Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications

S. Perathonera,c, P. Lanzafamea,c, R. Passalacquaa,c, G. Centia,c, R. Schlöglb,c and D.S. Sub,c

aDepartment of Industrial Chemistry and Engineering of Materials, University of Messina, UdR INSTM, Salita Sperone 31, 98166 Messina, Italy
bDepartment of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
cELCASS (European Laboratory for Catalysis and Surface Science)

Abstract

SBA15–TiO\textsubscript{2} samples prepared by introducing titanium with a grafting method and having TiO\textsubscript{2} loadings below 15 wt.% have been characterized by XRF, XRD, IR, porosimetry, SEM, HRTEM, and UV–Visible diffuse reflectance. Differently from the samples reported in the literature characterized by a high TiO\textsubscript{2} loading, no evidences have been found for the presence of titania particles inside or outside the mesopores of SBA-15. Three different titanium species were instead evidenced to be present. The first two derive from the reaction of titanium with silanol groups in the corona area of inner SBA-15 walls leading to the formation of either TiO\textsubscript{4} tetrahedral sites (by reaction by hydroxyl nests of surface defect sites) and/or pseudo-octahedral surface sites anchored by two (or more) Si or Ti ions through bridging oxygens. The third species derives from the reaction of titanium in the regions with high sylanol density, e.g. in the micropores located in the corona of SBA-15 channels, leading to the formation of TiO\textsubscript{2}-like nanoareas (probably Si-doped) with dimensions of around 1–2 nm maximum. The potential interest of these materials as photocatalysts, for the presence of a TiO\textsubscript{2}-like nanoareas highly accessible by reactants, is discussed.

Keywords:

SBA-15; Titania; Mesoporous materials; Corona; Ti–silica mesoporous materials; Photocatalytic materials