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Abstract
While gravitational waves have not yet been measured directly, data analysis
from detection experiments commonly includes an upper limit statement. Such
upper limits may be derived via a frequentist or Bayesian approach; the the-
oretical implications are very different, and on the technical side, one notable
difference is that one case requiresmaximizationof the likelihood function
over parameter space, while the other requiresintegration. Using a simple ex-
ample (detection of a sinusoidal signal in white Gaussian noise), we investigate
the differences in performance and interpretation, and theeffect of the “trials
factor”, or “look-elsewhere effect”.

1 Introduction

1.1 Upper limits

In general, an upper limit is a probabilistic statement bounding one of several unknown parameters de-
termining the observed data at hand. While it would be hard toderive general properties applicable in
any possible data analysis context, we will for the illustration purpose consider a simple case here: a
sinusoidal signal in white Gaussian noise. This example exhibits many similarities with commonly en-
countered real-world problems, including the use of Fourier methods, nuisance parameters, trials factors,
partly analytical and numerical analysis, etc., and we believe is general enough to yield valuable insights.

1.2 The frequentist case

The frequentist detection approach is based on somedetection statisticd, which for given data is then
used to derive a significance statement along the lines of“If the data were only noise (null hypothesisH0),
a detection statistic value≥ d0 would have been observed with probabilityp.” (P(d ≥ d0 |H0) = p).
The probabilityp here is the p-value, and a low p-value is associated with a great significance. In the
case of a non-detection, the statement then may be reversed to an upper limit statement“Had the signal
amplitude been≥ A⋆, a larger detection statistic value (≥ d0) would have been observed with at least
90% probability” (P(d ≥ d0 |A ≥ A⋆) ≥ 90%), whereA⋆ is the 90% confidence upper limit (e.g. [1,2]).

1.3 The Bayesian case

In the Bayesian framework, detection and parameter estimation are more separate problems; for detection
purposes one would need to derive themarginal likelihood, or Bayes factor, which (in conjunction with
the prior probabilities for the “signal” and “noise only” hypothesesH1 andH0) allows one to derive the
probability for the presence of a signal. The detection statement would then be“(Given the observed
datay,) the probability for the presence of a signal isp.” (P(H1|y) = p). The upper limit statement on
the other hand is a matter of parameter estimation; given thejoint posterior distribution of all unknowns
in the model, one would need to marginalize to get the posterior distribution of the parameter of interest
alone. The upper limit statement would then be “(Given the observed data and the presence of a signal,)
the amplitude is≤ A⋆ with 90% probability.” (P(A ≤ A⋆ | y,H0) = 90%) [3,4].
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2 The data model

We assume the datay to be a time series given by a parameterized signals and additive noisen:

y(ti) = s(ti) + n(ti), (1)

wherei = 1, . . . , N andti = i∆t. The (sinusoidal) signal is given by

s(t) = A sin(2πfjt+ φ), (2)

whereA ≥ 0 is the amplitude,0 ≤ φ < 2π is the phase, andfj ∈ { j1
N∆t

, . . . , jk
N∆t

} is the frequency,

where1 ≤ j1, . . . , jk ≤ N
2 − 1 defines the range of possible (Fourier) frequencies. The number k of

frequency bins may be varied and constitutes the so-called “trials factor” here. The noisen is assumed
to be white and Gaussian with varianceσ2.

3 Frequentist approach

If there were no unknown parameters in the signal model, then, following from the Neyman-Pearson
lemma, the optimal detection statistic would be given by thelikelihood ratio of the two hypotheses. In
the case that the hypotheses include unknowns (composite hypotheses) as in our case, this is commonly
treated using thegeneralized likelihood ratioframework, that is, by considering the ratio ofmaximized
likelihoods, where maximization is done over the unknown parameters [5].

In our case, we have a 3-dimensional parameter space under the signal model. The conditional
likelihood for a given frequency may be maximized analytically over phase and amplitude. Theprofile
likelihood (maximized conditional likelihood for given frequency, asa function of frequency) is even-
tually proportional to the time series’ periodogram. The generalized likelihood ratio detection statistic
then is given as the periodogram maximized over the frequency range of interest:

d2 := max
j

2
Nσ2

∣

∣ỹj
∣

∣

2
(3)

whereỹj is the (complex valued)jth element of the discretely Fourier transformed time series y. The

“ 2
Nσ2

∣

∣ỹj
∣

∣

2
” term (the periodogram) maximized over in (3) is in fact alsothe matched filterfor a sinu-

soidal signal [6], and the maximumd2 is commonly referred to as the “loudest event” [2].

