Solid State Kinetics from Time-resolved in situ XAFS Investigations: Reduction and Oxidation of Molybdenum Oxides

T. Ressler, R.E. Jentoft, J. Wienold, O. Timpe

Address:
Dr. Thorsten Ressler, Fritz-Haber-Institut der MPG, Department of Inorganic Chemistry
Faradayweg 4-6, D-14195 Berlin, Germany

Tel. (+49) 30 8413 3192
Fax. (+49) 30 8413 4405
e-mail: ressler@fhi-berlin.mpg.de

Reduction and reoxidation of MoO$_3$ with hydrogen and oxygen, respectively, were studied by in situ X-ray diffraction and X-ray absorption spectroscopy (XAS). The experiments performed focused on elucidating phase composition and evolution under isothermal reduction conditions. Under all conditions studied the reduction of MoO$_3$ to MoO$_2$ was found to be a one-step process. At temperatures higher than 723 K the formation of Mo$_4$O$_{11}$ was observed. However, Mo$_4$O$_{11}$ is not an intermediate in the reduction of MoO$_3$ but rather it is formed in a parallel reaction between MoO$_3$ and MoO$_2$. During MoO$_3$ reduction the evolution of the MoO$_3$ and MoO$_2$ phases exhibited a characteristic sigmoidal shape which indicates that under the conditions studied nucleation-growth kinetics govern the reduction. Different apparent activation energies were obtained for the reduction of MoO$_3$ below and above 698 K. Reoxidation of MoO$_{3-x}$ in oxygen was found to proceed much faster than its reduction in hydrogen. Evolution of the MoO$_3$ phase is dependent on both temperature and degree of oxidation. At temperatures below 823 K first a linear and then a parabolic rate law was observed, indicating that the progress of MoO$_{3-x}$ oxidation is first boundary controlled and then diffusion controlled. This work clearly demonstrates the potentials of time-resolved in situ XAS as a novel tool to investigate the kinetics of solid state reactions.