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We present a simple method for determining the shape of fundamental domains of generalized
modular groups related to Weyl groups of hyperbolic Kac-Moody algebras. These domains are given
as subsets of certain generalized upper half planes, on which the Weyl groups act via generalized
modular transformations. Our construction only requires the Cartan matrix of the underlying finite-
dimensional Lie algebra and the associated Coxeter labels as input information. We present a simple
formula for determining the volume of these fundamental domains. This allows us to re-produce in
a simple manner the known values for these volumes previously obtained by other methods.

I. INTRODUCTION

Constructions of fundamental domains of generalized
modular groups usually rely on geometric considerations.
By considering the different possible symmetry transfor-
mations acting on some generalized upper-half plane, the
precise shape of the fundamental domain is narrowed
down step-by-step until one arrives at its final shape.
Especially for higher rank groups (such as SLn(Z)) this
poses a considerable computational and combinatorial
problem since one has to consider a large number of pos-
sible successive symmetry transformations (already the
determination of the fundamental domain of the standard
modular group PSL2(Z) along these lines takes more
than two pages of computations, see e.g. [1]). Although
one can show that the precise shape of the fundamen-
tal domain can be determined within a finite number of
steps, in the actual computation of a domain it is not
always clear how many steps are actually necessary.

In this paper we show that, at least for modular groups
arising as (even) Weyl groups of certain hyperbolic Kac–
Moody algebras, such cumbersome constructions can be
altogether avoided. More specifically, we present an easy
method for obtaining the complete geometric informa-
tion about the associated fundamental domains. All we
require as information for determining the explicit shape
and volume is the Cartan matrix of the corresponding
Kac-Moody algebra and its Coxeter labels. As we will
demonstrate this construction works for all hyperbolic
Kac–Moody algebras 1

g
++ of over-extended type, which

are generally obtained by extending a given finite dimen-
sional simple Lie algebra g via its affine extension g

+ by
adding two nodes to the Dynkin diagram in a specified
way. Likewise it applies to the twisted algebras obtained
by inverting the arrows in the Dynkin diagram, because
their Weyl groups are the same (but note that these
twisted algebras, while being indefinite Kac–Moody al-

1 An indefinite Kac–Moody algebra is called hyperbolic if the re-
moval of any one node from its Dynkin diagram leaves an algebra
which is either affine or finite [2].

gebras, in general are not of over-extended type). In par-
ticular, our construction also applies to those hyperbolic
Kac–Moody algebras whose even Weyl groups can be
identified with generalized modular groups defined over
rings of integers in division algebras [3]. The first exam-
ple of such an identification was given in [4] where it was
shown that the rank-3 hyperbolic Kac–Moody algebra
A++

1 (also denoted AE3 or F in the literature) has the
usual modular group PSL2(Z) as its even Weyl group,
the full Weyl group being W (A++

1 ) = PGL2(Z). In [3]
more complicated examples were given, involving for in-
stance the quaternionic integers (Hurwitz numbers), and
admitting a Möbius-like realization [5]. The most inter-
esting (and most complicated) example is the even Weyl
group W+(E10) which can be identified with the arith-
metic group PSL2(O) (where O are octonionic integers,
also called octavians). For this example we will explicitly
display the coordinates of the vertices of the fundamental
domain of the Weyl group.

Knowledge of the shape of the fundamental domain
allows one to compute its volume. In the non-linear real-
ization of the hyperbolic Weyl group on some generalized
upper half plane [5] (a hyperbolic space of constant neg-
ative curvature) the fundamental domains are realized as
higher dimensional simplices. We present a very simple
general formula for the volume of the domain in terms
of integrals involving a quadratic form which contains all
the information about the Lie algebra g

++ (see (32) be-
low). We note that our considerations would also apply
to cases where analogs of the so-called congruence sub-
groups of PSL2(Z) can de defined: the volume is then
simply a multiple of the original volume, with the fac-
tor equal to the index of the congruence subgroup in the
given generalized modular group. Such congruence sub-
groups presumably do exist for the generalized arithmetic
groups studied in [3], but we are not aware of any con-
crete results along these lines.

