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Abstract

We review recent progress in the understanding of symmetries for scat-
tering amplitudes in N = 4 superconformal Yang–Mills theory. It is
summarized how the superficial breaking of superconformal symmetry
by collinear anomalies and the renormalization process can be cured at
tree and loop level. This is achieved by correcting the representation
of the superconformal group on amplitudes. Moreover, we comment
on the Yangian symmetry of scattering amplitudes and how it inherits
these correction terms from the ordinary Lie algebra symmetry. Invari-
ants under this algebra and their relation to the Graßmannian gener-
ating function for scattering amplitudes are discussed. Finally, parallel
developments in N = 6 superconformal Chern–Simons theory are sum-
marized. This article is an invited review for a special issue of Journal
of Physics A devoted to Scattering Amplitudes in Gauge Theories.
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1 Introduction

An efficient unitarity-based construction of the scattering matrix1 in a quantum field the-
ory relies heavily on the concepts of locality, analyticity and symmetry. Symmetries are
tremendously important because they strongly constrain the permissible building blocks
from the start and guide reliably towards the desired final result. This is especially true
for highly symmetric theories such as N = 4 super Yang–Mills theory (SYM), which is
believed to be integrable in the planar limit, cf. [3]. During the last few years, remarkable
structures in this theory’s scattering amplitudes have been discovered. Most notably, pla-
nar amplitudes display a hidden ‘dual’ superconformal symmetry [4–6],2 which together
with the ordinary superconformal symmetry combines into Yangian symmetry [9]. The
latter is a typical feature of integrable models (see [10] for reviews), and was observed
earlier in the spectral problem of the theory [11]. Commonly, the spectrum and dynam-
ics of integrable models are strongly constrained or even completely determined by the
extended symmetry. Conceivably, this is also the case for N = 4 SYM amplitudes. For

1See [1, 2] within this special issue.
2See also [7, 8] within this special issue.
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exploiting the constraints, a thorough understanding of the symmetries is indispensable.
Here, we review the status of superconformal and Yangian symmetry for N = 4 SYM
scattering amplitudes. We also comment on parallel developments in three-dimensional
N = 6 super Chern–Simons (SCS) theory.

Scattering amplitudes in conformal field theories show infrared divergences. Their regu-
larization by means of a mass scale superficially breaks conventional conformal symmetry.
On the other hand, superconformal symmetry in N = 4 SYM is expected to be exact
also at the quantum level. Is it possible to reconcile the symmetry with a non-vanishing
regulator that is required for a consistent formulation of scattering amplitudes? Can the
symmetry breaking be assessed quantitatively, or, even better, can the broken symmetry
be restored in a modified way? Interestingly, a careful study reveals that superconformal
symmetry is broken already at tree level [12]. Namely, acting with a free generator on a
tree-level amplitude produces residual contributions whenever two external legs become
collinear. Exact superconformal invariance can be restored by introducing a non-linear
correction to the generator that cancels the residual term [13]. Importantly, only the
N = 4 SYM scattering matrix as a whole is exactly invariant, its individual entries (the
amplitudes) are not. While only contributing to singular momentum configurations at
tree level, collinear residues become inevitable at higher orders, where loop momenta
are integrated over. At one-loop order, superconformal symmetry can again be restored
by further generator corrections, which cures residual contributions both from collinear
terms and from infrared regularization [14,15].

The corrections for the superconformal generators straightforwardly carry over to
the Yangian symmetry of scattering amplitudes. The formally very simple Graßmannian
function of [16] generates invariants of the free (uncorrected) Yangian [17].3 In fact,
it is believed to generate all free Yangian invariants [18]. Scattering amplitudes are
linear combinations of these invariants satisfying physicality requirements such as correct
collinear limits or cancellation of unphysical poles [19]. Free Yangian symmetry alone is
insufficient for fixing the right linear combination. The missing piece is provided by the
generator corrections: It appears that they single out the physical linear combination as
the unique exact invariant [13], thus paving the way for an algebraic determination of
loop amplitudes.

Compared to N = 4 SYM, much less is known about scattering amplitudes in its
three-dimensional cousin, N = 6 SCS theory [20,21] (or ‘ABJM’ named after the authors
of [21]). Both theories are surprisingly similar, and indeed, counterparts to some of the
most important symmetry structures known from N = 4 SYM amplitudes have been
found in N = 6 SCS during the last year. In particular, there is compelling evidence for
Yangian and dual superconformal symmetry [22–24]. Nevertheless, several fundamental
questions regarding symmetries of the S-matrix in N = 6 SCS remain to be answered.

This work is structured as follows: We review how exact superconformal symmetry is
restored at tree level in Section 2, and we also comment on the extension to loops. In
Section 3, we briefly recapitulate Yangian symmetry in the context of N = 4 SYM scat-
tering amplitudes, and remark on the corrections to Yangian generators. The Graßman-

3The ‘invariants’ generated by the Graßmannian function are not exact invariants – they are only
invariant under the free (undeformed) symmetry up to residual contributions at collinear momenta.
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nian generating function for tree-level invariants and the implications of the generator
corrections for these invariants are discussed in Section 4. Section 5 summarizes what is
known about the symmetry structures of scattering amplitudes in N = 6 SCS theory.

2 Exact Superconformal Symmetry

Maximally supersymmetric Yang–Mills theory is a four-dimensional conformal field the-
ory. It is therefore natural to assume that its S-matrix is exactly invariant under the
superconformal algebra psu(2, 2|4). Invariance of the S-matrix is, however, not straight-
forward. First of all, the presence of massless particles inevitably leads to infrared di-
vergences in scattering amplitudes at loop level. A regulator for the divergences breaks
conformal symmetry, e.g. by moving away from four spacetime dimensions or by intro-
duction of a mass scale. Only after the regulator is removed, we can hope for a restoration
of conformal symmetry, but a priori there is no guarantee. In case of success, the pro-
cedure will most likely have deformed and thus obscured the action of the symmetry on
the (renormalized) S-matrix.4

2.1 Tree Level

In fact, the situation is even more subtle than this. Let us consider a color-ordered MHV
amplitude at tree level,5

AMHV
n =

δ4(P ) δ8(Q)∏n
k=1〈k, k + 1〉 ,

P bȧ =
∑n

k=1 p
bȧ
k , pbȧk = λbkλ̃

ȧ
k,

QbA =
∑n

k=1 q
bA
k , qbAk = λbkη

A
k .

(2.1)

We use the spinor helicity formalism to encode particle momenta and flavors: The k-th
particle is described by the bosonic spinor λk ∈ C2 with complex conjugate λ̃k = ±λ̄k
(the sign determines the sign of the energy) and the fermionic spinor ηk ∈ C0|4. The two
mutually conjugate Lorentz-invariant spinor products are denoted by

〈λ, µ〉 = εacλ
aµc, [λ̃, µ̃] = εȧċλ̃

ȧµ̃ċ. (2.2)

Now we act on the MHV amplitude with a free superconformal generator

S̄B
ȧ =

n∑

k=1

ηBk
∂

∂λ̃ȧk
. (2.3)

Superficially, the derivative acts only on P in δ4(P ) and produces a factor of Q. The
fermionic delta function δ8(Q) makes the result vanish, i.e., the MHV amplitude is in-
variant under S̄.

Interestingly, this is not the full story: There is a subtle contribution when the
derivative w.r.t. λ̃k hits a pole of the (otherwise) holomorphic denominator in (2.1) [12].

4There is an alternative treatment of (dual) conformal symmetries for N = 4 SYM on the Coulomb
branch. This is discussed in detail in [8] within this special issue. We will not comment on it here.

