Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phenomenology of dark matter annihilation into a long-lived intermediate state

MPG-Autoren
/persons/resource/persons31026

Schwetz,  Thomas
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rothstein, I., Schwetz, T., & Zupan, J. (2009). Phenomenology of dark matter annihilation into a long-lived intermediate state. Journal of Cosmology and Astroparticle Physics, JCAP07(07): 018, pp. 1-23. doi:10.1088/1475-7516/2009/07/018.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-74FE-5
Zusammenfassung
We propose a scenario where Dark Matter (DM) annihilates into an intermediate state which travels a distance $\lambda \equiv v/\Gamma$ on the order of galactic scales and then decays to Standard Model (SM) particles. The long lifetime disperses the production zone of the SM particles away from the galactic center and hence, relaxes constraints from gamma ray observations on canonical annihilation scenarios. We utilize this set up to explain the electron and positron excesses observed recently by PAMELA, ATIC, and FERMI. While an explanation in terms of usual DM annihilations seems to conflict with gamma ray observations, we show that within the proposed scenario, the PAMELA/ATIC/FERMI results are consistent with the gamma ray data. The distinction from decay scenarios is discsussed and we comment on the prospects for DM production at LHC. The typical decay length $\lambda \gtrsim 10$ kpc of the intermediate state can have its origin from a dimension six operator suppressed by a scale $\Lambda \sim 10^{13}$ GeV, which is roughly the seesaw scale for neutrino masses.