As an historic aside, we mention that the first com-
putation of hyperbolic volumes in terms of the dihedral
angles of the simplex under consideration is due to one of
the inventors of hyperbolic geometry, N.I. Lobachevsky
[6]. His results were extended by Schläfli and Coxeter [7],
see also Vinberg [8]. Further work on this problem can

http://arxiv.org/abs/1103.3175v1
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be found in [9] which gives a list of numerical values for
the volumes of hyperbolic Coxeter simplices, as well as
analytical expressions for some special cases. Using (32)
these values can be easily reproduced.

II. HYPERBOLIC ROOTS AND WEIGHTS

Let g be a finite-dimensional Lie algebra. We denote
the simple roots of g by ai ∈ Rn and their associated
fundamental weights by λi, where i = 1, . . . , n with n =
Rank(g) (see e.g. [10] for details). With the Cartan
matrix of g

Aij = 〈ai|aj〉 ≡
2ai · aj
aj · aj

(1)

we define the symmetrized Cartan matrix Bij as

Bij ≡ (AD)ij = 2ai · aj = Aij a
2
j , (2)

where a
2
j ≡ aj ·aj and there is no summation over double

indices. Unlike Aij , the matrix Bij and the symmetriz-
ing matrix Dij = δija

2
j depend on the normalization of

aj . Following [3] we choose this normalization such that

always θ
2 = 1 for the highest root

θ =
n
∑

j=1

mjaj (3)

with the Coxeter labels mj . When θ is a long root we
therefore have a

2
j = 1 for the long roots.

The associated fundamental weights λj constitute a
basis dual to the simple roots [10]

〈λi|aj〉 ≡
2λi · aj
aj · aj

= δij (4)

implying

λi · aj =
1

2
δij a

2
j . (5)

With the inverse Cartan matrix A−1 we thus have

λi =
∑

k

(A−1)ikak , (6)

from which we deduce

λi · λj =
1

2
(A−1)ij a

2
j . (7)

or

λi · λj =
1

2
a
2
i (B

−1)ij a
2
j . (8)

Next we consider the hyperbolic extension g
++ of the

finite-dimensional algebra g obtained by adjoining to the
Dynkin diagram of g the affine node (labeled ‘0’) and the

over-extended node (labeled ‘−1’). This entails extend-
ing the Euclidean root space Rn to the Lorentzian space
R1,n+1 = R1,1 ⊕ Rn. We denote the roots of g++ by αI ,
I = −1, 0, 1, . . . , n, and define them according to

α−1 ≡ −δ − δ̄ , α0 ≡ δ − θ , αi ≡ ai (9)

with the affine null vector δ ∈ R1,1 and the conjugate
null vector δ̄ ∈ R1,1 obeying δ · δ̄ = 1

2 . In this way we
obtain the Cartan matrix of g++ as

AIJ = 〈αI |αJ〉 ≡
2αI · αJ

αJ · αJ
(10)

with the Lorentzian inner product

αI · αJ ≡ ηµνα
µ
Iα

ν
J (11)

where the signature of ηµν is (− + · · ·+). Notice that
the affine and over-extended simple roots are also nor-
malized as α2

−1 = α2
0 = 1. The normalization θ

2 = 1 is
necessary to obtain a single line between the affine and
the hyperbolic node (connecting α0 and α−1).

The fundamental weights ΛI for the hyperbolic exten-
sion g

++ are defined in analogy with (4)

〈ΛI |αJ〉 ≡
2ΛI · αJ

αJ · αJ
= δIJ . (12)

By a standard construction (see e.g. [11]), the fundamen-
tal weights of g++ can be expressed in terms of the null
vectors δ and δ̄ and the finite weights λj as

Λ−1 = −δ , Λ0 = δ̄ − δ , Λj = njΛ0 + λi . (13)

The coefficients nj are fixed by requiring α0 ·Λj = 0 (cf.
(12)), which gives

nj = mja
2
j , (14)

The fundamental Weyl chamber C0 ⊂ R1,n+1 is

C0 :=
{

X ∈ R
1,n+1 |X · αI ≥ 0 for I = −1, 0, 1, ..., n

}

With the fundamental weights ΛI one obtains a more
convenient representation of C0

C0 =
{

X ∈ R
1,n+1 |X =

∑

I

sIΛI with sI ≥ 0 for all I
}

(15)

The null vector δ lies on the forward light-cone in root
space. The Weyl chamber itself is the convex hull of the
hyperplanes orthogonal to the simple roots of the alge-
bra. The fundamental weights are vectors pointing along
the edges of the Weyl chamber. In other words, C0 is
a ‘wedge’ in R