5For a more detailed introduction to the formalism, see [25–27,1] within this special issue.
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Figure 1: Deformed superconformal invariance relation for tree amplitudes.

The so-called holomorphic anomaly for the spinor product reads (E(λ) is the energy
associated to the spinor λ, λ̃)

∂

∂λ̃ȧ
1

〈λ, µ〉 = 2π sign
(
E(λ)E(µ)

)
εȧċµ̃

ċδ2
(
〈λ, µ〉

)
. (2.4)

In the MHV amplitude this yields distributional contributions supported on kinematical
configurations where 〈k, k + 1〉 = [k, k + 1] = 0. In other words, this means that
invariance of the S-matrix under free superconformal transformations is violated where
the momenta of two adjacent particles are collinear. The terms that break invariance
can be summarized as follows [13]

S̄B
ȧ An = −

n∑

k=1

∫
d4|4Λ S̄Bȧ (k, k + 1, Λ̄)An−1(1, . . . , k − 1, Λ, k + 2, . . . , n). (2.5)

Here Λ := (λ, λ̃, η) and Λ̄ := (λ,−λ̃,−η). The integral over Λ sums over all flavors and
light-like momenta in a Lorentz-invariant fashion. The kernel of superconformal violation
reads

S̄Bȧ (1, 2, 3) =− 2εȧċλ̃
ċ
3

∫
d4|4Λ′ δ4(λ′) η′B

∫ π/2

0

dα

∫ 2π

0

dϕ

∫ 2π

0

dϑ eiϕ+iϑ

· δ4|4(e−iϕΛ̄3 sinα + eiϑΛ̄′ cosα− Λ1)

· δ4|4(e−iϑΛ̄3 cosα− eiϕΛ̄′ sinα− Λ2) + 2 cyclic images, (2.6)

where zΛ := (zλ, z̄λ̃, z̄η) for z ∈ C. The delta function δ4(λ′) enforces collinearity of all
three momenta, and sin2 α, cos2 α represent the momentum fractions for particles 1, 2,
respectively, in terms of particle 3.

Importantly, the free superconformal violation of An in (2.5) is expressed through
another tree amplitude An−1. We introduce an operator S̄+ which attaches the kernel S̄
to an amplitude function as in minus the r.h.s. of (2.5), cf. Figure 1. Then we can write

S̄An + S̄+An−1 = 0. (2.7)

Although individual scattering amplitudes An with a fixed number of external legs are not
exactly conformally invariant, the full S-matrix (representing the generating functional
for all amplitudes) is invariant under the deformed superconformal generator S̄ + S̄+.
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Until now we have only discussed MHV amplitudes (2.1). Luckily, all of the above
applies to generic NkMHV tree amplitudes as well. The reason lies in the universality of
collinear behavior: A scattering amplitude An diverges in the vicinity of collinear mo-
mentum configurations [28,29]. The pole is given by the amplitude An−1 with one fewer
leg times a universal splitting function. Superconformal generators yield a distributional
term (2.5) at these poles. The kernel S̄ is essentially the superconformal variation of the
splitting function. Note that the splitting function is more or less equivalent to the three-
point function A3 which cannot exist in Minkowski signature. In split signature, however,
one can derive the kernel as the variation of the three-point function, S̄ = −1

2
S̄A3 [15].

Similar considerations hold for the conjugate superconformal generator S and the
bosonic conformal generator K. The latter in fact receives a further correction K++ that
maps one leg to three. On the other hand, all super-Poincaré generators P,Q, Q̄,L, L̄,R
as well as the dilatation generator D are manifest symmetries of the tree level S-matrix.

2.2 Further Considerations

All in all this shows that the complete tree-level S-matrix is indeed exactly conformally
invariant, but only under the interacting superconformal generator S̄+ S̄+. This obser-
vation calls for a few clarifications to be discussed in the following.

Does the above apply to gauge groups other than SU(Nc)? The answer is affirmative:
The kernel in (2.6) must be complemented with the structure constants for the gauge
group. The free superconformal variation in (2.5) generalizes canonically [13].

Does it mean that superconformal symmetry is anomalous at tree level? In quantum
field theory an anomaly refers to a violation of symmetry which cannot be repaired, at
least not by a local deformation. Here superconformal symmetry becomes exact when
the deformation is included. Moreover the deformation has no poles or cuts, it is local.
It is not an anomaly, but rather a careful treatment of a non-manifest symmetry.6

Does the deformation alter the psu(2, 2|4) superconformal algebra? It is a proper
representation, albeit of a somewhat bigger algebra [13]: First of all, the anticommutator
of the superconformal generator S and its conjugate S̄ consistently defines the deformed
conformal generator K. The only subtlety is in the anticommutators between two S’s or
two S̄’s: They ought to vanish for psu(2, 2|4), but they do not. Instead they represent
a gauge variation which transforms a covariant field X according to X 7→ [G,X]. Here
the gauge variation parameter G is actually a field itself, namely the zero mode of the
scalar field. Such a deformation of the algebra is not harmful because it vanishes for
all physically meaningful, i.e. gauge invariant, observables. In fact, it is very common
in gauge theories that symmetry algebras are deformed by gauge variations, e.g. the
supersymmetry algebra for gauge theories with extended supersymmetry.

Is there a physical reason for the deformation? What does it mean? Notice that the
violation of free superconformal symmetry occurs at collinear momentum configurations.
This points at the problems encountered in scattering theory for a model without a mass
gap (in particular for a CFT), see also [30]. Scattering amplitudes require a notion
of asymptotic particles which do not interact further. However, nothing prevents a

6We thank H. Nicolai for discussions of this issue.
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massless particle from decaying into two or more massless particles at any time. Lorentz
invariance implies that these particles necessarily have strictly collinear momenta. In
physical terms such asymptotic decays have no implications because a detector would
merely measure the total deposited momentum and energy of all particles emitted in a
specific direction. In other words, the Fock space for massless asymptotic particles is
bigger than necessary. The physical space must be supplemented with an equivalence
relation to factor out particle configurations with collinear momenta. It is reasonable to
relate the deformed representation with this issue. Presumably, the deformation makes
superconformal transformations compatible with the structure of representatives of the
equivalence relation used for scattering amplitudes.7

Is there a relation to the deformations for superconformal representations on local
operators? It is very analogous, and the same structures [31] are observed, cf. [32]; quite
likely it is equivalent to some extent. There are, however, important differences. For
local operators the representation must deal with UV divergences. These are absent for
scattering amplitudes leading to simplifications. For instance, the free super-Poincaré
representation is undeformed for amplitudes whereas it requires non-trivial deformations
for local operators. On the other hand, scattering amplitudes have IR divergences which
are absent for local operators.

Do multi-particle poles introduce further violations of free superconformal symmetry?
Yes and no. The holomorphic anomaly produces a codimension-two distribution (2.4).
This matches with the codimension D − 2 of collinear configurations of two massless
particles in D = 4 Minkowski space. Multi-particle poles are always codimension-one,
thus the free superconformal generators do not yield distributional terms [13]. This
exhausts all singularities at tree level, nevertheless one has to be careful [14, 15]: Multi-
particle poles originate from Feynman propagators 1/(p2 ± iε). The principal part 1/p2

is harmless as explained above, but the on-shell contribution ±iπδ(p2) requires further
deformations. The holomorphic anomaly also appears when an internal momentum
becomes collinear with an external one or even if two internal momenta become collinear.
In a graphical representation where (2.5) (Figure 1) is given by Figure 2a,b, the additional
terms take the form of Figure 2d,e [14]. This completes the analysis at tree level.