The detection statistic’s distribution may be derived analytically under both hypothesesH0 and
H1, as this is a particular case of anextreme value statistic[5]. Under the null hypothesis,d2 is the max-
imum of k independentlyχ2

2-distributed random variables; the cumulative distribution function (CDF)
of d2 is given by

Fd2;H0
(x) = P(d2 ≤ x |H0) =

(

Fχ2

2

(x)
)k

(4)

whereFχ2

2

is the CDF of aχ2
2 distribution, andk again is the number of independent frequency bins, or

“trials”. Under the signal hypothesisH1, d2 is the maximum of(k−1) independentlyχ2
2-distributed ran-

dom variablesand one noncentral-χ2
2(λ)-distributed variable with noncentrality parameterλ = N

2σ2A
2.

The corresponding CDF underH1 then is

Fd2;H1
(x) =

(

Fχ2

2

(x)
)(k−1)

× Fχ2

2,λ
(x) (5)

whereFχ2

2,λ
is the CDF of a noncentralχ2

2 distribution with parameterλ.

For some observed detection statistic valued20, the (detection) significance is determined by the p-
valueP(d2 ≥ d20 |H0) =

∫

∞

d2
0

p(d2|H0) dd
2. The 90% loudest-event upper limit is given by the smallest

amplitude valueA⋆ for which
∫

∞

d2
0

p(d2 |A,H1) dd
2 ≥ 90%, so thatP(d2 ≥ d20 |A ≥ A⋆,H1) ≥ 90%.
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Fig. 1: The integrals to be computed for a frequentist and a Bayesian90% upper limit are very different. The
Bayesian integral is computed along the vertical amplitudeaxis, conditioning on the observed detection statistic
valued2 = d2

0
. The frequentist integral goes along the horizontal axis ofpossible realisations ofd2 for any given

amplitude. (Example values here:N = 100, ∆t = 1, σ2 = 1, k = 49, d2
0
= 11.)

4 Bayesian approach

We assume uniform prior distributions on phase, frequency,and amplitude. Given the (3-dimensional)
likelihood function [7], one can then derive joint and marginal posterior distributionsP(A,φ, f | y) and
P(A|y). However, Monte Carlo simulations show that — in this particular model — the amplitude’s
marginal posterior distribution is virtually unaffected by whether one considers the complete datay, or
only the “loudest event”d2. The essential information about the signal amplitude is contained in that
loudest event, and the marginal amplitude posterior is dominated by the conditional distribution of the
loudest frequency bin. We find that the main difference between the two kinds of limits in this model is
not due to maximization vs. integration of the posterior; in thefollowing we will therefore consider only
the simpler, directly comparable, and more illustrative case of a Bayesian loudest event limit based on
P(A|d2) instead ofP(A|y).

The likelihood functionP(d2|A) was defined through (5) in the previous section. The 90% upper
limit on the amplitude is given by the amplitudeA⋆ for which

∫ A⋆

0 p(A | d2,H1) dA = 90%, i.e.,P(A <

A⋆ | d2,H1) = 90%.

5 Comparison

The likelihood function here is a function of two parameters: the observabled2 and the amplitude param-
eterA. Since the amplitude prior is assumed uniform, the posterior distribution is simply proportional to
the likelihood, which allows for a nice comparison of both approaches. Fig. 1 illustrates the integrations
performed for both the frequentist and the Bayesian upper limits for some particular realisationd2 = d20.

Since the datay are reduced to a single observabled2, there also is a one-to-one mapping fromd2

to the upper limitA⋆. Fig. 2 shows both resulting upper limits as a function of the“loudest event”d2.
An important feature to note is that the frequentist limit will be zero for certain values ofd2. The point
at (and below) which this happens is the lower 10% quantile ofthe distribution ofd2 underH0 (4) — at
this point the probability of observing a largerd2 value is (by definition) 90% for zero-amplitude signals

3
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Fig. 2: The mapping from observabled2 to the upper limit on amplitude. (Example values here:N = 100,
∆t = 1, σ2 = 1, k = 49.)

already, which makes zero the 90% upper limit. Note that thisimplies that ifH0 in fact is true, 10% of
all 90% upper limits will be zero. Note also that this is consistent with the intended 90%coverageof
frequentist confidence bounds — if the upper limit is supposed to fall above and below the true amplitude
value with 90% and 10% probabilities respectively, then 10%of the upper limitsmustbe zero underH0.

Having the distribution of the detection statistic (equations (4), (5)) and the mapping fromd2 to
upper limit (Fig. 2) allows us to derive the distribution of upper limits for given parameters. Figure 3
illustrates the behaviour of the resulting upper limits fordifferent values of amplitudeA and trials fac-
tor k. The left panel shows that for large amplitudes the two limits behave roughly the same, as one could
already see from Fig. 2, while for low amplitudes the posterior upper limit will level off and will not rule
out amplitude values below a certain noise level. The frequentist limit’s distribution on the other hand
reaches all the way down to zero, and in particular the 90% limit’s 10% quantile follows a straight line
of slope 1 and intercept 0 — the frequentist 90% limit is (by construction) essentially a statistic that has
its 10% quantile at the true amplitude value.