1,n+1. For the hyperbolic algebras g
++

of over-extended type considered here this wedge lies in-
side the forward lightcone, always touching it with the
lightlike weight vector Λ−1, while all other fundamental
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Figure 1: Sketch of the Weyl chamber as a wedge inside the
forward light cone that is intersected by the unit hyperboloid.

weights obey Λ2
j ≤ 0. By contrast, for general indef-

inite (Lorentzian) g
++ the Weyl chamber may stretch

beyond the lightcone and also contain space-like vectors.
A schematic picture of the Weyl chamber for hyperbolic
g
++ is shown in Fig. 1. We have included the forward

light-cone and the intersecting unit hyperboloid.
As it turns out the assumptions made suffice to cover

all cases of interest. This concerns in particular the
twisted algebras: as these are obtained by inverting the
arrows in the relevant Dynkin diagrams, the associated
Coxeter Weyl groups, not being sensitive to the direction
of the arrows, coincide with those of the untwisted dia-
grams. We therefore note the following isomorphisms of
Weyl groups using Kac’ notation [2]:

W (G
(1)+
2 ) ∼= W (D

(3)+
4 )

W (B(1)+
n ) ∼= W (A

(2)+
2n−1)

W (C(1)+
n ) ∼= W (D

(2)+
n+1 )

W (F
(1)+
4 ) ∼= W (E

(2)+
6 ) (16)

where the superscript + on the r.h.s. indicates the exten-
sion of the affine algebra by another node. But note that
the twisted algebras, though perfectly well-defined as in-
definite Kac–Moody algebras, are not necessarily of over-
extended type. In the notation of Fuchs and Schweigert
[12], the later three isomorphisms are

W (B(1)+
n ) ∼= W (C(2)+

n )

W (C(1)+
n ) ∼= W (B(2)+

n )

W (F
(1)+
4 ) ∼= W (F

(2)+
4 ) (17)

The corresponding volumes of the fundamental domains
therefore also coincide.

Figure 2: Example of a fundamental domain on the Poincaré
disk obtained by intersecting the Weyl chamber with the
(compactified) unit hyperboloid, here for the algebra A++

1 .

III. VOLUME FORMULA

The linear action of the Weyl group in R1,n+1 preserves
the (Lorentzian) length, and therefore induces a non-
linear modular action on the forward unit hyperboloid

X ·X ≡ −x+x− + x
2 = −1 , x± > 0 (18)

with light-cone coordinates x± ≡ (x0±xn+1)/
√
2 in R

1,1

and x ∈ Rn. For the cases n = 1, 2, 4 and 8 studied in [3],
where the root space of g can be endowed with the struc-
ture of a division algebra, the induced non-linear action
takes the form of a generalized Möbius transformation
over a (possibly non-commutative and non-associative)
ring of integers.

The intersection of the fundamental Weyl chamber C0
with the unit hyperboloid defines a corresponding funda-
mental domain F0 on the unit hyperboloid. The corre-
sponding domain on the (compactified) unit hyperboloid
(alias the Poincaré disk) is depicted in Fig. 2. In the re-
mainder, however, we will study this domain as a subset
of the generalized (Poincaré) upper half plane H rather
than the unit hyperboloid 2. This upper half plane is
defined as

H ≡ Hn+1 :=
{

(u, v) |u ∈ R
n , v > 0

}

(19)

and is thus of dimension n + 1. Hn+1 is isometric to
the forward unit hyperboloid in R

1,n+1 by means of the
standard coordinate transformation

x− =
1

v
, x+ = v +

u
2

v
, x =

u

v
(20)

2 Note that the fundamental domain F0 is half of the fundamental
domain F of the ordinary modular group. The latter corresponds
to the even subgroup of the Weyl group.
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v

Figure 3: Schematic depiction of a Weyl chamber on the UHP,
corresponding in this case to A++

2 .

