Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Intramolecular N-15 and O-18 fractionation in the reaction of N2O with O(D-1) and its implications for the stratospheric N2O isotope signature

MPG-Autoren
/persons/resource/persons30949

Röckmann,  T.
Prof. Konrad Mauersberger, Emeriti, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kaiser, J., Brenninkmeijer, C. A. M., & Röckmann, T. (2002). Intramolecular N-15 and O-18 fractionation in the reaction of N2O with O(D-1) and its implications for the stratospheric N2O isotope signature. Journal of Geophysical Research-Atmospheres, 107(D14): 4214, pp. 4214-4214.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-82FC-9
Zusammenfassung
[1] Atmospheric nitrous oxide (N2O) is enriched in heavy oxygen and nitrogen isotopes relative to its tropospheric sources. This enrichment is traced back to kinetic isotope effects in the two stratospheric N2O sink mechanisms, i.e., photolysis and reaction with O(D-1). Most of the previous studies on the cause of isotopic enrichment in N2O have focused on photolysis. Here we present results on the O-18 and the position-resolved N-15 kinetic isotope effects in the reaction of nitrous oxide with O(D-1) obtained by recently developed mass spectrometric techniques. Just as in the photolysis sink, a heavy isotope enrichment in the residual N2O was found, but of smaller magnitude. However, the fractionation pattern of nitrogen isotopes at the two nonequivalent positions in the molecule is clearly distinct from that in photolytic N2O destruction. The fractionation constant for the terminal nitrogen atom, (15)epsilon(1) = k((N2O)-N-14)/k((NNO)-N-15-N-14) 1 = (8.87 +/- 0.15) parts per thousand, is larger than for the central nitrogen atom, (15)epsilon(2) = k((N2O)-N-14)/k((NNO)-N-14-N- 15) 1 = (2.22 +/- 0.12) parts per thousand(all errors are 2sigma). The fractionation constant for oxygen, (18)epsilon = k(N-2 O-16)/k(N-2 O-18) - 1 = (12.38 +/- 0.14)parts per thousand, was found to be larger than for nitrogen and amounts to about twice the value from the single previous determination. The larger influence of the O(D-1) sink at lower stratospheric altitudes could probably explain the lower ratio of (15)epsilon(2) /(15)epsilon(1) (=eta) observed there, which is shown to be only marginally influenced by transport. The published data on stratospheric eta values suggest that, if there are no other chemical reactions involved, up to 60% of the overall N2O loss at lower altitudes could be from the reaction with O(D-1).