English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neutrino Mixing and Neutrino Telescopes

MPS-Authors
/persons/resource/persons30951

Rodejohann,  Werner
Werner Rodejohann - ERC Starting Grant, Junior Research Groups, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rodejohann, W. (2007). Neutrino Mixing and Neutrino Telescopes. Journal of Cosmology and Astroparticle Physics, (2007)(JCAP01): 029. doi:10.1088/1475-7516/2007/01/029.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-7E18-8
Abstract
Measuring flux ratios of ultra-high energy neutrinos is an alternative method to determine the neutrino mixing angles and the CP phase delta. We conduct a systematic analysis of the neutrino mixing probabilities and of various flux ratios measurable at neutrino telescopes. The considered cases are neutrinos from pion, neutron and muon-damped sources. Explicit formulae in case of mu-tau symmetry and its special case tri-bimaximal mixing are obtained, and the leading corrections due to non-zero theta_{13} and non-maximal theta_{23} are given. The first order correction is universal as it appears in basically all ratios. We study in detail its dependence on theta_{13}, theta_{23} and the CP phase, finding that the dependence on theta_{23} is strongest. The flavor compositions for the considered neutrino sources are evaluated in terms of this correction. A measurement of a flux ratio is a clean measurement of the universal correction (and therefore of theta_{13}, theta_{23} and delta) if the zeroth order ratio does not depend on theta_{12}. This favors pion sources over the other cases, which in turn are good candidates to probe theta_{12}. The only situations in which the universal correction does not appear are certain ratios in case of a neutron and muon-damped source, which depend mainly on theta_{12} and receive only quadratic corrections from the other parameters. We further show that there are only two independent neutrino oscillation probabilities, give the allowed ranges of the considered flux ratios and of all probabilities, and show that none of the latter can be zero or one.