The Minkowskian line element is transformed to

ds2 =
du2 + dv2

v2
(21)

where, of course, du2 ≡ du2
1+· · ·+du2

n. The fundamental
domain F0 ⊂ H is now rather easy to determine from
the representation (15) by identifying the points where
the rays along ΛI ‘pierce’ the unit hyperboloid, and then
mapping these points to H by means of (20). We first
notice that the over-extended fundamental weight Λ−1

(alias the affine null vector δ) corresponds to the ‘cusp’
at infinity in H with coordinates v = ∞ , u = 0 [5], while
Λ0 corresponds to the point v = 1 , u = 0 in H. From
(13) we see that the remaining fundamental weights are
mapped to the points

vj =

√

1−
λ
2
j

n2
j

, uj =
λj

nj
(22)

on the unit hemisphere v2 + u
2 = 1 , v > 0 in Hn+1. If

|uj | = 1 for some j we have another cusp in addition to
the cusp at infinity, but now lying on the boundary v = 0
of H. Therefore, the fundamental region always has the
shape of a ‘skyscraper’ that extends to infinite height over
the simplex Σ ⊂ Rn defined by the points 0 and uj , and
whose ‘bottom’ is cut off by the unit hemisphere. See
Fig. 3 for an artist’s view; the ‘bottom’ of the skyscraper
is the excised shaded region on the unit sphere.

Using the above formulas we obtain

ui · uj ≡ Sij =
1

2mimj
(B−1)ij . (23)

a1

a2

λ1

λ2

Figure 4: Schematic example for the projection of the fun-
damental domain for the Weyl chamber onto the hypersur-
face v = 0 for A++

2 . In accordance with (8) the roots and

weights here are normalized as a1 = (1, 0), a2 = (− 1

2
,
√

3

2
),

and λ1 = (0, 1
√

3
), λ2 = ( 1

2
, 1

2
√

3
).

The matrix Sij encodes all the Lie algebraic information
about the over-extended algebra g

++ via the inverse sym-
metrized Cartan matrix B−1 and the Coxeter labels mj .
By a general result valid for all finite g [10] the matrices
B−1 are positive definite; furthermore their individual
entries B−1

ij are also positive. It thus follows that

S > 0 (as a matrix) and Sij > 0 for all i, j (24)

Note that this formula holds for simply-laced as well as
non-simply-laced (untwisted) algebras. In particular, in
the non-simply laced case one has to distinguish between
the Coxeter/dual Coxeter labels of the untwisted and the
Coxeter/dual Coxeter labels of the twisted version of the
over-extension of the algebra.

As we just explained the fundamental domain F0 ⊂ H
rises over the simplex Σ ⊂ Rn defined by

Σ :=
{

x ∈ R
n |x =

n
∑

i=1

tiui ; ti ≥ 0,

n
∑

i=1

ti ≤ 1
}

. (25)

With the above definitions we get

x(t)2 =
n
∑

i,j=1

Sijtitj . (26)

From the positivity properties (24) we deduce the follow-
ing chain of inequalities valid for all points x(t) ∈ Σ

0 ≤
∑

i,j

Sijtitj ≤ max
i,j

Sij

(

∑

k

tk

)2

≤ max
i,j

Sij (27)

Therefore x(t)2 < 1 as long as all matrix entries satisfy
Sij < 1. From (13) it is straighforward to see that

Λ2
j = n2

j

(

u
2
j − 1

)

(28)

and it therefore follows that Sii = 1 when the corre-
sponding hyperbolic weight Λi becomes null; for spacelike
weights (Λ2

j > 0) we have |uj | > 1, and the correspond-
ing point (vj ,uj) no longer lies in the generalized upper
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half-plane. This happens when g
++ is Lorentzian, but no

longer hyperbolic, as is for instance the case for all A++
n

with n ≥ 8 and B++
n and D++

n for n ≥ 9.
With the hyperbolic volume element

dvol(u, v) =
dnu dv

vn+1
(29)

we thus obtain

vol(F0) =
√
detS

∫

∆n

dt1 · · · dtn
∞
∫

√
1−x(t)2

dv

vn+1
(30)

where ∆n is the standard simplex in Rn

∆n :=
{

(t1, . . . , tn) | ti ≥ 0 ,
∑

ti ≤ 1
}

(31)

Performing the integral over v we arrive at

vol(F0) =
1

n

∫

∆n

dt1 · · · dtn
√
detS

(1 −
∑

tiSijtj)
n
2

.

(32)

This simple formula is our main result: it expresses the
hyperbolic volume as an integral over a standard simplex
∆n in Rn with the single matrix Sij encoding all the Lie
algebraic information about the hyperbolic Weyl group.
The integral is manifestly convergent if all Sij < 1. When
Sii = 1 the corresponding point has |ui| = 1 and vi = 0
and thus lies on the boundary of H, but the integral is still
convergent (see below for examples when this happens).
For non-hyperbolic Lorentzian algebras the integral di-
verges and therefore vol(F0) = ∞.

