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The cosmological constant: a lesson from Bose–Einstein condensates
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The cosmological constant is one of the most pressing problems in modern physics. In this Letter,
we address the issue of its nature and computation using an analogue gravity standpoint as a toy
model for an emergent gravity scenario. Even if it is well known that phonons in some condense
matter systems propagate like a quantum field on a curved spacetime, only recently it has been
shown that the dynamics of the analogue metric in a Bose–Einstein condensate can be described
by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. Here
we directly compute this term and confront it with the other energy scales of the system. On the
gravity side of the analogy, this model suggests that in emergent gravity scenarios it is natural for
the cosmological constant to be much smaller than its näıf value computed as the zero-point energy
of the emergent effective field theory. The striking outcome of our investigation is that the value of
this constant cannot be easily predicted by just looking at the ground state energy of the microscopic
system from which spacetime and its dynamics should emerge. A proper computation would require
the knowledge of both the full microscopic quantum theory and a detailed understanding about how
Einstein equations emerge from such a fundamental theory. In this light, the cosmological constant
appears even more a decisive test bench for any quantum/emergent gravity scenario.

The cosmological constant [1] has been one of the most
mysterious and fascinating objects for both cosmologist
and theoretical physicists since its introduction eighty
years ago [2]. Once called by Einstein his greatest blun-
der, it seems nowadays the driving force behind the cur-
rent accelerated expansion of the universe. The expla-
nation of its origin is considered one of the most funda-
mental issues for our comprehension of general relativity
(GR) and quantum field theory.

Since this constant appears in Einstein equations as
a source term present even in the absence of matter and
with the symmetries of the vacuum (TΛ

µν ∝ gµν), it is usu-
ally interpreted as a “vacuum energy”. Unfortunately,
this has originated the so-called “worst prediction” of
physics. In fact, the estimated value, which is näıvely
obtained by integrating the zero-point energies of modes
of quantum fields below Planck energy, is about 120 or-
ders of magnitude larger than the measured value. De-
spite the large number of attempts (most notably super-
symmetry [3], which, however, must be broken at low
energy) this problem is still open. We can summarize
the situation by saying that, given the absence of cus-
todial symmetries protecting the cosmological term from
large renormalization effects, the only option we have to
explain observations is fine tuning [5, 6].

This huge discrepancy is plausibly due to the use of
effective field theory (EFT) calculations for a quantity
which can be computed only within a full quantum the-
ory of gravity. Unfortunately, to date, we do not have any
conclusive theory at our disposal. However, the possibil-
ity of a failure of our EFT-based intuition is supported
by what can be learned from analogue models of grav-
ity [7], given that, in these models, the way in which the

structure of the spacetime emerges from the microscopic
theory is fully under control. In [8, 9] it was shown that
a näıf computation of the ground state energy using the
effective field theory (the analogue that one would do
to compute the cosmological constant), would produce a
wrong result. The unique way to compute the correct
value seems to use the full microscopic theory.

Given the deep difference in the structure of the equa-
tions of fluid dynamics and those of GR (and other grav-
itational theories) it is not possible to have an accurate
analogy at the dynamical level: indees, this is forbidden
by the absence of diffeomorphism invariance and of local
Lorentz invariance. However, in [10] it has been shown
for the first time that the evolution of part of the acoustic
metric in a Bose–Einstein condensate (BEC) is described
by a Poisson equation for a nonrelativistic gravitational
field, thus realizing a (partial) dynamical analogy with
Newtonian gravity. Noticeably, this equation is endowed
with a source term which is there even in the absence of
real phonons and can be naturally identified as a cosmo-
logical constant.

In this Letter we will consider such analogue model for
gravity and directly show that the cosmological constant
term cannot be computed through the standard effective
field theory approach, confirming the conjecture of [8].
However, we find that also the total ground state energy
of the condensate does not give the correct result: in-
deed, the cosmological constant is comparable with that
fraction of the ground state energy corresponding to the
quantum depletion of the condensate, i.e. to the fraction
of atoms inevitably occupying excited states of the single
particle Hamiltonian. In conclusion, the origin and value
of such term teach us some interesting lessons about the
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cosmological constant in emergent gravity scenarios.
Settings — The model used in [10] is a modified BEC

system including a soft breaking of the U(1) symmetry
associated with the conservation of particle number. This
unusual choice is a simple trick to give mass to quasipar-
ticles that are otherwise massless by Goldstone’s theo-
rem. In second quantization, such a system is described
by a canonical field Ψ̂†, satisfying [Ψ̂(t,x), Ψ̂†(t,x′)] =
δ3(x − x

′), whose dynamics is generated by the Grand
Canonical Hamiltonian Ĥ = Ĥ − µN̂ , where

