Some aspects of metal-support strong interactions in Rh/Al2O3 catalyst under oxidising and reducing conditions

M. Zimowska1, J. B. Wagner2, J. Camra3, B. Borzęcka-Prokop1, M. Najbar1*

1Department of Chemistry, Jagiellonian University, 30-060 Krakow, Ingardena 3, Poland;
2Department of Inorganic Chemistry, Fritz Haber Institute of Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
3Regional Laboratory of Physicochemical Analyses and Structural Research, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland

The aim of the paper is to elucidate the nature of the metal-support strong interactions in Rh/Al2O3 catalyst. The way of the investigations was unconventional; the mixed Rh-O-Al xerogel was used as a catalyst precursor and the catalyst was obtained by its annealing at 1113 K in air. Such thermal treatment yielded the catalyst in which Rh was either incorporated in the forming alumina crystallites or segregated on their surfaces. As-prepared catalyst was then oxidized at 773 K in oxygen and next reduced at 773 in hydrogen or at 873 K in methane.

The changes in the rhodium content and in the oxidation degrees of Rh and Al in the surface nanolayers of 2 wt % Rh / Al2O3 catalyst during its oxidation and reduction were investigated by X-ray photoelectron spectroscopy (XPS). The powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) were used for phase identification in the catalysts. The results revealed the presence of a Rh4+/d Al2O3 solid solution, Al-Rh bimetallic phase and Rh2O3 in the surface nanolayers of the freshly prepared catalyst. They also revealed that, during the catalyst interaction with hydrogen or methane, Rh2O3 and the Rh4+/d Al2O3 solid solution undergo reduction to Rh and Rh-Al bimetallic phase, respectively. Aluminium was shown to segregate on the surface of Rh-Al nanocrystallites during the catalyst annealing in the reducing conditions. It was revealed that the next oxidation results in the formation of the alumina layers on Rh4+/d Al2O3 solid solution nanocrystallites, making difficult their reduction at 773 K but not at 873 K.