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FROM 4d SUPERCONFORMAL INDICES

TO 3d PARTITION FUNCTIONS

F. A. H. DOLAN, V. P. SPIRIDONOV, AND G. S. VARTANOV

Abstract. An exact formula for partition functions in 3d field theories was
recently suggested by Jafferis, and Hama, Hosomichi, and Lee. These func-
tions are expressed in terms of specific q-hypergeometric integrals whose key
building block is the double sine function (or the hyperbolic gamma function).
Elliptic hypergeometric integrals, discovered by the second author, define 4d
superconformal indices. Using their reduction to the hyperbolic level, we de-
scribe a general scheme of reducing 4d superconformal indices to 3d partition
functions. As an example, we consider explicitly the duality pattern for 3d
N = 2 SYM and CS theories with SP (2N) gauge group with adjoint matter.

Introduction

Superconformal indices (SCIs) of supersymmetric Yang Mills field theories in
four dimensions [1] may be most conveniently expressed in terms of elliptic hyper-
geometric integrals, discovered in [2]. This fact was observed and utilised, in the
context of Seiberg duality, first in [3] and discussed in detail in [4, 5] (see also [6, 7]).
SCIs provide perhaps currently the most rigorous mathematical test of 4d super-
symmetric dualities whereby indices for theories with quite different matter content
may be shown to coincide due to non-trivial identities for elliptic hypergeometric
integrals. Moreover, they give a powerful tool for searching for new dualities by
utilising transformation formulae for elliptic hypergeometric integrals, as was first
shown in [4].

SCIs of 3d field theories have an essentially more involved form (due to monopole
contributions, that do not analogously arise for 4d theories) – see [8, 9, 10, 11,
12] and references therein. In [12] an attempt was made to find a connection
between 4d and 3d SCIs, but no simple relation was found. In the present work
we concentrate on the partition functions of 3d theories [13, 14, 15, 17, 16, 18, 19,
20, 21]. More precisely, we demonstrate that these partition functions as well as
duality relations among different theories can be obtained by a reduction of 4d SCIs
and corresponding duality relations.

The study of 3d partition functions using the localization techniue was initi-
ated by Kapustin, Willett, and Yaakov [14]. In the work of Jafferis [17] and Hama,
Hosomichi, and Lee [18] a general recipe for building 3d partition functions was sug-
gested. It was found that these functions are expressed in terms of q-hypergeometric
integrals admitting the |q| = 1 regime [22, 23] (which are referred also as the hyper-
bolic q-hypergeometric integrals) and having equal quasiperiods ω1 = ω2. In [19]
this result was generalized to arbitrary values of the quasiperiods ω1, ω2.

Technically, the observation that we make here (that there is an explicit connec-
tion between SCIs of 4d supersymmetric field theories and the partition functions
of 3d theories, that allows also for a recipe for finding possible duals) is realized by
the reduction of elliptic hypergeometric integrals [2] to hyperbolic q-hypergeometric
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integrals, which was rigorously established by Rains in [24]. A detailed consider-
ation of such limiting cases was given by van de Bult [25] (see also [26]). This
suggests perhaps that the SCIs of 4d theories are more fundamental objects than
the partition functions of 3d theories in that the properties of the latter are inher-
ited from elliptic hypergeometric integrals, which, as functions, are more general,
nevertheless having a simpler form. While the connection between 4d and 3d du-
alities for supersymmetric field theories was explored in [27] and studied further in
the context of the three-dimensional analog of Seiberg duality in [28, 29], here the
connection between 4d SCIs and 3d partition functions gives a different perspective
with strong predictive power.

In the following, we illustrate how a reduction in 4d SCIs lead to formulae equiv-
alent to 3d partition functions by considering particular examples. The same re-
duction may be applied essentially to other 4d SCIs and expressions for 3d parti-
tion functions recovered so that these examples suffice to show the general proce-
dure. Since 4d SCIs for dual theories are obtained from transformation formulae
for these elliptic hypergeometric integrals, the same reduction applied to these in-
tegrals yields corresponding 3d partition functions for dual theories, from which
matter content and their representations may be read off. While this procedure is
applied to a few examples here, obviously if more examples were considered, due
to the profusion of transformation formulae available for elliptic hypergeometric
integrals, a whole plethora of new dualities for 3d theories would potentially be
implied.

Reduction from 4d superconformal indices to 3d partition functions

Let us take an SP (2N) gauge group four-dimensional N = 1 SQCD obeying the
multiple duality phenomenon which was described in [4]. The electric theory has
the overall symmetry group

G = SP (2N)× SU(8)× U(1)R.