Ĥ =

∫

d3x

[

~
2

2m
∇2Ψ̂†∇2Ψ̂ + V Ψ̂†Ψ̂

+
g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂− λ

2

(

Ψ̂Ψ̂ + Ψ̂†Ψ̂†
)

]

, (1)

and N̂ is the standard number operator for Ψ̂. For more
details on this model and on possible physical realiza-
tions, see [10]. See also [16] for a generalization to con-
densates with many components.
We describe the formation of a BEC at low tempera-

ture through a complex function Ψ0 for the condensate
and an operator φ̂ for the perturbations on top of it [13]:

Ψ̂ = Ψ0(I+ φ̂). (2)

The canonical commutation relation for Ψ̂† implies

[

φ̂(t, x), φ̂†(t, x′)
]

=
1

ρ0(x)
δ(x− x′). (3)

We adopt the notation of [14], where a rigorous quanti-

zation and mode analysis of the field φ̂ is presented for
a standard BEC. Those results are here summarized and
generalized to the U(1)-breaking case of [10].
For a stationary condensate, ∂tΨ0 = 0 and Eqs. (1)

and (2) lead to a modified Gross–Pitaëvski equation

[

− ~
2

2m
∂x

2 + V − µ+ gρ0 − λ
Ψ0

∗

Ψ0

]

Ψ0 = 0. (4)

For the aim of this Letter, it is enough to consider only
homogeneous backgrounds. Thus, one can assume that
V = 0 and the condensate is at rest, such that Ψ0 has
a constant phase. For stability reasons, Ψ0 must be real
(Ψ0

∗ = Ψ0 =
√
ρ0), and Eq. (4) simplifies to µ = gρ0−λ.

The equation for the quasiparticles is solved via Bo-
goliubov transformation involving the Fourier expansion

φ̂ =

∫

d3k
√

ρ0(2π)3

[

uke
−iωt+ik·xâk + v∗

k
e+iωt−ik·xâ†k

]

,

(5)

where âk and â†k are quasiparticles’ operators and the fac-

tor
√

ρ0(2π)3 has been inserted such that the Bogoliubov
coefficients uk and vk obey the standard normalization
|uk|2 − |vk|2 = 1.

The dispersion relation is

~
2ω2 = 4λgρ0 +

gρ0 + λ

m
~
2k2 +

~
4k4

4m2
, (6)

describing massive phonons with ultraviolet corrections,
mass M, and speed of sound cs [10]

M =
2
√
λgρ0

gρ0 + λ
m, c2s =

gρ0 + λ

m
. (7)

Finally, standard manipulations give

uk
2 =

1

1−D2
k

, vk
2 =

D2
k

1−D2
k

, (8)

Dk ≡ ~ω −
(

~
2
k
2/2m+ gρ0 + λ

)

gρ0 − λ
, (9)

where both uk and vk are chosen to be real.
Vacuum expectation values — We can now compute

the vacuum expectation value of Ĥ in the ground state
|Ω〉, the Fock vacuum of the quasiparticles (âk|Ω〉 =
0, ∀k). To this aim, it is convenient to expand Ĥ in

powers of φ̂: Ĥ ≈ H0 + Ĥ1 + Ĥ2, where H0, Ĥ1, and
Ĥ2 contain respectively no power of φ̂, only first powers,
and only second powers, and higher order terms associ-
ated with quasiparticles’ self-interactions are neglected.
The energy density h0 of the condensate (density of H0)
and the density h2 of the expectation value of Ĥ2 are

h0 = −gρ0
2

2
, h2 = −

∫

d3k

(2π)3
~ω|vk|2, (10)

while the expectation value of Ĥ1 vanishes because it
contains only odd powers of âk and â†k. The integral in
Eq. (10) is computed by using Eqs. (8) and (9). Applying
standard regularization techniques (see also [15])

h2 =
64

15
√
π
gρ0

2
√

ρ0a3 Fh

(

λ

gρ0

)

, (11)

where a = 4πgm/~2 is the scattering length, Fh is plotted
in Fig. 1 (dashed line) and Fh(0)=1.
The total grand-canonical energy density is therefore

h = h0 + h2 =
gρ0

2

2

[

−1 +
128

15
√
π
Fh

(

λ

gρ0

)]

(12)

and it coincides with the well known Lee–Huang–Yang
formula [11] when λ = 0.
The number density operator N̂ is analogously ex-

panded in powers of φ̂: N̂ = N0 + N̂1 + N̂2. The density
of N0 is simply ρ0 = |Ψ0|2, 〈N̂1〉Ω = 0, and the density
ρ2 ≡ 〈N̂2〉Ω is

