
*Corresponding author. Tel.: #46-8-790-69-09; fax: #46-8-790-09-30.
E-mail addresses: asa@nada.kth.se (A. Sandberg), ala@nada.kth.se (A. Lansner), karlmp@neuro.ks.se

(K.M. Petersson), orjan@nada.kth.se (OG . Ekeberg).

Neurocomputing 32}33 (2000) 987}994

A palimpsest memory based on an incremental Bayesian
learning rule

A. Sandberg!,*, A. Lansner!, K.M. Petersson", OG . Ekeberg !

!Department of Numerical Analysis and Computer Science, Royal Institute of Technology, KTH,
Lindstedva( gen 3, 100 44 Stockholm, Sweden

"Department of Clinical Neurophysiology, PET Cognitive Neurophysiology, Karolinska Sjukhuset,
S-171 76 Stockholm, Sweden

Accepted 13 January 2000

Abstract

Capacity limited memory systems need to gradually forget old information in order to avoid
catastrophic forgetting where all stored information is lost. This can be achieved by allowing
new information to overwrite old, as in the so-called palimpsest memory. This paper describes
a new such learning rule employed in an attractor neural network. The network does not
exhibit catastrophic forgetting, has a capacity dependent on the learning time constant and
exhibits recency e!ects in retrieval. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Auto-associative attractor ANN:s have been proposed as models for biological
associative memory [16,8,1,4,14]. Simulations have indicated that a network of cortical
pyramidal and basket cells can operate as an attractor network and its connectivity
structure captures many aspects of cortical functional architecture [6,5,3,2].

The standard correlation-based learning rules for attractor neural networks su!er
from catastrophic forgetting, i.e. all memories are lost as the system gets overloaded.
This runs contrary to what is believed to happen in working and intermediate
memory such as the hippocampus, where new information needs to be continuously
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learned, stored and retrieved but not necessarily remembered beyond a certain time
[12]. What is needed is learning where new patterns are stored on top of older ones
which are gradually overwritten and become inaccessible, a so-called `palimpsest
memorya [13].

A learning rule for attractor networks derived from Bayes rule has previously been
developed, the Bayesian Con"dence Propagation Neural Network (BCPNN)
[9}11,7]. The learning rule is based on a probabilistic view of learning and retrieval,
with input and output unit activities representing con"dence of feature detection and
posterior probabilities of outcomes, respectively. Weights are set based on probability
estimates from the training data. Besides in ANN models, it has also been used for
simulation of cortical dynamics and cell assemblies [3,2].

This paper studies the properties of an attractor network based on an incremental
version of the Bayesian learning rule, which exhibits palimpsest properties, a capacity
dependent on learning rate and convergence speed dependent on memory load and
recency.

2. Bayesian learning

The traditional BCPNN learning rule estimates probabilities of individual features
P
i

and co-occurrences of them P
ij

by counting the number of occurrences in the
training data and dividing by the number of examples. Here we replace the "xed
probability estimates with time varying estimates of rates of events (spikes) that are
updated as new information arrives. We want an estimate that (i) will converge towards
P
i
(t) and P

ij
(t) in a stationary environment, (ii) gives more weight to recent than remote

information and (iii) has a time scale that leads to smoothing and adaptation to trends
in a non-stationary environment. The simplest such estimate is exponential smoothing
of unit activities. Using this, the resulting network dynamics becomes
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where g is the passive time constant of a unit, j
0

a low background activity, o
i
is the

output of unit i, H(x) is a clipped exponential function, K
i
and K

ij
rate estimates of

P
i
(t) and P

ij
(t), respectively, and q the learning time constant. For convenience,

a"1/q will be used in the following; during testing of the net a was set to 0.
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Fig. 1. (a) Weights between two units that are active together at 104t420 (solid line) and when only one
unit is active (dot}dash line), a"0.05. (b) Forgetting curve during continuous learning. A 100-unit network
was trained with 50 sparse patterns and recall measured as the ratio of correct retrievals from noisy input
patterns for di!erent values of a.
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Fig. 2. (a) Number of correctly retrieved patterns as a function of a for di!erent sizes of the training set.
Pattern 1 is the most recent. (b) Distribution of states after convergence from a random initial state in
a network trained with 10 patterns, pattern 11 corresponds to convergence to the low-activity steady state.

990 A. Sandberg et al. / Neurocomputing 32}33 (2000) 987}994



Fig. 3. Convergence time for retrieval of stored patterns. (a) shows the e!ect of recency at full memory load.
Pattern 1 is the most recently learned pattern. The line represent the mean of the convergence times.
(b) shows the e!ect of increasing the memory load. The network is trained with 10 patterns.
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3. Results

Fig. 1a demonstrates the change over time of a weight between two units where one
or both of them are active for a brief interval. A network with such decaying
connections can exhibit palimpsest memory properties. As new data arrives, old data
is forgotten and the ability to learn remains unchanged (Fig. 1b). Stored memories
remained retrievable for a period of time set by the time constant until they rapidly
decayed. For short time constants the capacity of the memory grew roughly linearly
with the time constant, until it reached the limit set by the network size and sparsity,
i.e. that of the standard counting BCPNN (Fig. 2a). For long time constants the
behavior approached the counting BCPNN, which means that large training sets were
averaged together and hence became impossible to retrieve, while smaller training sets
were retained.

When activated with random stimuli, the probability of ending up in a given
attractor state depended on its age; recent patterns were more likely to be retrieved
than old ones (Fig. 2b). As more patterns were learned, the basins of attraction of old
patterns became smaller, producing a change of convergence speed. The average time
it took for the network to converge to a learned attractor state from a partial input
increased with the age of the attractor and the number of attractors already learned
(Fig. 3).

4. Discussion

We have proposed and characterized a continuous, real-time extension to a pre-
vious Bayesian learning rule (BCPNN). It has some attractive features in comparison
with previous palimpsest memories. For instance, it is derived from a statistical
inference framework, it does not discard information, and it does not rely on un-
biological scaling of weight changes. By changing the time constant the capacity can
be regulated. Yet, at this stage there is little quantitative relation either to synaptic
plasticity or to human memory phenomena. However, we expect this incremental
learning rule to be useful in models of e.g. working memory and hippocampal}
neocortical teach-back.

In our simulations with a fast learning and forgetting `working memorya we have
found that the average convergence time increases with memory load. This relates to
the classical "nding by Sternberg of a reaction time dependence on list length [15].
The proposed learning rule is sensitive to temporal ordering of stimuli. However, it is
likely that to reproduce memory e!ects in e.g. list learning, additional asymmetric
components of the learning rule are required.
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