modulation of the `print-nowa signal by regulating memory encoding
and synaptic plasticity. During ordinary events the plasticity is lower than when
salient, arousing or motivational stimuli increase the learning rate, for example
through a modulating mechanism. Such a mechanism relates closely to neuromodula-
tion in the brain, e.g., the e!ect of dopamine [16] and acetylcholine in synaptic
plasticity [17,3].
We have previously studied the properties of an autoassociative Bayesian

con"dence propagation neural network (BCPNN) [5,4] with incremental
learning [12]. The BCPNN is based on a probabilistic view of learning and retrieval,
with input and output unit activities roughly representing con"dence of feature
detection and posterior probabilities of outcomes, respectively. Besides in
ANN models, it has also been used for simulation of cortical dynamics and cell
assemblies [2].
This learning rule has a time constant of learning that determines how quickly it

will adapt to new information. By modulating this time constant, we can model the
modulatory regulation of the print-now signal on associative encoding of information
into for example LTM.
This paper describes a simple model of an autoassociative network with plasticity

modulation for one item, and shows that it can produce the enhanced recall of the
isolate, proactive and retroactive inhibition and an inverted U-shape response curve
to overall plasticity similar to the one commonly observed in arousal-performance or
dose-response plots.

2. Network

We have used the BCPNN with incremental learning and hypercolumns
[12] which is based on a Hebbian learning rule derived from Bayes rule [5].
It is an autoassociative network with a learning rule where weights are
updated depending on estimates of unit activity regulated by a learning time
constant. Units are combined into hypercolumns with normalized output activities
(corresponding to mutually exclusive or combinations of otherwise dependent
features [4]).
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The activity update and equations are
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where h
���
is the potential of the ith unit in hypercolumn i, o

���
the output of the unit,

� the bias, w the weights, � are rate estimates, �
�
a low background activity (set to

10�� throughout this paper), N the number of hypercolumns, M
�
the number of

neurons in hypercolumn i and � the inverse of the learning time constant. Low
� correspond to slow learning and forgetting, high � fast learning and forgetting.

�(t) is the relevance signal, assumed to be sent from a modulator system as
a response to the current experience. In the following experiments, it was kept at
�(t)"1 except for one pattern in the training set, the isolate, where �(t) was set to
�
�
during training.

3. Results

A 100 neuron BCPNN network with 10 hypercolumns of 10 neurons each was
trained by clamping unit activity to each training pattern �� for one unit of time,
allowing the weights to adapt. Retrieval was tested by activating the neurons with
a trained pattern where the activity in three hypercolumns of ten had been random-
ized, and then allowed to relax for one unit of time (no learning was used during
testing). Performance was measured by the overlap �� )x/���� �x�.
Fig. 1(a) shows the mean overlap for all patterns as a function of the learning time

constant �, with no isolate element (�
�
"1). At low �, the network learns too slowly to

learn the patterns, while at high � the network learns quickly but forgets the oldest
patterns.
Fig. 2 shows the selective enhancing e!ect on recall when an isolate pattern occurs.

Note the inhibition of recall of other patterns in the high �
�
condition. � was set to

10�� in this and the following plots.
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Fig. 1. (a) Mean overlap after convergence from noisy cue as a function of the inverse learning time
constant �. Below �"10�� the network learns too slowly to store the shown patterns, and above �"10��

it forgets too quickly to store all patterns. (b) Mean overlap after convergence from noisy cue of the isolate
pattern and the other patterns as a function of the increase in plasticity �

�
.

Fig. 2. Mean overlap after convergence from noisy cue with or without an isolate pattern. In the dotted run,
�
�
was set to 1.2 (left) or 20 (right) for pattern 11.

Fig. 1(b) shows the mean overlap as a function of the modulation strength for the
isolate and for the normal items. As �

�
increases the recall of the isolate becomes better

and better, while there is an inhibition e!ect on the other items. However, it is possible
to avoid inhibition in this model for low levels of the relevance signal while still
observing a recall enhancement for the isolate.
When the network is stimulated by a random pattern it will converge to a given

attractor state with a probability depending on the relative volume of the basin of
attraction to the volume of the state space. Again the isolate is more likely to be
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Fig. 3. Frequency of ending up in the attractors corresponding to the learned patterns when activating the
network with a random pattern (one randomly activated unit per hypercolumn) for a high level of plasticity.
The isolate is pattern 41 (left) and 11 (right).

recalled, suggesting that for these parameters the increased plasticity has enlarged its
basin of attraction relative to the other attractors.
If the network has a shorter learning time constant as in Fig. 3, there will be

a memory gradient due to fast forgetting. The increase in plasticity caused by a strong
modulatory input can prevent encoding of the isolate and retroactively interfere with
the early patterns without a!ecting the subsequent storage of the network, as can be
seen in the right sub"gure.

4. Discussion

We have described a simple model of an autoassociative memory where the
learning rate is modulated by a relevance signal and shown that it can exhibit selective
enhancement of items associated with a relevance signal.
We have shown that a model of an autoassociative memory with modulated

learning rate can exhibit selective enhancement of items associated with a relevance
signal. When the signal is strong, inhibition of other items occurs as well as a relative
expansion of the isolate item basin of attraction.
The inverted-U curve in Fig. 1 has similar properties as the Yerkes}Dodson law or

the observed inverted-U dose-response relationship seen for manymemory enhancing
drugs [6,9].
If there is a need to encode relevant experiences at di!erent levels of trace strength,

for example to distinguish between everyday and important stimuli, the baseline
plasticity needs to be in a range where the increase in plasticity due to the relevance
signal produces a positive change in encoding success. If the memory exhibits
a U-shaped response to plasticity, this suggests that the baseline plasticity is not close
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to the maximum of the overlap curve but below it, and that an increased level of
baseline arousal would decrease the distinction between relevant and irrelevant
memories.
Interestingly, a strong modulatory input increases the plasticity in this model

to the extent that the overall e!ect becomes a memory impairment rather than
enhancement.
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