This has one chiral scalar multiplet Q belonging to the fundamental representation
f of SP (2N) gauge group, a vector multiplet V in the adjoint representation of
the gauge group, and an antisymmetric SP (2N)-tensor field X , as described in the
table below.

SP (2N) SU(8) U(1) U(1)R
Q f f −N−1

4
1
2

X TA 1 1 0

For N = 1, the field X is absent and the group U(1) is completely decoupled.
The electric index is given by the following elliptic hypergeometric integral,

namely,

IE =
(p; p)N∞(q; q)N∞

2NN !
Γ((pq)s; p, q)N−1

∫

TN

∏

1≤i<k≤N

Γ((pq)sz±1
i z±1

k ; p, q)

Γ(z±1
i z±1

k ; p, q)

×
N∏

j=1

∏8
i=1 Γ((pq)

ryiz
±1
j ; p, q)

Γ(z±2
j ; p, q)

dzj
2πizj

, (1)

where r = 1/4 − (N − 1)s/4, rX = s, and s is an arbitrary chemical potential
associated with the group U(1). The parameters satisfy the constraints |t|, |tj | < 1,
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where t = (pq)s and tj = (pq)ryj , j = 1, . . . , 8, and the balancing condition,

t2N−2
8∏

j=1

tj = (pq)2.

Here Γ(z; p, q) is the elliptic gamma function, defined as,

Γ(z; p, q) =

∞∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj
, |p|, |q| < 1,

and Γ(a, b; p, q) ≡ Γ(a; p, q)Γ(b; p, q), Γ(az±1; p, q) ≡ Γ(az; p, q)Γ(az−1; p, q), as per
usual conventions. Function (1) is a two-parameter generalization of the elliptic
Selberg integral suggested in [30] and a multidimensional extension of the elliptic
analogue of the Gauss hypergeometric function of [2, 31].

The multiple dual theories of [4] are constructed by means of W (E7)-symmetry
transformations for the integral,

I(t1, . . . , t8; t, p, q) =
∏

1≤j<k≤8

Γ(tjtk; p, q, t)
(p; p)N∞(q; q)N∞

2NN !

×
∫

TN

∏

1≤j<k≤N

Γ(tz±1
j z±1

k ; p, q)

Γ(z±1
j z±1

k ; p, q)

N∏

j=1

∏8
k=1 Γ(tkz

±1
j ; p, q)

Γ(z±2
j ; p, q)

dzj
2πizj

, (2)

where the nine variables t, t1, . . . , t8 ∈ C satisfy the inequalities |t|, |tj | < 1. Here,

Γ(z; p, q, t) =

∞∏

j,k,l=0

(1− ztjpkql)(1− z−1tj+1pk+1ql+1),

is the elliptic gamma function of the second order satisfying the key t-difference
equation,

Γ(tz; p, q, t) = Γ(z; p, q)Γ(z; p, q, t).

The relevant generating transformation, which was established by the second author
(for N = 1) in [31] and by Rains (for arbitrary N) in [32], is given by,

I(t1, . . . , t8; t, p, q) = I(s1, . . . , s8; t, p, q), (3)

where the variables are related by

sj = ρ−1tj , j = 1, 2, 3, 4, sj = ρtj , j = 5, 6, 7, 8, (4)

ρ =

√
t1t2t3t4
pqt1−n

=

√
pqt1−n

t5t6t7t8
.

Fixing the variables as in [24],

t = e2πivτ , ti = e2πivµi , i = 1, . . . , 8, p = e2πivω1 , q = e2πivω2 ,

with the restriction,

2(N − 1)τ +

8∑

i=1

µi = 2(ω1 + ω2), (5)

playing the role of the balancing condition, we first consider the limit v → 0.
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Using the notation of [26], the limiting integral [24] reduces the electric super-
conformal index to the form,

IreducedE (µ1, . . . , µ8, τ ;ω1, ω2) =
1

2NN !
γ(2)(τ ;ω1, ω2)

N−1 (6)

×
∫ i∞

−i∞

∏

1≤i<k≤N

γ(2)(τ ± ui ± uk;ω1, ω2)

γ(2)(±ui ± uk;ω1, ω2)

N∏

j=1

∏8
i=1 γ

(2)(µi ± uj;ω1, ω2)

γ(2)(±2uj;ω1, ω2)