2.3 Loop Level

At tree level it is easy to ignore the distributional terms (2.5) which break invariance
under free superconformal transformations. For generic configurations of the external
momenta, none of the internal or external momenta are collinear. Consequently, the
free superconformal generators annihilate the scattering amplitude. At loop level, the
situation is different. Within the loop integrals some internal momenta inevitably become
collinear with others. Thus for generic configurations of the external momenta, invariance
under free superconformal transformations is broken.

To understand superconformal transformations at loop level it is important to quan-
tify the violation terms. Unfortunately, loop integrals are off-shell, and we cannot im-
mediately address superconformal transformations using the framework outlined above.

7We thank D. Skinner for discussions of this issue.
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Figure 2: General superconformal invariance relation (qualitatively). Terms
a–b correspond to Figure 1, terms c–e are needed for factorized amplitudes, and
terms f–i are needed for loops. A big circle represents a connected scattering
amplitude. The small circle represents a free conformal generator (empty) or the
three-point kernel (starred).

A(1)
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= A(0) A(0)
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Figure 3: Essential contribution to the one-loop unitarity cut.

This problem is circumvented by considering (generalized) unitarity cuts [19, 14] which
are expressed through on-shell amplitudes at lower loop orders. Superconformal trans-
formations of cuts can thus be obtained recursively through the transformations at tree
level. At the end we will have to lift the transformation rule from a cut integral to a full
loop integral.

Let us thus consider a simple one-loop unitarity cut [15]. The essential contribution
is written as an on-shell integral over two tree-level amplitudes, see Figure 3 (we discard
various other ways to cut the amplitude). Now we can substitute the relevant supercon-
formal transformation rule for tree amplitudes from Figure 2. Discarding the correction
terms already present at tree level, there are three new terms due to the superconformal
generators acting on internal legs, see Figure 4. Let us briefly discuss these terms.

The term in Figure 4a essentially represents a superconformal transformation of an

A(0) A(0)

c© 2011 Niklas Beisert~ a

+
∗

A(0) A(0)

c© 2011 Niklas Beisert~ b

+ ∗A(0) A(0)

c© 2011 Niklas Beisert~ c

Figure 4: Essential contributions to the one-loop superconformal variation.
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internal on-shell propagator. Propagators are superconformal invariants, so this con-
tribution ought to be zero. Due to the appearance of IR divergences in the integrals,
however, we have to work with regularized propagators which violate invariance by a
small amount. In this case, divergences only appear when one of the two subamplitudes
has four legs, and when there is no momentum transfer between the two pairs of legs.
In dimensional regularization, for example, the (planar) correction to the generator D of
conformal rescalings reads

D(λYM) = D(0) + Γ (λYM, ε)
n∑

k=1

D
(1)
k,k+1, D

(1)
k,k+1 = − 1

2ε

(
(pk + pk+1)

2

−µ2

)−ε
. (2.8)

For D this is the only correction at loop level, and the coefficient in front

Γ (λYM, ε) = Γcusp(λYM) + εΓcoll(λYM) +O(ε2) (2.9)

includes the cusp dimension Γcusp(λYM) = λYM/4π
2 + O(λ2YM) as well as the collinear

dimension Γcoll(λYM) = O(λ2YM). The other superconformal generators S, S̄,K receive
analogous IR corrections, but they also receive corrections due to the collinear behavior
discussed in Section 2.1.

The term in Figure 4b quantifies the effect of superconformal transformations when
internal and external legs become collinear. It has the particularly nice property that the
momenta running in the triangular loop are all fixed by the on-shell conditions. Hence
there is no integral to be performed and the result is rational. Removing the cut can
be achieved simply by inserting an appropriate logarithm. These terms take a lengthier
form.

The last term in Figure 4c is rather strange. The kernel forces the two momenta across
the cut to be collinear. Consequently, the subamplitude on the other side is evaluated
at two collinear external momenta, i.e. right on the pole. The problem of defining the
result is directly related to the ambiguity in defining the loop correction to the splitting
function, see [29]. A justifiable resolution to the problem is to discard this term.

Importantly, all three terms are expressible through combinations of tree amplitudes
and a simple kernel. We have thus determined how general one-loop amplitudes trans-
form under the free superconformal symmetries corrected by the collinear deformations
discussed in Section 2.1. The deformed transformation law was verified explicitly for
the example of one-loop MHV amplitudes in the dimensional reduction scheme in [15].
One can even contemplate deforming the superconformal representation further by these
three terms to make amplitudes manifestly invariant.

To continue to higher loops, a promising proposal has been made in [14]. It consists
in adding the terms in Figure 2g–i to the general transformation rule. The complete
rule apparently respects unitarity in the sense that it appears to formally commute with
taking cuts (this might require to further add the contributions in Figure 2c,f). One may
therefore expect that a unitarity-based construction of loop amplitudes will respect the
rule. A practical problem is that the terms Figure 2f–i suffer from the same problems as
Figure 4c: the subamplitude has to be evaluated right on a singularity. Here it does not
suffice to discard the result, as it also contains important finite contributions. In [14] the

9



terms are evaluated using the CSW rules formally leading to agreement. We can also
identify the three one-loop terms discussed above in the various terms in the higher-loop
rule: The cusp anomalous dimension term in Figure 4a, the collinearity term in Figure 4b
and the one-loop splitting term in Figure 4c represent cuts of the terms in Figure 2f,g,h,
respectively.

In conclusion, higher-loop superconformal transformations can be investigated by
taking unitarity cuts. The rule in Figure 2 is promising, but its evaluation in practice is
subtle. A two-loop analysis would be highly desirable to settle several open questions.

3 Yangian Symmetry

In the previous Section 2 we have discussed correction terms to the free superconformal
symmetry representation on scattering amplitudes in N = 4 SYM theory. Here we
review how this Lie algebra symmetry extends to an integrable structure in the planar
limit.

One of the most fundamental properties of the AdS/CFT system is that the underly-
ing symmetry of both N = 4 SYM theory as well as type IIB string theory on AdS5×S5

is given by the superconformal algebra psu(2, 2|4). This symmetry is realized on different
observables on the two sides of the duality by respective representations of the supercon-
formal generators. In addition to this Lie algebra symmetry, there is a T-duality that
leaves the bulk action invariant and thus maps the string theory onto itself [33]. As a con-
sequence, one may study the action of this T-self-duality on the representation of the Lie
algebra symmetry for different observables. On the gauge theory side, however, a coun-
terpart to the string T-duality is not known. This fact obscures the explicit investigation
of the dual image of the Lie symmetry representation on scattering amplitudes in N = 4
SYM theory, which is given in terms of generators Jα ∈ {P,Q, Q̄,D,L, L̄,R, S̄,S,K}.8
Remarkably though, planar gauge theory amplitudes reveal a second psu(2, 2|4) Lie sym-
metry represented by jα ∈ {p, q, q̄, d, l, l̄, r, s̄, s, k} [5]. Via the AdS/CFT duality, this
second, so-called dual, superconformal symmetry is interpreted as the image of the or-
dinary superconformal symmetry under the string theory T-duality, cf. Figure 5. While
the first symmetry corresponds to the ordinary superconformal symmetry of scattering
amplitudes, its dual image can be understood as the ordinary symmetry of Wilson loops
in N = 4 SYM theory.9