ρ2 = ρ0〈φ̂†φ̂〉Ω =

∫

d3k

(2π)3
|vk|2 =

8ρ0
3
√
π

√

ρ0a3 Fρ

(

λ

gρ0

)

,

(13)
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FIG. 1: Fh [dashed line, Eq. (11)], Fρ [dotted line, Eq. (13)],
Fφφ [dotdashed line, Eq. (22)], and FΛ [solid line, Eq. (23)].

where Fρ satisfies Fρ(0) = 1 (see Fig. 1, dotted line).
This is the number density of non-condensed atoms (de-
pletion). Note that ρ0a

3 is the so called dilution factor
which has to be much smaller than one for the Hamilto-
nian (1) to hold.
Furthermore, when λ = 0, inverting the expression for

total particle density, ρ = ρ0+ ρ2, one obtains, up to the
first order in

√

ρa3

ρ0 = ρ

[

1− 8

3
√
π

√

ρa3
]

, (14)

which is the density of condensed atoms in terms of the
total density ρ and the scattering length a [11]. In this
case, µ = gρ0, such that the energy density ǫ (density of
〈Ĥ〉Ω = 〈H+ µN̂〉Ω) is

ǫ = h+ µρ =
gρ2

2

[

1 +
128

15
√
π

√

ρa3
]

. (15)

This is the well known Lee–Huang–Yang [11] formula for
the ground state energy in a condensate at zero temper-
ature. In general, when the U(1) breaking term is small,
this term is expected to be the dominant contribution to
the ground state energy of the condensate.
Analogue cosmological constant — When the homo-

geneous condensate background is perturbed by small
inhomogeneities, the Hamiltonian for the quasi-particles
can be written as (see [10])

Ĥquasip. ≈ Mc2s −
~
2∇2

2M +MΦg. (16)

Ĥquasip. is the non-relativistic Hamiltonian for particles
of mass M [see Eq. (7)] in a gravitational potential

Φg(x) =
(gρ0 + 3λ)(gρ0 + λ)

2λm
u(x) (17)

and u(x) = [(ρ0(x)/ρ∞)− 1]/2, where ρ∞ is the asymp-
totic density of the condensate. Moreover, the dynamics
of the potential Φg is described by a Poisson-like equation

[

∇2 − 1

L2

]

Φg = 4πGNρp + CΛ, (18)

which is the equation for a non-relativistic short-range
field with length scale L and gravitational constant GN :

L =
a

√

16πρ0a3
, GN =

g(gρ0 + 3λ)(gρ0 + λ)2

4π~2mλ3/2(gρ0)1/2
. (19)

Despite the obvious difference between Φg and the usual
Newtonian gravitational potential, we insist in calling
it the Newtonian potential because it enters the acous-
tic metric exactly as the Newtonian potential enters the
metric tensor in the Newtonian limit of GR.

The source term in Eq. (18) contains both the contri-
bution of real phonons (playing the role of matter)

ρp = Mρ0

[

(

〈φ̂†φ̂〉ζ − 〈φ̂†φ̂〉Ω
)

+
1

2
Re

(

〈φ̂φ̂〉ζ − 〈φ̂φ̂〉Ω
)

]

,

(20)
where |ζ〉 is some state of real phonons, as well as a cos-
mological constant like term (present even in the absence
of phonons/matter)

CΛ =
2gρ0(gρ0 + 3λ)(gρ0 + λ)

~2λ
Re

[

〈φ̂†φ̂〉Ω +
1

2
〈φ̂φ̂〉Ω

]

.

(21)
Note that the source term in the correct weak field ap-
proximation of Einstein equations is 4πGN (ρ + 3p/c2).
For standard nonrelativistic matter, p/c2 is usually neg-
ligible with respect to ρ. However, it cannot be neglected
for the cosmological constant, since pΛ/c

2 = −ρΛ. As a
consequence CΛ = −2c2sΛ, where Λ would be the GR
cosmological constant. From Eq. (13) and evaluating

〈φ̂φ̂〉Ω =

∫

d3k

ρ0(2π)3
ukvk =

8√
π

√

ρ0a3 Fφφ

(

λ

gρ0

)

, (22)

where Fφφ(0) = 1 (see Fig. 1, dotdashed line), we obtain

Λ = −20mgρ0 (gρ0 + 3λ)

3
√
π~2λ

√

ρ0a3 FΛ

(

λ

gρ0

)

, (23)

where FΛ = (2Fρ + 3Fφφ)/5 (see Fig. 1, solid line).