N∏

j=1

duj√
ω1ω2

,

where,

γ(2)(u;ω1, ω2) = e−πiB2,2(u;ω1,ω2)/2
(e2πiu/ω1 q̃; q̃)∞
(e2πiu/ω1 ; q)∞

, (7)

with,

q = e2πiω1/ω2 , q̃ = e−2πiω2/ω1 ,

and for B2,2(u;ω1, ω2) denoting the second order Bernoulli polynomial,

B2,2(u;ω1, ω2) =
u2

ω1ω2
− u

ω1
− u

ω2
+

ω1

6ω2
+

ω2

6ω1
+

1

2
. (8)

Here the conventions, γ(2)(a, b;ω1, ω2) ≡ γ(2)(a;ω1, ω2) γ(2)(b;ω1, ω2), γ(2)(a ±
u;ω1, ω2) ≡ γ(2)(a+ u;ω1, ω2)γ

(2)(a− u;ω1, ω2), are used.
The same limiting result can be obtained after considering the modified elliptic

hypergeometric integrals constructed from the modified elliptic gamma function
G(u;ω1, ω2, ω3), [31], after taking the limit ω3 → ∞, see a detailed consideration
of some examples in [23, 26]. In Appendix A of [26] different forms of the function
γ(2)(u) baring different names are listed. In particular, 1/γ(2)(u) is known as the
double sine function. In [24, 25] the hyperbolic gamma function Γh(u) is used which
is obtained after replacing the quasiperiods ω1, ω2 by iω1, iω2 in γ(2)(u).

In the limit discussed, transformation formula (3) leads to the following relation
[24], namely,

IreducedE (µ1, . . . , µ8, τ ;ω1, ω2) =
1

2NN !
γ(2)(τ ;ω1, ω2)

N−1 (9)

×
N−1∏

j=0

∏

1≤i<k≤4

γ(2)(jτ + µi + µk;ω1, ω2)
∏

5≤i<k≤8

γ(2)(jτ + µi + µk;ω1, ω2)

×
∫ i∞

−i∞

∏

1≤i<k≤N

γ(2)(τ ± ui ± uk;ω1, ω2)

γ(2)(±ui ± uk;ω1, ω2)

N∏

j=1

∏8
i=1 γ

(2)(νi ± uj ;ω1, ω2)

γ(2)(±2uj;ω1, ω2)

N∏

j=1

duj√
ω1ω2

,

where

νj = ξ + µj , j = 1, 2, 3, 4, νj = −ξ + µj , j = 5, 6, 7, 8,

2ξ = (ω1 + ω2)− (N − 1)τ −
4∑

i=1

µi = −(ω1 + ω2) + (N − 1)τ +

8∑

i=5

µi.

Applying the further limit,

lim
S→∞

IreducedE (µ1, . . . , µ6, ξ1 + αS, ξ2 − αS;ω1, ω2) (10)

× e−πiN((ξ2−αS−ω)2−(ξ1+αS−ω)2)/ω1ω2 ,

where max{arg(ω1), arg(ω2)}−π < arg(α) < min{arg(ω1), arg(ω2)} and ω = (ω1+
ω2)/2, to (9), carried out essentially in [25], leads to an expression coinciding exactly
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with the partition function for 3d N = 2 SYM theory with SP (2N) gauge group,
six quarks and one chiral field in absolutely antisymmetric representation of a gauge
group, namely,

Z3d
E =

1

2NN !
γ(2)(τ ;ω1, ω2)

N−1

∫ i∞

−i∞

∏

1≤i<k≤N

γ(2)(τ ± ui ± uk;ω1, ω2)

γ(2)(±ui ± uk;ω1, ω2)

×
N∏

j=1

∏6
i=1 γ

(2)(µi ± uj ;ω1, ω2)

γ(2)(±2uj;ω1, ω2)

N∏

j=1

duj√
ω1ω2

. (11)

Initially the partition function for 3d N = 2 SYM theories was calculated in
[17, 18] albeit in a particular limit that can be obtained from our results in two
ways ω1 → ω2 or ω1ω2 → 1. Later in [19] the most general partition function with
unrestricted ω1 and ω2 was obtained and in [21] the authors established an explicit
relation between particular hyperbolic q-hypergeometric integrals and particular
partition functions for 3d N = 2 SYM theories.