The above implies that the Lie algebra generators J on scattering amplitudes are
supplemented by additional operators j that furnish dual symmetries. The latter have
various different roles: The operators {q̄, d, l, l̄, r, s̄} are identical to {S̄,D,L, L̄,R, Q̄},
(T-duality maps this su(2) × su(2|4) subalgebra to itself). The operators q and p are
trivial when evaluated on amplitudes. None of the above thus implies new symmetries.
Only the operators s and k are unrelated to the J’s, implying that the closure of these
two superconformal algebras is bigger. To be more precise, it is a Yangian algebra [9]

8Here α labels the different generators of psu(2, 2|4).
9In fact, gauge theory scattering amplitudes and Wilson loops can also be shown to map to each

other [34–36] – at least in the case of MHV amplitudes and bosonic Wilson loops (cf. [37] for the
supersymmetric extension). See also [38] within this special issue.
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s =+1

s = 0

s =−1

K

S

P

Q

S̄

Q̄
R,D

L, L̄
s =−1

s = 0

s =+1

k

s

q̄

s̄

p

q

l, l̄

r,d

T-Duality

psu(2,2|4)ordinary psu(2,2|4)dual

Figure 5: The ordinary representation of the superconformal algebra and its
dual symmetry. Lines of constant eigenvalue under the commutator with the
sum of dilatation generator and hypercharge of pu(2, 2|4) are indicated in gray.

generated by an infinite tower of psu(2, 2|4)-like charges. Since in these arguments the
role of amplitudes and Wilson loops as well as that of their symmetries is interchangeable,
one can express the charges in either picture:

{J = J[0], Ĵ = J[1], J[2], . . . } ' {j = j[0], ĵ = j[1], j[2], . . . }. (3.1)

Here we have chosen specific names for the first two levels since these are sufficient to
recursively generate the whole tower of generators via commutation, e.g. J[2] ' [Ĵ, Ĵ].
The algebra underlying each of these infinite sets of generators is the so-called Yangian
Y[psu(2, 2|4)] of the superconformal group whose definition will be made precise below.
It consists of an infinite number of levels whose structure will be explained in the next
Section 3.1.

The T-duality can then be understood to map between the different levels of the
Yangian symmetry [39], cf. Figure 6:10

j[r]α ' ±J[r+s(α)]
−α , [D + B, J[r]

α ] = s(α) J[r]
α . (3.2)

Here D and B are the dilatation generator and hypercharge of psu(2, 2|4), respectively.
Furthermore, for the index α = [P,Q, Q̄,D,L, L̄,R, S̄,S,K] we define the conjugate in-
dex −α = [K,S, S̄,D,L, L̄,R, Q̄,Q,P] and the shift s(α) = [1, 1, 0, 0, 0, 0, 0, 0,−1,−1].

3.1 Yangian Algebra

The realization of Yangian symmetry on scattering amplitudes and Wilson loops within
the AdS/CFT duality gives an astonishing example of this algebra. Its mathematical
structure, however, can be formulated on a more abstract level without any notion of
dual symmetry:

A Yangian algebra Y[g] associated with a Lie algebra g is defined by two sets of

generators Jα and Ĵβ obeying the following axioms [40]:

10Also here the role of J and j can be interchanged.
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J[2] = J̃T-Duality

. . .

Figure 6: The level-r Yangian generators map under T-duality (→) to differ-
ent levels according to their weight s = ±1, 0 under the sum of the dilatation
generator D and the hypercharge B of pu(2, 2|4).

i) Ordinary Lie Symmetry: [Jα, Jβ] = fαβ
γJγ,

ii) Adjoint Level-One Symmetry: [Jα, Ĵβ] = fαβ
γĴγ,

iii) Serre-Relations: [Ĵα, [Ĵβ, Jγ]] + two cyclic = fαρ
λfβσ

µfγτ
νfρστJ{λJµJν}. (3.3)

Here fαβγ denotes the structure constants of the Lie algebra g spanned by the generators
Jα, and indices are raised by the Cartan–Killing form. The generalization to superalge-
bras is given by a straight-forward grading of these relations.

We will assume a specific (tensor product) representation for the level-zero, i.e. the
standard Lie symmetry generators Jα acting on a tensor product of vector spaces Vk

by (cf. (2.3)) Jα =
∑

k Jα,k. Based on such a representation, Drinfel’d introduced the
following bilocal definition of additional generators [40]:

Ĵα =
∑

1≤`<k≤n

fα
γβ Jβ,` Jγ,k +

∑

1≤k≤n

uk Jα,k. (3.4)

For many algebras and corresponding representations Jα – including all known occur-
rences within the AdS/CFT correspondence – the definition (3.4) yields generators Ĵα
that indeed obey the axioms (3.3) and thus generate a Yangian.11 Furthermore, in most
physical applications including our current one the evaluation parameters uk = u are all
equal.12

Let us briefly comment on the relation of the Yangian to standard integrable models
without going into details. Typically integrable systems can be based on a Lax operator
obeying the Yang–Baxter equation (e.g. spin chains) used to define a monodromy matrix
M(u) as a function of the spectral parameter u. For an su(N) symmetric model, the

11In order to prove the Serre-relations it suffices to show that the right hand side of iii) in (3.3)
vanishes on one vector space of the tensor product. This is due to the fact that the Yangian is a Hopf
algebra whose coproduct ∆ : V→ V⊗V is compatible with the Serre relations. (cf. [41,22] for different
proofs of the Serre-relations in the context of supersymmetric gauge theories).

12The value of u does not make a difference as it merely multiplies the level-zero representation,
conventionally one sets u = 0.
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Yangian levels can then be interpreted as the different orders in the expansion of this
monodromy around the point where the Lax operator reduces to the identity (conven-
tionally u =∞):

M(u =∞) ' I +
∞∑

k=0

u−1−kJ[k]. (3.5)

Thus, the monodromy provides a way to determine the Yangian generators or, turning the
logic around, the representation of a Yangian algebra allows in principle to reconstruct the
monodromy of the integrable model. Such a representation at hand, one may identify an
integrable structure by showing that the Yangian commutes with a theory’s Hamiltonian
(up to boundary terms) or that its observables are invariant under this symmetry.

Color ordered scattering amplitudes in N = 4 SYM theory are cyclic functions of
the external particle degrees of freedom and cyclicity is typically not compatible with
Yangian symmetry. This is due to the form of the Yangian level-one generator (3.4)
given by an ordered sum over pairs of particles. In order to investigate this problem, one
can evaluate the difference of two generators (3.4) shifted by one site which corresponds
to a one-site cyclic permutation of the amplitude’s legs [9, 32]:

Ĵα
[ ∑

1≤`<k≤n

]
− Ĵα

[ ∑
2≤`<k≤n+1

]
= 1

2
fαβγfδ

βγ Jδ1 − fαβγ Jβ1J
γ. (3.6)

In general, this difference does not vanish. In the case of N = 4 SYM theory amplitudes,
however, there are two further properties which lead to a well-defined Yangian despite
of this cyclicity:

1. The amplitudes transform as singlets under the level-zero symmetry Jα of a Lie
algebra g.

2. The Lie algebra g has a vanishing dual Coxeter number fαβγfδ
βγ.

These two properties guarantee that the right hand side of (3.6) vanishes when evaluated
on amplitudes and that in this special case the Yangian level-one generators are com-
patible with cyclicity. Consequently, the Yangian represents a well-defined symmetry of
the color ordered amplitudes.

