Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria

MPG-Autoren
/persons/resource/persons4123

Rieger,  Verena
Department of Evolutionary Neuroethology, Prof. B. S. Hansson, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3909

Hansson,  Bill
Department of Evolutionary Neuroethology, Prof. B. S. Hansson, MPI for Chemical Ecology, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rieger, V., Perez, Y., Müller, C., Lacalli, T., Hansson, B., & Harzsch, S. (2011). Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Development Growth & Differentiation, 53(5), 740-759. doi:10.1111/j.1440-169X.2011.01283.x.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-31AE-7
Zusammenfassung
Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser‐scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features.