In [25], transformations of the integral in (11) forming the group W (D6) were
deduced as a limit from (9). They lead to the representation,

Z3d
M =

1

2NN !
γ(2)(τ ;ω1, ω2)

N−1
N−1∏

j=0

∏

1≤i<k≤4

γ(2)(jτ + µi + µk;ω1, ω2) (12)

×
N−1∏

j=0

γ(2)(jτ + µ5 + µ6, 4ω −
6∑

i=1

µi − (2N − j − 2)τ ;ω1, ω2)

×
∫ i∞

−i∞

∏

1≤i<k≤N

γ(2)(τ ± ui ± uk;ω1, ω2)

γ(2)(±ui ± uk;ω1, ω2)

N∏

j=1

∏6
i=1 γ

(2)(νi ± uj ;ω1, ω2)

γ(2)(±2uj;ω1, ω2)

N∏

j=1

duj√
ω1ω2

,

where also the reflection identity,

γ(2)(u, 2ω − u;ω1, ω2) = 1,

has been applied, and the transformed variables are given by,

νj = ξ + µj , j = 1, 2, 3, 4, νj = −ξ + µj , j = 5, 6,

2ξ = (ω1 + ω2)− (N − 1)τ −
4∑

i=1

µi.

Interpreting these integrals in terms of field theory, the global symmetry group
for the electric theory is SU(6)× U(1) × U(1)A × U(1)R, and the field content of
the electric theory may be tabulated as,

SP (2N) SU(6) U(1) U(1)A U(1)R
Q f f −N−1

4 1 1
2

X TA 1 1 0 0

which can be directly read from the expression for the partition function (11). The
denominator terms in the integral kernel represent the vector superfield contribution
while in the numerator we see the contribution coming from the chiral superfield X
in the antisymmetric representation of the group SP (2N) (given by the terms in
the first product and the multiplier in front of the integral), and the contribution
of quarks in the fundamental representation is given by the terms in the second
product in the kernel. The parameters τ and µi, i = 1, . . . , 6, are written after
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absorbing the charges for abelian global groups
∑3

i=1 rixi, where xi, i = 1, 2, 3,
correspond to chemical potentials of the abelian global groups U(1), U(1)A, and
U(1)R and ri their charges. Here x3 = (ω1 + ω2)/2 corresponds to the group
U(1)R.

For the magnetic theory, the global symmetry group in the UV is SU(4)×SU(2)×
U(1)× U(1)A × U(1)R, while the matter content may be similarly tabulated as,

SP (2N) SU(4) SU(2) U(1)B U(1) U(1)A U(1)R
q1 f f 1 −1 −N−1

4 −1 1
2

q2 f 1 f 2 −N−1
4 −1 1

2
x TA 1 1 0 1 0 0

M1,j 1 TA 1 0 2j−N+1
2 2 1

M2,j 1 1 TA 0 2j−N+1
2 2 1

Yj 1 1 1 0 2j−N+1
2 −6 1

where j = 0, . . . , N − 1. By applying the above mentioned transformation formulae
we expect the appearance of dim W (D6)/S6 = 32 different dual theories.

3d N = 2 SYM theory with SP (2N) gauge group, 6f and TA

As another example, here we discuss a 4d s-confining multiple duality case con-
sidered in terms of indices in [4]. The flavor symmetry group is F = SU(6)×U(1)
and the field content of both theories is presented as follows,

SP (2N) SU(6) U(1) U(1)R
Q f f N − 1 2r = 1

3
A TA 1 −3 0

Ak 1 −3k 0
QAmQ TA 2(N − 1)− 3m 2

3

where k = 2, . . . , N and m = 0, . . . , N − 1.
The electric superconformal index is given by the elliptic Selberg integral sug-

gested by van Diejen and the second author in [30],

IE =
(p; p)N∞(q; q)N∞

2NN !
Γ(t; p, q)N−1

∫

TN

∏

1≤i<k≤N

Γ(tz±1
i z±1

k ; p, q)

Γ(z±1
i z±1

k ; p, q)
(13)

×
N∏

j=1

∏6
m=1 Γ(tmz±1

j ; p, q)

Γ(z±2
j ; p, q)

N∏

j=1

dzj
2πizj

,

and the magnetic index is,

IM =
N∏

j=2

Γ(tj ; p, q)
N∏

j=1

∏

1≤m<s≤6

Γ(tj−1tmts; p, q), (14)

where the balancing condition reads t2N−2
∏6

m=1 tm = pq.
Integral (13) can be reduced to the hyperbolic level in the same way as before

(see, e.g. [25]) and yields the partition function of an electric 3d N = 2 SYM
theory, with SP (2N) gauge group, four quarks and one chiral field in antisymmetric
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representation of a gauge group, given by the following formula,

Z3d
E =

1

2NN !
γ(2)(τ ;ω1, ω2)