There is an additional important property of g = psu(2, 2|4): The algebra may be
enhanced to pu(2, 2|4) by an external automorphism or so-called hypercharge, typically
denoted by the generator B. This generator measures the overall helicity of scattering
amplitudes, i.e. amplitudes are generically not invariant under it. Remarkably, it can
be shown that scattering amplitudes of N = 4 SYM theory are invariant under the
level-one generator B̂ associated to B [42]. This bilocal generator together with the
ordinary superconformal symmetry yields all previously known symmetries (e.g. the dual
symmetry) of scattering amplitudes in N = 4 SYM theory.13

13The symmetry algebra g = osp(6|4) of N = 6 superconformal Chern–Simons theory (to be discussed
in Section 5 below) is not enhanceable by an external automorphism. This reflects the fact that helicity is
absent in the three-dimensional theory. Understanding the algebraic difference between the symmetries
of N = 4 SYM theory and N = 6 SCS theory might eventually resolve the problems to formulate a
T-self-duality for the string dual of the latter gauge theory and to put the discovered dual symmetry in
three dimensions on solid grounds. Note in this context that the role of the generator B in N = 4 SYM
theory shows formal similarities to the trace of the R-symmetry in N = 6 SCS theory.
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3.2 Dual versus Yangian Symmetry at Tree-Level

It is instructive to see the explicit relation between dual conformal and Yangian level-one
generators [9]. Let us therefore consider the example of the dual conformal boost. On
the full superspace spanned by ordinary supersymmetric spinor (λ, λ̃, η) and dual (x, θ)
coordinates, it takes the form

kaȧ =
n∑

i=1

(
xaḃi x

ȧb
i

∂

∂xbḃi
+ xȧbi θ

aB
i

∂

∂θβBi
+ xȧbi λ

a
i

∂

∂λβi
+ xaḃi+1λ̃

ȧ
i

∂

∂λ̃ḃi
+ λ̃ȧi θ

aB
i+1

∂

∂ηBi

)
. (3.7)

Here the dual coordinates providing the natural variables of Wilson loops in N = 4 SYM
theory are defined by

xaȧi − xaȧi+1 = λai λ̃
ȧ
i , θaAi − θaAi+1 = λai η

A
i . (3.8)

The form of (3.7) on the full superspace results from requiring that the generator com-
mutes with the constraints (3.8). Scattering amplitudes transform covariantly under
the action of the dual conformal boost generator, i.e. kaȧAn = −∑n

i=1 x
aȧ
i An, which

motivates the redefinition

k̃aȧ = kaȧ +
n∑

i=1

xaȧi . (3.9)

Acting on amplitudes such that we can neglect terms annihilating An, this operator
can be rewritten as the level-one Yangian generator P̂aȧ, whose form follows from the
definition (3.4):

k̃aȧ
∣∣∣
An

= P̂aȧ =
∑

`<k

[
P`,cċ(L

c
k,aδ

ċ
ȧ + L̄ċk,ȧδ

c
a −Dkδ

c
aδ
ċ
ȧ)−QC

`,aQ̄k,ȧC − (`↔ k)
]
. (3.10)

An analogous relation holds for sAa and Q̂A
a while all other dual conformal generators

can be related to the level-zero symmetry. Note that the bilocality in (3.7) is hidden
in the definition of the dual variables (3.8). In the Wilson loop picture, k reduces to
the ordinary conformal boost in coordinates x and θ and thus to the level-zero dual
symmetry.

Invariance of tree-level scattering amplitudes in N = 4 SYM theory under Yangian
symmetry can then be seen in two ways: On the one hand, tree-level amplitudes can
be written in terms of manifestly dual superconformal invariant expressions making this
property obvious with regard to the above relations, cf. Section 4. On the other hand
one may in principle explicitly apply the simplest level-one generator P̂ as given in (3.10)
to the amplitudes and show invariance as done in [32] for the MHV case. The adjoint
property ii) of the Yangian (3.3) then guarantees invariance under the full algebra.

3.3 Corrections to Yangian Generators

As discussed in the previous sections, symmetry generators acting on scattering ampli-
tudes in N = 4 SYM theory are affected by singularities. These require corrections to
the generators in order to render the symmetry exact. The correction terms have to take
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into account the holomorphic anomaly starting at tree-level as well as infrared singular-
ities starting at one-loop order. They also affect the level-one Yangian symmetry as will
be indicated here:

Two collinear massless particles are not distinguishable in a conformal theory. At tree-
level, this manifests itself in the occurrence of collinear singularities of the amplitudes
which violate their invariance under the free conformal symmetry. As a consequence,
the conformal generators S, S̄ and K of the ordinary superconformal symmetry acquire
correction terms on the subspace of two-particle collinearities as shown above [13]. At
tree-level, these are the only correction terms of the level-zero generators. In particular,
the tree-level generator of anomalous dimensions D does not obtain corrections. The
level-one symmetry inherits the correction terms from the conformal level-zero generators
via its bilocal definition (3.4). This allows to explicitly determine all level-one corrections

at tree level. As an example, the level-one generator P̂ (3.10) obtains no tree-level
correction since it does not depend on S, S̄ or K.

Then, for instance, the level-one tree-level correction Q̂+ to Q̂, can be written as a
commutator of the form

δȧ
ḃ
Q̂aA

+ = [P̂aȧ, S̄A
+,ḃ

]. (3.11)

Provided the adjoint property ii) of the Yangian can be proved, all other level-one gen-

erators – including their corrections – could be obtained by commutation of P̂ with the
level-zero symmetry. Note that this generically yields bilocal operators that change the
number of external particles of the amplitude.

At loop order, conformal symmetry is typically broken by the renormalization scheme,
e.g. by dimensional regularization which introduces a mass scale µ and a regularization
parameter ε. In order to render conformal symmetry exact, these parameters can be
included into correction terms to the level-zero symmetry. At one loop order, all four
conformal generators (S, S̄,K,D) obtain such corrections as demonstrated in Section 2
[15]. The loop corrections to the level-one symmetry require local terms reminiscent of
those multiplied by the uk’s in (3.4). At one loop order they take the perturbative form14

Ĵ(1)
α =

∑

1≤`<k≤n

fα
γβ
(
J
(1)
β,` J

(0)
γ,k + J

(0)
β,` J

(1)
γ,k

)
+
∑

1≤k≤n

Ĵ
(1)
α,k. (3.12)

Let us again consider the simplest level-one generator P̂(1). Its form can be obtained
by acting with P̂(0) onto the one-loop amplitude and requiring invariance P̂(0)A(1) +
P̂(1)A(0) = 0 [15]: (

P̂(1)
)aȧ

=
∑

1≤`<k≤n

[
D

(1)
`,`+1P

aȧ
k −Paȧ

` D
(1)
k−1,k

]
. (3.13)

Here the nontrivial contribution comes from the one-loop correction to the dilatation
generator (2.8). In fact, it is well-known that the dual conformal boost k̃ alias P̂ is
anomalous at loop level [35,5,43]. The conjectured all loop form for the former allows to
derive a similar expression for its Yangian level-one counterpart in analogy to (2.8) [15]:

P̂(λYM)aȧ = (P̂(0))aȧ + Γ (λYM, ε)(P̂
(1))aȧ. (3.14)

14As the corrections do not act on single legs there is no canonical prescription for the summation

bounds. The local term Ĵ
(1)
α,k thus depends on the prescription and specifies the action at the bounds.
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This equation including (2.9) is conjectured to guarantee invariance to all loop orders.
The most urgent question concerning the corrected Yangian generators is whether

and how the axioms i), ii) and iii) in (3.3) are compatible with the correction terms to
the generators. In Section 2.2 it was already indicated that at tree-level the corrections
to the Lie algebra symmetry modify axiom i) by gauge transformations.

