日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Experimental fingerprints of vibrational wave-packet motion during ultrafast heterogeneous electron transfer.

MPS-Authors
/persons/resource/persons21954

Pettinger,  Bruno
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22143

Storck,  Winfried
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Zimmermann, C., Willig, F., Ramakrishna, S. S., Burfeindt, B., Pettinger, B., Eichberger, R., & Storck, W. (2001). Experimental fingerprints of vibrational wave-packet motion during ultrafast heterogeneous electron transfer. The Journal of Physical Chemistry B, 105(38), 9245-9253. doi:10.1021/jp011106z.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-19DD-C
要旨
By application of 20 fs laser pulses, vibrational wave packets of low-energy modes (mainly 357 and 421 cm-1) were generated in the perylene chromophore that gave rise to periodic beats that lasted longer than 1 ps in transient absorption signals. Electron transfer from the excited singlet state of the perylene chromophore, attached as molecule DTB-Pe via the -CH2-phosphonic acid group to anatase TiO2, was measured in ultrahigh vacuum with a time constant of 75 fs. The vibrational wave packet that was generated in the donor state continued its motion for several hundred femtoseconds in the product state of the reaction, i.e., in the ionized chromophore. This is direct proof for electron transfer occurring from a nonrelaxed vibrational population that was created by the short laser pulse in the donor molecule. The rise of the product state showed a staircase-like time dependence. The steps are attributed to electron transfer that occurs preferentially each time the vibrational wave packet (frequency 480 cm-1) reaches a crossing point for the potential curves of reactant and product state. Such wave-packet modulation of heterogeneous electron transfer can arise if the density of electronic acceptor states in the electrode is changing strongly over an energy range on the order of the reorganization energy below the excited molecular donor orbital.