Theoretical and experimental study of the dynamical electronic response of Ag

Wolf-Dieter Schöne 1,2, Dang Sheng Su 1, and Walter Ekardt 1
1: Fritz-Haber-Institut der Max -Planck-Gesellschaft, Faradayweg 4 -6, D-14195 Berlin, Germany
2: Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany

Abstract

In this paper we present theoretical and experimental results for the linear electronic response of Ag. The calculations are performed within time -dependent density-functional theory. They are based on a pseudopotential scheme with and without the inclusion of semicore states and a plane -wave expansion of the wave functions. The influence of the semicore states is shown and discussed. The results for the ground-state calculation are furthermore compared to those for all -electron calculations. The theoretical results are then compared to EELS spectra obtained using a transmission electron microscope. Although we achieve good agreement in many aspects it is shown that even for such a supposedly simple materials as crystalline Ag the results cannot be fully understood.