4 Invariants & Graßmannian

In integrable models, physical quantities are commonly severely constrained or even
fully determined by the enlarged symmetry. Thus one may hope that the Yangian
symmetry allows to express all N = 4 SYM scattering amplitudes in terms of a finite set
of algebraic, differential, or integral equations. In this section, we review the Yangian
invariance properties of scattering amplitudes, and comment on the implications of the
deformation. The presentation mostly focuses on the tree-level case.

4.1 Free Invariants: The Graßmannian Formula

In the following, we discuss invariants of the free, undeformed symmetries. These are
not exact invariants (see Section 2), but we ignore this fact for the moment, and discuss
the deformation and its exact invariants in Section 4.2 below. Tree-level amplitudes
An,k+2 are linear combinations of terms Rn,k,a which are individually (almost) invariant
under both ordinary and dual superconformal symmetry, and hence also under Yangian
symmetry [5, 6, 44,45]

An,k+2 = AMHV
n

∑
a
Rn,k,a . (4.1)

Here, k specifies the degree 4k of polynomials in the fermionic variables or equivalently
the helicity h = n − 2(k + 2) of the amplitude. The MHV prefactor AMHV

n is Yangian
invariant by itself. The tree-level dual superconformal invariants Rn,k,a were constructed
recursively in [45].15 A generating function for all these invariants was given in [16],16

which takes a surprisingly compact form. It can be written as [47]

Rn,k(γ;W) =

∫

γ

dν(t)

M1 · · ·Mn

δ4k|4k(t · W) , (4.2)

where t is a complex k × n matrix, the dot denotes matrix multiplication, and W =
(W1, . . . ,Wn)T are momentum-twistor variables as introduced in [48]:

WAi = (λai , µ
ȧ
i , χ

A
i ) , µȧi = xaȧi λia , χAi = θaAi λia . (4.3)

These are the twistors associated to the dual variables (or region momenta) xi, θi defined
in (3.8). The symbols Mi in the denominator denote minors of the matrix t made of
k successive columns, starting with column i. The integration measure dν(t) was given
explicitly in [47]. It has degree k(n−k), and turns the function into a multi-dimensional

15See also [7] within this special issue.
16See also [46,7] within this special issue.
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complex contour integral. Different invariants Rn,k,a = Rn,k(γa) are generated by distinct
contours γa encircling different residues. Including the measure, the integrand is invariant
under local GL(k) “gauge” transformations acting on the rows of the matrix t.17 The
space being integrated over thus is the Graßmannian Gr(k, n) consisting of all k-planes
within Cn, where each plane is spanned by the k rows of t. For practical purposes, a
gauge can be fixed by setting k2 components of t to specific values. A convenient gauge
fixes the first k columns of t to the identity matrix

t = (1|·) , dν(t) =
k∏

a=1

n∏

i=k+1

dtai . (4.4)

The benefit of using momentum twistors is that the dual superconformal generators
are realized linearly in these variables,

jAB =
n∑

i=1

WAi
∂

∂WBi
. (4.5)

Invariance under these generators is ensured by the delta function in (4.2). It has been
shown in [17] that taking these dual generators as the level-zero algebra results in the
same Yangian as taking the ordinary superconformal symmetry as level-zero generators,
which is a consequence of the T-self-duality mentioned in Section 3. The level-one
Yangian generators take the usual form (3.4) of bilocal combinations of (dual) level-zero
generators,

ĵAB =

(∑

i<j

−
∑

j<i

)
(−1)CWAi

∂

∂WCi
WCj

∂

∂WBj
. (4.6)

Closely following [17], we will now show that the function (4.2) is indeed invariant under
the level-one generators and thus under the whole Yangian algebra. It is sufficient to
show invariance under the first sum in (4.6), as invariance under the second sum is
completely analogous. The first sum can be expressed as

∑

i<j

(
WAi

∂

∂WBj
WCj

∂

∂WCi
−WAi

∂

∂WBi

)
. (4.7)

Due to the linearity of the delta function’s argument, the twistorial operatorsWCj ∂/∂WCi
can be replaced by operators Oij acting on the integration variables tai.

18 The action of
the level-one generators on Rn,k becomes

ĵABRn,k =

∫
dν(t)

M1 · · ·Mn

k∑

a=1

(
OAa − V Aa

)
∂aBδ

4k|4k(t · W) , (4.8)

17This is the reason for the degree of the naive integration measure dk·nt being reduced to k(n− k);
otherwise, the integral would be ill-defined.

18In the gauge (4.4), the operators are Oi,j≤k = −∑n
l=k+1 tjl

∂
∂til

and Oi,j>k =
∑k
b=1 tbi

∂
∂tbj

. While

the form of Oij for j > k is derived straightforwardly, one needs to make use of the delta function
constraints to arrive at the form for j ≤ k.
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where
OAa =

∑

i<j

WAi Oijtaj , V Aa =
∑

i<j

Witai , (4.9)

and ∂aB = ∂/∂WBa . Making use of the triangular form of OAa , one can show that the V Aa -
term cancels when commuting OAa past the minors, [1/M1 · · ·Mn, O

A
a ] = V Aa /M1 · · ·Mn.

Thus

ĵABRn,k =

∫
dν(t)

k∑

a=1

OAa
1

M1 · · ·Mn

∂aBδ
4k|4k(t · W) . (4.10)

Now each term in the integrand is a total derivative of a single-valued function in one
of the integration variables, hence the integral along any closed contour vanishes.19 This
shows that Rn,k is indeed Yangian invariant.

The function Rn,k (4.2) in fact produces all Yangian invariant terms Rn,k,a that,
multiplied by the n-point MHV amplitude, form the planar n-point NkMHV amplitude
[49]. It is equivalent [50] to the previously proposed [16] generating function An,k(Z),
which generates planar tree-level amplitudes including the MHV prefactor. Formally,
the relation between the two functions is simply

An,k(Z) = AMHV
n Rn,k(W) , (4.11)

where Z1, . . . ,Zn are ordinary spacetime twistors ZAi = (∂/∂λai , λ̃
ȧ
i , η

A
i ) as opposed to

momentum twistors.20 The MHV amplitudes AMHV are Yangian invariant on their own.
It has been argued that the Graßmannian integral Rn,k (4.2) in fact generates all

invariants of the free Yangian symmetry [18]. Assuming that all invariants of psu(2, 2|4)
in the representation (4.5) are of the form δ4k|4k(t · W ), the most general psu(2, 2|4)
invariant is exactly given by Rn,k, except for the integration measure being generalized
by an arbitrary function f(t) of the integration variables. Requiring invariance under
the level-one generators (4.6), constraints on the function f(t) are derived in [18]. Under
certain assumptions, the only remaining solution is a constant.

4.2 Exact Invariants

So far, we have discussed invariants of the free, undeformed Yangian symmetry. Physical
scattering amplitudes are linear combinations of these free invariants. On their own, the
free Yangian invariants have no local interpretation. They have unphysical ‘spurious’
singularities, and a wrong behavior in collinear limits. While the free Yangian symme-
try determines amplitudes to a large extent, it puts no constraints on the coefficients
of the physical linear combination. On the other hand, if N = 4 SYM is an integrable
theory, one would expect all dynamical quantities to be completely determined by the
extended symmetry. The deformations introduced in Section 2 exactly appear to provide

19This argument relies on the integration measure being a gauge-invariant generalization of the stan-
dard measure (4.4) [47].

20∂/∂λ indicates a Fourier transform w.r.t. λ. Formally this required that λ and λ̃ are unrelated as
in split spacetime signature (2, 2).
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the missing piece. Namely, under mild assumptions, the coefficients of the physical linear
combination appear to be uniquely fixed by requiring the correct behavior in collinear
limits (or, alternatively, the cancellation of all spurious poles) [19].21 As the interaction
terms in the deformed superconformal and Yangian generators impose precisely the cor-
rect collinear behavior, it is plausible that only the physical linear combinations form
invariants of the full (deformed) classical Yangian.