N−1

∫ i∞

−i∞

∏

1≤i<k≤N

γ(2)(τ ± zi ± zk;ω1, ω2)

γ(2)(±zi ± zk;ω1, ω2)

×
N∏

j=1

∏4
i=1 γ

(2)(µi ± zj ;ω1, ω2)

γ(2)(±2zj;ω1, ω2)

N∏

j=1

dzj√
ω1ω2

. (15)

Evidently, Z3d
E for this case can be evaluated exactly, yielding,

Z3d
M =

∏N
j=2 γ

(2)((j + 1)τ ;ω1, ω2)
∏N−1

j=0 γ(2)((2N − 2− j)τ +
∑4

i=1 µi;ω1, ω2)

∏

1≤i<k≤4

γ(2)(jτ+µi+µk;ω1, ω2),

(16)
or, using the reflection identity for γ(2)(u;ω1, ω2), equivalently expressed by,

Z3d
M =

N∏

j=2

γ(2)(jτ ;ω1, ω2)
N−1∏

j=0

γ(2)(ω1 + ω2 − (2N − 2− j)τ −
4∑

i=1

µi;ω1, ω2)

×
N−1∏

j=0

∏

1≤i<k≤4

γ(2)(jτ + µi + µk;ω1, ω2). (17)

The equality Z3d
E = Z3d

M was rigorously established for the first time by a different
method in [23], which result was used as a motivation for a systematic consideration
of the reduction procedure in [24].

The dual theories obtained from the equality of the partition functions both have
the global symmetry group SU(4)× U(1) × U(1)A × U(1)R. The spectrum of the
electric theory may be tabulated as follows,

SP (2N) SU(4) U(1) U(1)A U(1)R
Q f f 0 1 1

3
X TA 1 1 0 0

while that for the magnetic theory may be similarly tabulated as,

SU(4) U(1) U(1)A U(1)R
Mj = XjQ2 TA j 2 2

3
Nk = Xk 1 k 0 0

Yj 1 −(2N − 2− j) −4 2
3

where k = 2, . . . , N and j = 0, . . . , N − 1.

Further dualities

Further dualities are implied by subsequent reduction of the partition func-
tions implemented by taking similar limits as in (10) and, in contrast to the four-
dimensional case where similar reduction of SCIs corresponds to theories with fewer
flavors, here such reduction corresponds to theories that, whilst also having fewer
flavors than originally, have increased CS level. The technical details of the reduc-
tion of corresponding integrals are skipped here and only the final results for implied
particular dualities, without detailed description of all dual pairs, are indicated.

Taking a similar limit as in (10) in (15) with (17) leads to further identities for
partition functions implying further dualities. One such identity describes a 3d
N = 2 CS theory with gauge group SP (2N)k/2 and SU(4 − k)× U(1)× U(1)A ×
U(1)R global symmetry group with the spectrum involving, apart from the vector
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multiplet, 4 − k quarks Qi, i = 1, . . . , 4 − k, and one chiral superfield X in the
antisymmetric representation of the gauge group. This is a confining theory where
the spectrum of the dual theory can be directly read from the expressions of the
corresponding partition functions, following from the properties of the integrals
presented in Sect. 5.6.3 of [25], summarised by singlets of the SU(4 − k) flavor
group Yj = Xj+1, j = 1, . . . , N − 1, and baryons Mj = XjQ2, j = 1, . . . , N ,
described by the chiral superfield in the antisymmetric representation of SU(4− k)
(for k = 3, 4 we do not have such fields).

A particular example from the above duality happens when N = 1 and k = 3
which gives a N = 2 CS theory with SP (2)3/2 gauge group and one quark. In the
dual theory we have only contribution coming from additional topological sector as
suggested in [20] (where actually one has also some matter field on the magnetic
side since the authors consider different electric theory), reflected by the magnetic
partition function involving only an exponent with some phase.

Continuing the reduction of (15) with (17) in a similar fashion, another limit
can be identitifed with the confining phase description of 3d N = 2 SYM theory
with U(N) gauge group, SU(Nf ) × SU(Nf ) × U(1)B × U(1) × U(1)A × U(1)R,

Nf = 1, 2, global symmetry group with three flavors Qj , Q̃j, j = 1, . . . , Nf , and
one chiral superfield X in the adjoint representation of the gauge group. (The
exact evaluation of the corresponding partition functions follows from Theorems
5.6.7 and 5.6.8 in [25].) The dual theory contains singlets of SU(Nf ) × SU(Nf),

Yj = Xj+1, j = 1, . . . , N − 1, Wj , j = 0, . . . , N − 1, and mesons Mj = XjQQ̃, j =
0, . . . , N − 1. (From the same theorems, dualities for CS theories with U(N)k/2
gauge group and one chiral field in the adjoint representation and some number of
flavors are implied.)