When evaluating this formula it may be convenient to
diagonalize the quadratic form in terms of new integra-
tion variables ξi such that

∑

i,j

Sijtitj = ξ21 + · · ·+ ξ2n (33)

and the determinant factor (detS)1/2 is cancelled by the
Jacobian. The variables ξi always exist by the positivity
properties of the matrix S. However, the (still simpli-
cial) domain of integration is then more complicated to
parametrize.

IV. ANALYTIC RESULTS

We now show how our formula (32) immediately yields
the volumes for various hyperbolic reflection groups cor-
responding to over-extended hyperbolic algebras g

++ of
low rank. It is straightforward to check that for A1 (cor-
responding to the rank-3 Feingold-Frenkel algebra A++

1 )
we have S = 1

2 , and one easily recovers the well known

result vol(F0[A
++
1 ]) = π

6 . For this reason we proceed
right away to the case of rank 4.

The rank-4 algebras of over-extended type are
A++

2 , C++
2 and G++

2 . For g
++ = A++

2 we have m1 =
m2 = 1 and thus the matrix Sij is 1/2 the inverse of the
A2 Cartan matrix

B−1 =

(

2
3

1
3

1
3

2
3

)

⇒ S =

(

1
3

1
6

1
6

1
3

)

(34)

Transforming to new coordinates ξ1 = 1
2 (t1 + t2) and

ξ2 = (1/2
√
3)(t1 − t2) such that the Jacobi determinant

cancels the factor (detS)1/2 = 1/2
√
3 and

1

3

(

t21 + t1t2 + t22
)

= ξ21 + ξ22 (35)

we obtain

vol(F0[A
++
2 ]) =

1

2

∫ 1

2

0

dξ1

∫

ξ1
√

3

− ξ1
√

3

dξ2
1− ξ21 − ξ22

=
1

2

∫ 1

2

0

dξ
√

1− ξ2
ln

(
√

1− ξ2 + 1√
3
ξ

√

1− ξ2 − 1√
3
ξ

)

(36)

The substitution ξ = sin θ leads to

vol(F0[A
++
2 ]) =

1

2

∫ π
6

0

dθ ln

(

cos θ + 1√
3
sin θ

cos θ − 1√
3
sin θ

)

=
1

2

∫ π
6

0

dθ ln

(

2 sin(θ + π
3 )

2 sin(π3 − θ)

)

(37)

After a suitable shift of integration variables and using
the definition and properties of the Lobachevsky func-
tion, this reduces to

vol(F0[A
++
2 ]) (38)

=
1

2

[

Л
(π

3

)

− Л
(π

6

)

− Л
(π

2

)

+ Л
(π

3

)]

=
1

4
Л
(π

3

)

(39)

For g
++ = G++

2 we have the Coxeter labels m1 =
2 , m2 = 3 and the relevant matrices are

B−1 =

(

2 3

3 6

)

⇒ S =

(

1
4

1
4

1
4

1
3

)

(40)

Now the substitution to diagonalize the quadratic form
is ξ1 = 1

2 (t1 + t2) , ξ2 = (1/2
√
3)t2, and we get

vol(F0[G
++
2 ]) =

1

2

∫ 1

2

0

dξ1

∫
ξ1
√

3

0

dξ2
1− ξ21 − ξ22

=
1

2
vol
(

F0[A
++
2 ]
)

=
1

8
Л
(π

3

)

(41)

Finally, for C++
2 we have m1 = m2 = 1 and

B−1 =

(

1
2

1
2

1
2 1

)

⇒ S =

(

1
4

1
4

1
4

1
2

)

(42)
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Note that the corresponding matrix for B++
2 is

S = 1
4 (

2 1
1 1 ) and yields the same volume.