Of course, the correct coefficients for all tree-level amplitudes are known explicitly
[45]. Nevertheless, the extent to which the symmetries determine the amplitudes is
an important question. In particular, a unique invariant at tree level is essential for a
complete algebraic determination of loop-level amplitudes. Namely, tree-level invariants
form the space of homogeneous solutions to the invariance equations at loop level. Thus,
they can be freely added to loop-level invariants.22 Hence, if there would be multiple
tree-level invariants, loop-level amplitudes could not be determined uniquely.

4.3 Loop Level

At loop level, infrared divergences obscure the symmetry properties of scattering am-
plitudes. For instance, free Yangian symmetry is broken due to (dimensional) regular-
ization. However, loop amplitudes in N = 4 SYM are to a large extent determined by
their singularities. The higher their codimension, the less are these singularities affected
by infrared divergences. In particular, the “leading singularities” with maximal codi-
mension localize all loop integrals; they can be expressed entirely in terms of tree-level
amplitudes and do not require regularization, which makes them especially accessible.
In fact, it is conjectured that the function An,k (4.11) besides all tree-level amplitudes
generates all leading singularities to all orders in planar perturbation theory, which shows
that these are invariant under the free Yangian [16].23 Recently, this invariance has been
generalized to the complete planar all-loop integrand in a manifest way by means of
new recursion relations [51]. For the integrated (infrared divergent) amplitudes, exact
Yangian symmetry can be restored at one-loop order by appropriate corrections [15], see
Section 2.3.

5 Symmetries of ABJM Amplitudes

Recently, a superconformal gauge theory in three dimensions (N = 6 SCS, ABJM) was
found [20, 21] which bears remarkable similarities to four-dimensional N = 4 SYM. In
particular, its planar spectrum of local operators at weak coupling is described by an
integrable spin chain (see [52] for a review). Compared to N = 4 SYM, however, much
less is known about scattering amplitudes in its three-dimensional cousin. Nevertheless,
counterparts to some of the most important symmetry structures known from N = 4

21The authors of [19] show that requiring correct collinear limits is sufficient for determining NMHV
amplitudes.

22Adding the physical tree-level amplitude can be compensated by rescaling the coupling constant
and the overall coefficient, both of which cannot be determined algebraically in any case.

23Up to contributions from collinear momenta, of course.
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SYM amplitudes have been found for the three-dimensional theory during the last year.
First, the four- and six-point tree-level amplitudes of N = 6 SCS were shown to be
invariant under a Yangian symmetry algebra [22]. Subsequently, a Graßmannian formula
for all tree-level amplitudes [53] as well as a dual superconformal symmetry [23] were
proposed. On-shell recursion relations à la BCFW [54] for all N = 6 SCS tree-level
amplitudes were presented in [24], and were used to inductively demonstrate their dual
superconformal alias Yangian invariance.

Also in this theory, amplitudes can be formulated in terms of a superfield

Φ = φ4 + ηAψA + 1
2
εABCη

AηBφC + 1
6
εABCη

AηBηCψ4 , (5.1)

which, together with its conjugate Φ̄, captures all on-shell dynamical degrees of freedom
(eight scalars φA, φ̄A and eight fermions ψA, ψ̄

A). The superconformal algebra osp(6|4)
in three dimensions is realized in terms of the fermionic u(3) spinor ηA and the real two-
component spacetime spinor λa, which parametrizes a three-dimensional momentum as
pab = λaλb [55]. On scattering amplitudes A(Φ1, . . . , Φn), the superconformal generators

Jα ∈ osp(6|4) act locally, while the Yangian level-one generators Ĵα take the usual bilocal
form (3.4):24

Jα =
∑

1≤k≤n

Jα,k , Ĵα = fα
γβ

∑

1≤j<k≤n

Jβ,j Jγ,k . (5.2)

Here, the generator Jk acts only on the coordinates of the k’th leg Φk. Interestingly,
the R-symmetry is broken by the superfield (5.1) to a manifest u(3) and a non-manifest
remainder:

RAB = ηAηB , RA
B = ηA

∂

∂ηB
, RAB =

∂

∂ηA
∂

∂ηB
. (5.3)

In particular, the u(3) contains a non-vanishing trace RC
C = ηC ∂/∂ηC − 3/2, which en-

forces scattering amplitudes to be of homogeneous degree An ∼ (η)3n/2 in the fermionic
variables. This implies that there are no “MHV-like” amplitudes with a minimal de-
gree in the fermionic variables. The four- and six-point tree-level amplitudes have been
computed25 and shown to be invariant under the level-one momentum generator P̂ [22].
Invariance under all other Yangian generators follows by commutation with level-zero
generators. For consistency of the Yangian, the Serre relations (3.3) have to be satisfied.
While difficult to show in general, a rather direct proof [22] utilizes the fact that the
level-zero generators form a singleton representation (as in four dimensions) that can be
formulated in terms of spinor-helicity variables.

Scattering amplitudes for higher numbers of legs are hard to compute, even at tree
level. However, a generating function for all N = 6 SCS tree-level amplitudes similar to
(4.2) has been proposed in [53]. In spinor-helicity variables Λ = (λ, η), it takes the form

A2k(γ;Λ) =

∫

γ

dν(t)

M1 · · ·Mk

δk(k+1)/2(t · tT) δ2k|3k(t · Λ) . (5.4)

24This definition is compatible with the cyclicity of scattering amplitudes because the dual Coxeter
number of osp(6|4) vanishes, see also (3.6) above.

25Four-point amplitudes of the mass-deformed theory had been studied before in [56].

20



Here, t is a (k × 2k) matrix, and the minors Mj are defined as before. In the four-
dimensional case (4.2), the domain of integration was the Graßmannian Gr(k, n), the
space of all k-planes in Cn. Here, the additional delta function enforces the scalar
product to vanish on the k-plane spanned by the rows of t, which restricts the domain
of integration to the orthogonal Graßmannian OGr(k, 2k), see [24]. Again, all terms
contributing to the 2k-point tree-level superamplitude are conjectured to be generated
by A2k evaluated on different integration contours γ. This has been verified for the
four-point [53] and the six-point amplitude [24]. Moreover, the integral (5.4) is Yangian
invariant [53], which, assuming Yangian symmetry for scattering amplitudes, is a strong
hint for its correctness.

The discovery of Yangian symmetry made the authors of [23] formulate a dual super-
conformal symmetry for N = 6 SCS amplitudes, as found earlier for N = 4 SYM. By
going to dual variables xabj with

λajλ
b
j = xabj − xabj+1 (5.5)

exactly as in four dimensions, the proposed dual conformal symmetry (no super yet)
acts on the dual variables xab in the same way the ordinary conformal symmetry acts
on spacetime. As all amplitudes only depend on differences of dual xj variables, they
are trivially invariant under dual translations pab =

∑
j ∂/∂x

ab
j . Provided the scattering

amplitudes scale as

A2k
Idual−−−−→

√∏2k

j=1
x2j A2k , (5.6)

under dual inversions Idual, they also transform covariantly under dual special conformal
transformations k,

kabA2k = IdualpabI
dualA2k = −1

2

( 2k∑

j=1

xj,ab

)
A2k . (5.7)

The dual conformal symmetry algebra is completed by Lorentz generators l = L and
the dilatation generator d = D, which are equal to the corresponding generators of the
ordinary conformal symmetry.

