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In the inflationary scenario of loop quantum cosmology (LQC) in the presence of inverse-volume
corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations
convenient to confront with observations. Since inverse-volume corrections can provide strong con-
tributions to the running spectral indices, inclusion of terms higher than the second-order runnings
in the power spectra is crucially important. Using the recent data of cosmic microwave background
(CMB) and other cosmological experiments, we place bounds on the quantum corrections for a
quadratic inflaton potential.
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One of the motivations to search for a quantum theory
of gravity is the desire to unify general relativity with
quantum mechanics and, in doing so, resolve classical
singularities such as the big bang or those associated with
black holes. Although there exist some candidates which
apparently cure these pathologies, their significance as
models of nature is hard to assess due to the lack of a
connection between theory and observations.

Observational implications of quantum gravity present
a delicate issue. Corrections to the general relativistic
dynamics are expected to arise in different ways. For
instance, loop corrections are always present in pertur-
bative graviton field theory, which can be captured in
effective actions with higher-curvature corrections to the
Einstein-Hilbert action. The additional terms change the
Newton potential as well as the cosmological dynamics.
However, in currently observable regimes the curvature
scale is very small, and so one expects only tiny correc-
tions of (adimensional) size at most ℓPlH , where ℓPl is the
Planck length and H−1 = a/ȧ is the radius of the Hub-
ble region (a is the scale factor in the flat Friedmann-
Robertson-Walker background and dots denote deriva-
tives with respect to cosmic time t). In such a case, tests
of quantum gravity are possible at best indirectly, for in-
stance if it provides concrete and sufficiently constrained
models for inflation. So far, however, models do not ap-
pear tight enough.

There is a different route of testing quantum grav-
ity, or at least those approaches that change not only
the dynamics but even the underlying spacetime struc-
ture. This happens especially in background indepen-
dent frameworks such as loop quantum gravity (LQG)
[1]. Stronger modifications of the theory are possible
since the usual covariant continuum dynamics is general-
ized, and entirely new effects may be contemplated. Still,
the modifications are controlled by the requirement that
covariance not be broken but at most deformed, leading

to anomaly-free and consistent sets of equations.

A concrete realization requires detailed calculations
and new techniques, since action principles of the usual
covariant form are no longer available in the presence
of a modified spacetime structure. In canonical quan-
tum gravity, in particular in the loop quantization some
of whose corrections are used here, the covariance prin-
ciple and the dynamics are implemented by constraint
equations: Constraint functionals generate gauge trans-
formations as well as the dynamics by Hamiltonian equa-
tions of motion. If constraints are modified, not only the
dynamics but also gauge transformations change, some-
times even producing a deformed algebra that no longer
generates spacetime diffeomorphisms or hypersurface de-
formations. In this way, new spacetime structures be-
come apparent. It may be difficult to find concrete, non-
manifold realizations of the deformed structures, but the
dynamics and gauge-invariant observables are accessible.
This provides the basis for a cosmological analysis.

Equations that consistently implement such a radical
form of quantum corrections are now available for one
characteristic effect of LQG: In this theory, the spatial
geometry is discrete as a consequence of metric opera-
tors acquiring discrete spectra with zero as an eigenvalue
[2]. An inverse of those metric operators is needed to
construct Hamiltonian operators or the quantized con-
straints, but a direct inverse of an operator with zero in
the discrete part of its spectrum does not exist. By more
indirect quantization procedures [3] one can nevertheless
construct suitable densely defined operators, but they
contain quantum corrections sensitive to the discreteness
scale [4]. These inverse-volume corrections constitute the
first example that has been consistently implemented,
when they are small, in the dynamics [5]; then, covariance
is not destroyed but deformed. Equations are thus con-
sistent and can be analyzed for further properties such as
cosmological ones, looking for possible new effects. (Con-
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sistency has so far been obtained only for small inverse-
triad corrections; thus no gauge-independent equations
exist for an analysis of inflationary scenarios driven en-
tirely by quantum-geometry effects [6].)
No complete anomaly-free system with all corrections

from loop quantum gravity is known at present, but con-
sequences of inverse-volume corrections are already so
characteristic that they are not likely to be eliminated
when others are included. Other corrections might lead
to rather different modifications of the constraints, but
they could not manage to restore the classical notion of
covariance, undoing the deformation.
A simplified implementation of corrections expected

from LQG in cosmological scenarios via perturbations
around homogeneous or other reduced models can be
achieved in LQC [7]. There, with a phenomenological
approach to effective dynamics, all the coupled equa-
tions of motion generated by the constraints [5] can
be summarized in a single Mukhanov equation for the
gauge-invariant scalar perturbation uk [8], u′′

k + (s2k2 −
z′′/z)uk = 0 in momentum space, where primes denote
derivatives with respect to conformal time τ =

∫

dt a−1,
k is the comoving wavenumber, z is a background func-
tion, and s2 = 1+χ(σ, α0, ν0)δPl is the propagation speed
squared. The quantum correction is characterized (i) by
a specific function χ of the free constant parameters σ,
α0 and ν0, that are not yet fixed by the quantization,
and (ii) by the function δPl ∝ a−σ determining the size
of inverse-volume corrections with respect to a reference
scale set by the underlying discrete quantum state. A
conservative theoretical estimate is δPl ∼ O(10−8) [8],
but the value may be higher by a few orders of magni-
tude especially for small σ. The aim of this paper is to
restrict δPl by observations. While σ takes values in the
range 0 < σ ≤ 6, the size of δPl does not depend on the
values of α0 and ν0. However, the parameters α0, ν0 are
related to σ by the consistency condition [8]

ν0(σ − 3) = 3α0(σ − 6)/(σ + 6) . (1)