Let us now compare the value of Λ either with the
ground-state grand-canonical energy density h [Eq. (12)],
which in [8] was suggested as the correct vacuum en-
ergy corresponding to the cosmological constant, or to
the ground-state energy density ǫ of Eq. (15). Evidently,
Λ does not correspond to either of them: even when tak-
ing into account the correct behavior at small scales, the
vacuum energy computed with the phonon effective field
theory does not lead to the correct value of the cosmolog-
ical constant appearing in Eq. (18). Noticeably, since Λ is

proportional to
√

ρ0a3, it can even be arbitrarily smaller
both than h and than ǫ, if the condensate is very dilute.
Furthermore, Λ is proportional only to the subdominant
second order correction of h or ǫ, which is strictly related
to the depletion [see Eq. (13)].
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Fundamental scales — Several scales show up in the
emergent system, in addition to the näıf Planck scale
computed by combining the emergent constants GN, cs
and ~:

LP =

√

~c5s
GN

∝
(

λ

gρ0

)−3/4

(ρ0a
3)−1/4a. (24)

For instance, the Lorentz-violation scale (i.e., the healing
lenght of the condensate) LLV = ξ ∝ (ρ0a

3)−1/2a differs
from LP, suggesting that the breaking of the Lorentz
symmetry might be expected at scale much longer than
the Planck length (energy much smaller than the Plack
energy), since the ratio LLV/LP ∝ (ρ0a

3)−1/4 increases
with the diluteness of the condensate.
Note that LLV scales with ρ0a

3 exactly as the range
of the gravitational force [see Eq. (19)], signaling that
this model is too simple to correctly grasp all the desired
features. However, in more complicated systems [16],
this pathology can be cured, in the presence of suitable
symmetries, leading to long range potentials.
It is instructive to compare the energy density corre-

sponding to Λ to the Planck energy density:

EΛ =
Λc4s
4πGN

, EP =
c7s

~G2
N

,
EΛ
EP

∝ ρ0a
3

(

λ

gρ0

)−5/2

.

(25)
The energy density associated with the analogue cosmo-
logical constant is much smaller than the values com-
puted from zero-point-energy calculations with a cut off
at the Planck scale. Indeed, the ratio between these two
quantities is controlled by the diluteness parameter ρ0a

3.
Final remarks — Taken at face value, this relatively

simple model displays too many crucial differences with
any realistic theory of gravity to provide conclusive evi-
dences. However, it displays an alternative path to the
cosmological constant, from the perspective of a micro-
scopic model. The analogue cosmological constant that
we have discussed cannot be computed as the total zero-
point energy of the condensed matter system, even when
taking into account the natural cut-off coming from the
knowledge of the microphysics [8]. In fact the value of
Λ is related only to the (subleading) part of the zero-
point energy proportional to the quantum depletion of
the condensate.
The implications for gravity are twofold. First, there

could be no a priori reason why the cosmological costant
should be computed as the zero-point energy of the sys-
tem. More properly, its computation must inevitably
pass through the derivation of Einstein equations emerg-
ing from the underlying microscopic system. Second, the
energy scale of Λ can be several orders of magnitude
smaller than all the other energy scales for the presence
of a very small number, nonperturbative in origin, which
cannot be computed within the framework of an effec-
tive field theory dealing only with the emergent degrees
of freedom (i.e. semiclassical gravity).

The model discussed in this Letter shows all this explic-
itly. Furthermore, it strongly supports a picture where
gravity is a collective phenomenon in a pregeometric the-
ory. In fact, the cosmological constant puzzle is elegantly
solved in those scenarios. From an emergent gravity ap-
proach, the low energy effective action (and its renormal-
ization group flow) is obviously computed within a frame-
work that has nothing to do with quantum field theories
in curved spacetime. Indeed, if we interpreted the cosmo-
logical constant as a coupling constant controlling some
self-interaction of the gravitational field, rather than as
a vacuum energy, it would straightforwardly follow that
the explanation of its value (and of its properties under
renormalization) would naturally sit outside the domain
of semiclassical gravity.

For instance, in a group field theory scenario (a gen-
eralization to higher dimensions of matrix models for
two dimensional quantum gravity [19]), it is transparent
that the origin of the gravitational coupling constants
has nothing to do with ideas like “vacuum energy” or
statements like “energy gravitates”, because energy it-

self is an emergent concept. Rather, the value of Λ is
determined by the microphysics, and, most importantly,
by the procedure to approach the continuum semiclassi-
cal limit. In this respect, it is conceivable that the very
notion of cosmological constant as a form of energy in-
trinsic to the vacuum is ultimately misleading. To date,
little is known about the macroscopic regime of models
like group field theories, even though some preliminary
steps have been recently done [20]. Nonetheless, ana-
logue models elucidate in simple ways what is expected
to happen and can suggest how to further develop in-
vestigations in quantum gravity models. In this respect,
the reasoning of this Letter sheds a totally different light
on the cosmological constant problem, turning it from a
failure of effective field theory to a question about the
emergence of the spacetime.
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