Trying to extend the dual conformal to dual superconformal symmetry, one encoun-
ters an important difference to the four-dimensional case. Namely, besides the fermionic
variables θaAj as known from N = 4 SYM, another set of dual variables yABj is required
for formulating the full dual symmetry. Here,

λajη
A
j = θaAj − θaAj+1 , ηAj η

B
j = yABj − yABj+1 . (5.8)

Specifically, it is impossible to consistently express the action of some of the dual
generators on the original variables (λ, η) without also using the additional variables y.26

26More precisely, the dual generators cannot be formulated on the “full space” of independent vari-
ables (λ, η, x, θ) while preserving the hypersurface constraints (5.5,5.8) without also using the additional
variables y. This formulation is needed though for finding the action of the dual generators on the
original variables (λ, η), and for studying their relation to the ordinary symmetry generators.
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The presence of a dual superconformal symmetry hints at a scattering amplitude / Wilson
loop duality like in N = 4 SYM. Light-like Wilson loops were studied and successfully
compared to the tree-level27 four-point scattering amplitude in [57].28

As in four dimensions, some of the dual generators j are trivial, others are identi-
cal to their ordinary-symmetry counterparts, and some are equal to level-one Yangian
generators Ĵ when acting on invariants of the ordinary conformal symmetry [23]:

(pab, qab, rAB) = trivial ,

(lab, d, r
A
B, q

A
a , s

a
A) = (Lab,D,R

A
B,S

A
a ,Q

a
A) ,

(kab, saA, rAB) ' (P̂ab, Q̂aA, R̂AB) . (5.9)

Invariance under the full dual superconformal symmetry thus follows from invariance
under the ordinary symmetry and under the dual generator k ' P̂, for instance. Fur-
thermore, the dual and the ordinary symmetry together generate the whole Yangian
algebra Y[osp(6|4)].

In recent years, a key tool for the investigation of scattering amplitudes in four
dimensions have been the on-shell ‘BCFW’ recursion relations [54].29 A few months ago,
similar relations were found for N = 6 SCS scattering amplitudes in three dimensions
[24]. Unlike their four-dimensional counterpart, the three-dimensional recursion relations
require shifting two external momenta non-linearly in the auxiliary complex variable z.
Namely,

λj → +1
2
(z + 1/z)λj + i

2
(z − 1/z)λk , (5.10)

λk → − i
2
(z − 1/z)λj + 1

2
(z + 1/z)λk . (5.11)

Using the recursion relations, the scaling (5.6) under dual inversions was proved in-
ductively, thus establishing dual superconformal alias Yangian invariance for all tree-
level amplitudes. Furthermore, the amplitudes obtained by recursion were successfully
matched against the Graßmannian formula (5.4) for up to eight external particles.

The dual superconformal symmetry is particularly surprising because to date no
supersymmetric T-self-duality of the AdS/CFT dual sigma model [59] has been found.
In the case of N = 4 SYM, dualizing the coordinates along the Pab and QaB directions
of the supercoset PSU(2, 2|4)/Sp(1, 1) × Sp(2) maps the sigma model onto itself, while
turning ordinary into dual symmetry generators. In contrast, it appears impossible to
supersymmetrically extend a bosonic T-duality involving only the translational directions
of AdS4 within the supercoset OSp(6|4)/U(3) × SO(3, 1) [60, 61]. The sigma model on
this coset is obtained by a kappa-gauge fixing that is not compatible with all string
configurations [62], and it was suspected [63] that the gauge fixing could obstruct a T-
self-duality and/or dual symmetry that might be present in the string theory. But even
using the full superspace formulation of [62], the extension of a pure AdS4 T-duality to
a full self-duality appears impossible [61]. A resolution could be to also T-dualize some
of the coordinates from the CP3 part of the bosonic background. The structure of both

27The one-loop contributions vanish in both cases.
28Very recently, also n-point correlation functions were related to polygonal Wilson loops [58].
29See also [26] within this special issue.
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the R-symmetry realization (5.3) and the dual symmetry (5.9) suggests to dualize the
coordinates along the RAB directions, which generate three Abelian isometries of CP3.
This has been attempted in [63], but leads to a singular transformation that could not
be regularized thus far [64] (see also [65]).

Just as in four dimensions, one would expect the superconformal symmetry generators
for scattering amplitudes in N = 6 SCS to receive corrections that have distributional
support on collinear momentum configurations. However, no source for anomalous con-
tributions from the free generators has been found thus far.

6 Summary & Outlook

Conformal symmetry implies powerful constraints on a physical theory. Nevertheless, it
is not always easy to implement it in a mathematically concise way and the difficulties in
finding an adequate representation may be misinterpreted as a breaking of this symmetry.
In the first part of this review we have investigated two instances of this problem arising
in N = 4 SYM theory:

• The holomorphic anomaly leads to a violation of the free superconformal symmetry
that can be overcome by corrections to the symmetry generators. This modification
only affects collinear momentum configurations and may thus be associated with
the ambiguous description of asymptotic states for massless particles (starting at
tree-level).

• A renormalization scheme that introduces a mass scale superficially breaks con-
formal symmetry. Also this shortcoming can be cured by adapting the symmetry
representation to the corresponding scheme (starting at one-loop order).

The resulting corrections to the representation of the superconformal algebra relate am-
plitudes for different numbers of particles and thereby induce recursive relations among
them. The representation obeys the commutator relations modulo gauge transformations
that vanish when evaluated on scattering amplitudes.

In the second part of the review we have indicated how dual superconformal symmetry
results in a Yangian algebra realized on scattering amplitudes. This Yangian algebra
forms a typical mathematical structure underlying integrable models. Its representation
inherits the deformations of the Lie algebra symmetry mentioned above. While the free
representation is able to distinguish certain symmetry invariant building blocks for the
amplitudes, the deformation of the integrable structure is crucial for fixing their exact
linear combination. Importantly, the building blocks can be generated by a Graßmannian
function and we have commented on its relation to the Yangian symmetry.

Finally, similar observations made in N = 6 SCS theory were summarized. While
their investigation is still in its infancy, there are strong indications for Yangian symme-
try, dual superconformal symmetry as well as a Graßmannian function paralleling the
discoveries in N = 4 SYM theory.

Several interesting problems arise in this context. Firstly, it would be important to
determine the conformally exact representation of psu(2, 2|4) at higher loop orders and
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to investigate the imposed constraints on scattering amplitudes. This could reveal the
full power of the underlying formalism potentially facilitating the computation of so far
undetermined amplitudes. It would furthermore be crucial to verify the Yangian alge-
bra relations for the deformed representation at tree and loop level. Only this would a
posteriori justify the name Yangian for the discovered mathematical structure. It would
then be highly desirable to study the action of the deformed Yangian symmetry on the
Graßmannian function in order to determine the impact of the correction terms. This
might yield a prescription for how to obtain the full superamplitude from a generating
function. Moreover it would be very interesting to construct Yangian invariants from
scratch, i.e. to study the invariants of the corrected algebra as well as their uniqueness
starting from the given representation. The way in which the correction terms relate
to the Graßmannian formulas described above might be extremely enlightening. Very
recently a new bilocal generator B̂ corresponding to the hypercharge of the supercon-
formal algebra has been shown to annihilate the amplitudes [42]. It would be important
to find out how this generator can be embedded into the above context. Finally many
of the above problems carry over to the scattering problem of N = 6 SCS theory. Here
the most pushing question is the relation of the discovered algebraic symmetries to a
potential T-duality of the AdS4 × CP3 superstring theory.
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