The right panel of Fig. 3 shows the differing behaviour of both limits as a function of the trials
factork when the true amplitude is zero. The frequentist limit’s 10%quantile remains at zero (the true
value), while the posterior limit is bounded away from zero but otherwise tends to yield tighter constraints
on the amplitude, especially for largek.

6 Conclusions

The most obvious technical difference between frequentistvs. Bayesian upper limits is in maximization
vs. integration over parameter space. This, however, is not— at least in the example discussed here —
the primary origin of discrepancies between the two. When foundingboth limits on maximization (i.e.,
the “loudest event”), the behaviour of the Bayesian limit isaffected very little; so the crucial information
about the signal amplitude is in fact contained in the loudest event. Both kinds of upper limits behave
very similarly for “loud” signals, i.e., a large signal-to-noise ratio (SNR), but their differences become ap-
parent in the interesting case of (near-) zero amplitude signals. While the Bayesian upper limit expresses
what amplitude values may be ruled out with 90% certainty based on the data (and model assumptions),
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Fig. 3: The distribution of upper limits as a function of amplitude (left panel) and trials factor (for zero amplitude;
right panel). Note that the frequentist 90% limit is essentially a statistic that is designed to have its 10% quantile
at the true amplitude value.

the frequentist upper confidence limit is defined solely through its “coverage” property. The frequentist
90% limit needs to end up above and below the true amplitude value with 90% and 10% probability
respectively, which simply means that the frequentist limit may be any random variable that has its 10%
quantile at the true amplitude. This in particular implies that for a true amplitude ofA = 0 the limit has
a 10% chance of being zero as well, and it makes the frequentist limit very hard to actually interpret,
not only if it actually happens to turn out as zero. When considering the effect of the trials factor (or
look-elsewhere effect) in the low-SNR regime where both limits behave differently, the posterior-based
limit will usually yield tighter constraints especially for large trials factors, but it will never be zero.

The Bayesian upper limit based on the amplitude’s posteriordistribution will of course change
with changing prior assumptions. For simplicity, we assumed an (improper) uniform amplitude prior
here, but this should actually be a conservative choice in some sense, for a realistic prior in the continuous
gravitational-wave context would in general be much more concentrated towards low amplitude values
(something like the — also improper — prior with densityp(A) ∝ 1

A4 ).

Another question is how exactly one would do the actual computations for a Bayesian upper limit
in practice — the frequentist upper limits are usually not computed via direct analytical or numerical
integration of the likelihood, but the integral (see Fig. 1)is determined in a nonparametric fashion via
Monte Carlo integration and bootstrapping of the data. While the frequentist limit requires finding the
amplitudeA⋆ at which the integral (P(d2 > d20 |A = A⋆)) yields the desired confidence level, an
analogous procedure to derive the Bayesian upper limit would probably require Monte Carlo sampling of
P(d2|A) across the range of all amplitudesA in order to then do the integral in the orthogonal direction.

Further complications arise especially for the frequentist limit when the signal model gets more
complex. The general procedure required for the Bayesian upper limit is rather obvious — determine the
marginal posterior distribution of amplitudeP(A|y), then determine the 90% quantile. The frequentist
procedure on the other hand may run into major problems. For example, if there are multiple parameters
affecting the signal’s SNR, a “loudest event” might be hard to define, or to translate into a constraint on
the amplitude. As there may not be a simple one-to-one connection between SNR and amplitude param-
eter as in the present case, the “loudest event” may not be theonly relevant figure to constrain the signal
amplitude. Computation also becomes more complicated if the frequency parameter is not restricted
to (“independent”) Fourier frequencies. Note that the reasoning behind the generalized likelihood ratio
approach (see Sec. 3) leading to the “loudest event” conceptwas very much an ad-hoc construction in
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Fig. 4: Illustration of the determination of a 90%sensitivity threshold. Such a statement would be independent of
the observed data, and it requires the specification of an additional parameter: the corresponding false alarm rate
defining the threshold of what is considered a “detection”. (Here:N = 100, ∆t = 1, σ2 = 1, k = 49.)

the first place.

Another notable related concept is that of apower constrained upper limit. In search experiments,
these are based on thesensitivity of the search procedure. In case the search yielded no detection,
one can state the signal amplitude that would have been detected with 90% probability; this number
may then also be used as a lower bound on the frequentist limit(“don’t rule out what you wouldn’t be
able to detect”). However, this kind of statement requires the specification of another parameter: the
corresponding false alarm rate defining the threshold of what is considered a “detection”, and as such
is inseparably connected to the detection procedure (see also Fig. 4). Another important difference is
that the sensitivity statement also does not depend on the data, and it is first of all a statement about the
detection procedure rather than the measured signal. Feldman & Cousins [8] discuss such limits that are
motivated by a combination of a significance test with a confidence limit statement. Limits of this kind
were used e.g. in [9].
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