Now we substitute ξ1 = 1
2 (t1 + t2) and ξ2 = 1

2 t2 to get

vol
(

F0[C
++
2 ]

)

=
1

2

∫ 1

2

0

dξ1

∫ ξ1

0

dξ2
1− ξ21 − ξ22

=
1

2

∫ π
6

0

dθ ln

(

2 sin(θ + π
4 )

2 sin(π4 − θ)

)

(43)

Similar manipulations as before lead to the result

vol
(

F0[C
++
2 ]

)

=
1

4

[

Л
(π

4

)

− Л
( π

12

)

− Л

(

5π

12

)

+ Л
(π

4

)

]

=
1

6
Л
(π

4

)

(44)

V. HIGHER RANK ALGEBRAS

What about higher rank algebras? Although the
integrals (32) look elementary it turns out that
calculations become rapidly more complicated with
increasing dimension, and we have not been able to

derive ‘simple’ closed form expressions for them when
n > 2. The complications are mainly due to the
integration boundaries which must be analyzed case
by case. Although (32) is suggestive of higher order
Lobachevsky functions (see appendix), this expectation
(as expressed, for instance, in [8]) is not borne out by
the concrete calculations, nor have such expressions been
explicitly exhibited in the literature, see e.g. [8]. One
possibility, to be explored in future work, would be to
expand the integrand in (32) whereby the integral is
expressed as an infinite sum of terms each one of which
involves an integral of a monomial over the standard
simplex ∆n. Such integrals have been studied in the
literature [13, 14] but the resulting expressions are still
quite involved. Numerically these series converge rapidly,
as all terms are of the same sign.

Using (32) one can compute the volume of different
fundamental domains numerically. The only input
information that is needed is the matrix S, which is
calculated from the matrix B−1 and the Coxeter labels
via (23). As already mentioned above, B−1 is the inverse
symmetrized Cartan matrix and its form for the different
algebras can be found in the standard Lie algebra
literature, see e.g. [10]).

G Untwisted Twisted

Bn

−1

1

0 2 3 n− 1 n −1 0 1 2 n− 1 n

Cn

−1 0 1 2 n− 1 n −1

1

0 2 3 n− 1 n

Fn

−1 0 1 2 3 4 −1 0 1 2 3 4

Gn

−1 0 1 2 −1 0 1 2

Table I: Dynkin diagrams of the over-extended twisted and untwisted
non-simply laced finite-dimensional algebras with Dynkin labeling of
nodes

Here we list the matrices S for the Lie Algebras
of An, Bn, Cn, Dn, F4, E6, E7 and E8 in the Cartan
classification (the matrices for the rank 2 algebras were
already given in the previous section). In addition we list
the set of Coxeter (or dual Coxeter) labels mi used in the
computation of S. Note that in the case of the non-simply

laced algebras it is necessary to distinguish between the
labels of the twisted and untwisted algebra. For these
algebras we label the matrix S with a superscript (1) or
(2), respectively, indicating whether it corresponds to
the untwisted or twisted over-extension of the algebra.
Considering Table I containing Dynkin diagrams of
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over-extensions of the non-simply laced algebras, we
note that the twisted Dynkin diagram of Bn is the same
as the untwisted Dynkin diagram of Cn, simply with the
direction of the arrows reversed. This tells us that the
volumes of the corresponding fundamental domains have
to be the same, since the matrix S is the symmetrized
version the Cartan matrix and therefore contains no
information about the direction of the arrows. A similar
correspondence holds for the untwisted diagram of Bn

and the twisted diagram of Cn, as well as for G2 and F4.

The condition for the over-extension of each algebra to
be of hyperbolic type is that all of the diagonal entries
Sii of the underlying finite-dimensional algebra must
satisfy Sii ≤ 1. Geometrically each Sii = 1 corresponds
to an additional fundamental weight (edge of the Weyl
chamber) lying on the forward light-cone. For each
Sii > 1 an additional fundamental weight lies outside
the light cone and the over-extension is not of hyperbolic
type. For each algebra we state the range of n for which
the over-extension is hyperbolic.

g
++ = A++

n : The Coxeter labels are mi = (1, ..., 1),
and thus the matrix S is

S[An] =
1

(n+ 1)
×

×





























n
2

n−1
2

n−2
2

n−3
2 · · · 1

2

n−1
2 n− 1 n− 2 n− 3 · · · 1

n−2
2 n− 2 3(n−2)

2
3(n−3)

2 · · · 3
2

n−3
2 n− 3 3(n−3)

2 2(n− 3) · · · 2

...
...

...
...

. . .
...