A whole set of dualities are indicated by appropriate reduction of the partition
functions of N = 2 SYM theory with SP (2N) gauge group, six flavors and one
antisymmetric representation matter field, (11) with (12). These reductions corre-
spond to the relation between integrals described in Fig. 5.8 of [25]. Corresponding
models represent both SYM and CS theories with different numbers of flavors and
different CS level (specifically, the lines going to the left in Fig. 5.8 of [25] corre-
spond in field theory language to integrating out matter fields, reducing the number
of flavors by 1 and increasing the CS-level by 1/2 each time, and the lines going to
the right correspond to a passage to U(N) SYM or CS field theories with adjoint
matter (see [33] for similar dualities involving two adjoint matter fields).

For example, one particular reduction of (11) with (12) leads to partition func-
tions for N = 2 CS theory with SP (2N)1/2 gauge group, with global symmetry
group SU(5) × U(1) × U(1)A × U(1)R (the spectrum consists of 5 quarks Qi, i =
1, . . . , 5, and one chiral antisymmetric field X) which is self-dual and obeys multiple
dualities arising from a W (A5) symmetry of the corresponding partition function.
Application of the transformation formula leads to the partition function for N = 2
CS theory with global symmetry group SU(4) × U(1)f × U(1) × U(1)A × U(1)R,
different to the original one, with four quarks Qi, i = 1, . . . , 4, in the fundamental
representation of SU(4) and one separate quark Q5 (in a sense, this corresponds to
the split of the original SU(5) group to SU(4)×U(1)), and singlet fields of the gauge
group Mj = XjQ2, j = 0, . . . , N − 1, lying in the antisymmetric representation of
the flavor group SU(4).
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A series of dualities are implied by the reduction of partition functions of N = 2
SYM or CS theories with SP (2N) gauge group, Nf flavors and different CS level
using the results of Sect. 5.5 of [25]. These are the generalizations of the Giveon-
Kutasov [34] type of dualities for SP (2N) theories, see, e.g., [21] for a duality for
SP (2N)k/2 CS theory with Nf flavors.

Conclusion

This paper demonstrates that there is a deep relation between superconformal in-
dices for four-dimensional field theories and partition functions of three-dimensional
supersymmetric field theories stemming from the reduction of elliptic hypergeo-
metric integrals to hyperbolic q-hypergeometric integrals. It may be interesting to
understand from a field theory perspective how the various limits considered here
could possibly be realised. (It is perhaps worth mentioning that certain much sim-
pler limits in elliptic hypergeometric integrals considered in [4, 5] had a field theory
interpretation as corresponding to the flavour changing test for Seiberg duality.
Furthermore, at least in free field theory, 4d SCIs themselves may be obtained as
limits in 4d partition functions, discussed for N = 1 superconformal symmetry in
[3].) Every 4d duality out of the large list described in [4, 5], and also the more
standard ones considered in [3], after the appropriate reduction, may be expected
to yield a three-dimensional analogue of Seiberg duality similar to [27, 28, 29]. To
understand all the dualities appearing in 3d field theories one should investigate the
degeneration of elliptic hypergeometric integrals to q-hypergeometric ones using the
procedure developed by Rains [24]. The case described in [20] should correspond
to the reduction of 4d N = 1 SYM theory with SP (2) gauge group, 2Nf quarks
and one chiral superfield in the adjoint representation, for example.

From this point of view the Z-extremization for 3d theories [17] may not be
so unexpected, since the a-maximization of [35] is related to certain automorphic
properties of elliptic hypergeometric integrals describing 4d SCIs [36]. We hazard
a guess that the reduction to hyperbolic q-hypergeometric integrals preserves some
of the needed automorphic properties leading exactly to Z-extremization.

A recent intriguing conjecture made in [16] concerns a connection of the partition
function for 3d N = 4 SYM theory with SU(2) gauge group with a kernel of the
2d Liouville field theory connecting conformal blocks in different channels [37] (see
also [38]). This observation deserves further detailed investigation since from our
perspective these kernels can be obtained by an appropriate reduction of the elliptic
hypergeometric integrals pushing the 4d/3d correspondences of the present work
down to a new 4d/2d correspondence.
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