1
2 1 3

2 2 · · · n
2





























(45)

From the explicit form of the matrix it is obvious that

Sij ≤ 1 ⇔ j(n+ 1− j)

2(n+ 1)
≤ 1 (46)

for all j = 1, . . . , n. Hence A++
n is hyperbolic for n ≤ 7.

g
++ = B++

n : the Coxeter labels are mi = (1, 2, ..., 2)
(as untwisted Coxeter labels for Bn, and as twisted dual
Coxeter labels for Cn), and the matrix S is

S(1)[Bn] =



































1
2

1
4

1
4

1
4 · · · 1

4
1
4

1
4

1
4

1
4

1
4 · · · 1

4
1
4

1
4

1
4

3
8

3
8 · · · 3

8
3
8

1
4

1
4

3
8

1
2 · · · 1

2
1
2

...
...

...
...

. . .
...

...

1
4

1
4

3
8

1
2 · · · n−1

8
n−1
8

1
4

1
4

3
8

1
2 · · · n−1

8
n
8



































(47)

All matrix entries are ≤ 1 for n ≤ 8, whence B++
n is

hyperbolic for n ≤ 8. Inverting the arrow in the Dynkin
diagram we infer that

S(1)[Bn] = S(2)[Cn]. (48)

g
++ = C++

n : the Coxeter labels are mi = (1, ..., 1) (as
twisted Coxeter labels for Bn and untwisted dual Coxeter
labels for Cn), so

S(1)[Cn] =

































1
4

1
4

1
4

1
4 · · · 1

4
1
4

1
4

1
2

1
2

1
2 · · · 1

2
1
2

1
4

1
2

3
4

3
4 · · · 3

4
3
4

1
4

1
2

3
4 1 · · · 1 1

...
...

...
...

. . .
...

...

1
4

1
2

3
4 1 · · · n−1

4
n−1
4

1
4

1
2

3
4 1 · · · n−1

4
n
4

































(49)

Clearly, C++
n is hyperbolic for n ≤ 4. As before we get

S(1)[Cn] = S(2)[Bn] (50)

g
++=D++

n : the Coxeter labels are mi = (1, 2, ..., 2, 1, 1),
and therefore

S[Dn] =











































1
2

1
4

1
4

1
4 · · · 1

4
1
4

1
4

1
4

1
4

1
4

1
4 · · · 1

4
1
4

1
4

1
4

1
4

3
8

3
8 · · · 3

8
3
8

3
8

1
4

1
4

3
8

1
2 · · · 1

2
1
2

1
2

...
...

...
...

. . .
...

...
...

1
4

1
4

3
8

1
2 · · · n−2

8
n−2
8

n−2
8

1
4

1
4

3
8

1
2 · · · n−2

8
n
8

n−2
8

1
4

1
4

3
8

1
2 · · · n−2

8
n−2
8

n
8











































(51)

We see that D++
n is hyperbolic for n ≤ 8.

g
++ = F++

4 : the Coxeter labels are (2, 3, 2, 1) for the
untwisted dual Coxeter labels as well as for the twisted
Coxeter labels:

S(1)[F4] = S(2)[F4] =













1
4

1
4

1
4

1
4

1
4

1
3

1
3

1
3

1
4

1
3

3
8

3
8

1
4

1
3

3
8

1
2













(52)

g
++=E++

6 : the Coxeter labels are (1, 2, 3, 2, 1, 2), and we



8

have

S[E6] =

























2
3

5
12

1
3

1
3

1
3

1
4

5
12

5
12

1
3

1
3

1
3

1
4

1
3

1
3

1
3

1
3

1
3

1
4

1
3

1
3

1
3

5
12

5
12

1
4

1
3

1
3

1
3

5
12

2
3

1
4

1
4

1
4

1
4

1
4

1
4

1
4

























(53)

g
++=E++

7 : the Coxeter labels are (2, 3, 4, 3, 2, 1), and we
have

S[E7] =































1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
3

1
3

1
3

1
3

1
3

1
3

1
4

1
3

3
8

3
8

3
8

3
8

3
8

1
4

1
3

3
8

5
12

5
12

5
12

3
8

1
4

1
3

3
8

5
12

1
2

1
2

3
8

1
4

1
3

3
8

5
12

1
2

3
4

3
8

1
4

1
3

3
8

3
8

3
8

3
8

7
16































(54)

g
++ = E++

8 : with the Coxeter labels (2, 3, 4, 5, 6, 4, 2, 3)
we have

S[E8] =





































1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
4

1
3

3
8

3
8

3
8

3
8

3
8

3
8

1
4

1
3

3
8

2
5

2
5

2
5

2
5

2
5

1
4

1
3

3
8

2
5

5
12

5
12

5
12

5
12

1
4

1
3

3
8

2
5

5
12

7
16

7
16

5
12

1
4

1
3

3
8

2
5

5
12

7
16

1
2

5
12

1
4

1
3

3
8

2
5

5
12

5
12

5
12

2
9





































(55)

Using equations (22) one can determine the
coordinates of the vertices of the fundamental domain.
For example, the vertices of the domain corresponding

to the Weyl group of e10 are given by

(v1,u1) =

(√
3

2
,
1

2
e0

)

(v2,u2) =

(

√

2

3
,
1

2
e0 +

1

6
(e1 + e5 + e6)

)

(v3,u3) =

(

√

5

8
,
1

2
e0 +

1

4
(e5 + e6)

)

(v4,u4) =

(

√

3

5
,
1

2
e0 +

1

10
(e2 + 3e5 + 2e6 − e7)

)

(v5,u5) =

(

1√
6
,
1

2
e0 +

1

6
(2e5 + e6 − e7)

)

(v6,u6) =

(

3

4
,
1

2
e0 +

1

8
(e3 + 3e5 + e6 − e7)

)

(v7,u7) =

(

1√
2
,
1

2
e0 +

1

2
e5

)

(v8,u8) =

(√
5

3
,
1

2
e0 +

1

6
(e4 + 2e5 + e6 − e7)

)

(56)

The special feature of this example is that the vectors uj

now belong to the octonions O, the non-commutative and
non-associative maximal division algebra. Accordingly,
the unit vectors ej (for j = 1, . . . , 7) are just the
octonionic imaginary units. The vertex coordinates of the
fundamental domains of other Weyl groups are obtained
similarly.

By evaluating the integrals in (32) numerically we
obtain the volumes of all the fundamental domains of
the hyperbolic Weyl groups of the algebras listed above.
The values we find agree with those found in [9] where the
volumes of all hyperbolic Coxeter simplices were obtained
by a different method.
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Appendix A: The Lobachevsky function

The Lobachevsky function Л is defined as

Л(θ) = −
∫ θ

0

log(|2 sin t|)dt ∀θ ∈ R (A1)
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and related to the dilogarithm and the Clausen function
through the identities

Л(ω) =
1

2
Im(Li2(e

2iω)) =
1

2
Cl2(2ω) . (A2)

where the dilogarithm is defined as

Li2(z) = −
∫ z

0

log(1 − w)

w
dw ∀z ∈ C : z /∈ [1,∞) .(A3)

The Lobachevsky function fulfills the relations

Л(0) = Л
(π

2

)

= 0 (A4)

Л(θ + π) = Л(θ) (A5)

Л(−θ) = −Л(θ) (A6)

and

Л(nθ) = n

n−1
∑

j=0

Л(θ +
jπ

n
) ∀n ∈ Z+ , (A7)

yielding e.g.

Л
(π

6

)

=
3

2
Л
(π

3

)

Л
(π

4

)

=
3

4

[

Л
( π

12

)

+ Л

(

5π

12

)]

. (A8)

The polylogarithm functions

Lin(z) =

∞
∑

r=1

zr

rn
∀z ∈ C ∀n ≥ 1 (A9)

arise naturally in the computation of hyperbolic volume.
They are inductively related through

Li1(z) = − log(1− z) (A10)

Lin(z) =

∫ z

0

Lin−1(w)
dw

w
. (A11)

It is furthermore common to define the higher
Lobachevsky functions through the polylogarithm
according to

Л2m(θ) =
1

22m−1
Im(Li2m(e2iθ)) (A12)

Л2m+1(θ) =
1

22m
Re(Li2m+1(e

2iθ)) . (A13)

The higher Lobachevsky functions fulfill the more general
relations

Лm(θ) = Лm(θ + π) (A14)

1

nm−1
Лm(nθ) =

n−1
∑

j=0

Лm

(

θ +
jπ

n

)

(A15)

Лm(−θ) = (−1)m+1Лm(θ) . (A16)

However, as we already pointed out, and unlike for rank
four, it does not appear that the volumes for the higher
rank fundamental domains can be expressed solely in
terms of higher Lobachevsky functions.
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