We will mainly place bounds on the combination α0δPl

during slow-roll inflation, for which the precise origin of
α0 and of the scale hidden in δPl is not essential.
Corrections in the Mukhanov equation arise only in the

form of z and in the k2-term, yet the equation is covari-
ant according to the corrected gauge transformations, as
a direct consequence of the first-class constraint algebra
found in [5]. Thus, one typical assumption of higher-
curvature theories is violated. A second implication
arises by comparison with tensor modes [9]. They can be
summarized by the equation w′′

k + (α2k2 − ã′′/ã)wk = 0,
which is also covariant, yet differs from the scalar equa-
tion by the functions α and ã instead of s and z. The
speed here is corrected by α ≈ 1 + α0δPl with 2α0 6= χ.
Again, this is only possible with the change in the un-
derlying manifold and gauge structure, and gives rise to
additional characteristic effects. With different types of

equations for scalar and tensor modes, there are changes
to the standard inflationary spectra and the tensor-to-
scalar ratio.
In Ref. [8], two of us evaluated the inflationary ob-

servables in terms of the three slow-roll (SR) parameters
ǫ ≡ −Ḣ/H2, η ≡ −ϕ̈/(Hϕ̇), and ξ2 ≡ (ϕ̈/ϕ̇)˙/H2, where
ϕ is a scalar field with potential V (ϕ). In order to place
observational bounds on concrete inflaton potentials, it
is more convenient to use SR parameters expressed by V
and its derivatives:

ǫV ≡
1

2κ2

(

V,ϕ

V

)2

, ηV ≡
1

κ2

V,ϕϕ

V
, ξ2

V
≡

V,ϕV,ϕϕϕ

κ4V 2
,

(2)
where κ2 = 8πG (G is the gravitational constant). Con-
version formulas from ǫ, η, ξ2 to ǫV , ηV , ξ

2
V

will be pre-
sented in a separate publication [10], to which we refer
for all the technical details, together with a discussion of
cosmic variance. Here we report only the minimum set
of expressions required for the numerical analysis.
The power spectra of scalar and tensor perturbations,

evaluated at the Hubble horizon crossing during inflation
(k ≈ aH), are given, respectively, by [8]

Ps =
GH2

πǫ
(1 + γsδPl) , Pt =

16GH2

π
(1 + γtδPl) , (3)

where γs = ν0(σ/6+1)+σα0/(2ǫ)−[σν0(σ+6)+3α0(15−
σ)]/[18(σ + 1)] and γt = (σ − 1)α0/(σ + 1). We expand
the scalar spectrum about a pivot wavenumber k0, as

lnPs(k) = lnPs(k0) + [ns(k0)− 1]x

+
αs(k0)

2
x2 +

∞
∑

m=3

α
(m)
s (k0)

m!
xm , (4)

where x ≡ ln(k/k0), ns(k)−1 ≡ d lnPs(k)/d ln k, αs(k) ≡

dns/d ln k, and α
(m)
s (k) ≡ dm−2αs/(d ln k)

m−2. The ten-
sor spectrum can be expanded in a similar way with a
different index nt(k) ≡ d lnPt(k)/d ln k. The spectral
indices are

ns−1 = −6ǫV +2ηV −cns
δPl , nt = −2ǫV −cnt

δPl , (5)

where

cns
= σ[3α0(13σ − 3) + ν0σ(6 + 11σ)]/[18(σ + 1)]

−
[

6α0 (1− σ)− ν0
(

6− 13σ/3 + 2σ2/9
)]

ǫV

− [α0 (7σ/3− 2) + 2ν0 (1− 2σ/3)] ηV , (6)

cnt
= 2σ2α0/(σ + 1)

− [2α0(1− σ) + ν0(σ − 2)] ǫV − 2σα0ηV /3 . (7)

The dominant LQC corrections to ns,t correspond to
the first terms in Eqs. (6) and (7), i.e., fs ≡ σ[3α0(13σ−
3) + ν0σ(6 + 11σ)]/[18(σ + 1)] and ft ≡ 2σ2α0/(σ + 1).
For σ & O(1) the variation of δPl is fast (δPl ∝ a−σ ∝
k−σ at Hubble crossing), so that fs,t provide dominant
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FIG. 1: Primordial scalar power spectrum Ps(ℓ) for the case
n = 2, σ = 2, and ǫV (k0) = 0.009 with three different values
of δ(k0): 0 (classical case, dotted line), 7×10−5 (observational
upper bound, solid line), 4.8×10−4 [1/10 of the a-priori upper
bound (10), dashed line]. Here the pivot wavenumber is k0 =
0.002Mpc−1, which corresponds to ℓ0 = 29.

contributions to the scalar and tensor runnings as well,
αs,t(k0) = dns,t/d ln k|k=k0

≈ σfs,tδPl(k0). Similarly, the

m-th order terms are α
(m)
s,t (k0) ≈ (−1)mσm−1fs,tδPl(k0)

and hence we can evaluate the sum in Eq. (4) as

∞
∑

m=3

α
(m)
s,t

m!
xm =

[

x

(

1−
1

2
σx

)

+
e−σx − 1

σ

]

fs,tδPl. (8)

This expression is valid for any value of σ and of the
pivot scale k0 within the observational range of CMB.
Since the LQC corrections to the runnings αs,t can be
large, inclusion of the higher-order terms (8) is important
to estimate the power spectra properly. For the CMB
likelihood analysis we also take into account the second-
order terms of slow-roll parameters, i.e., αs = −24ǫ2

V
+

16ǫV ηV −2ξ2
V
+cαs

δPl and αt = −4ǫV (2ǫV − ηV )+cαt
δPl,

where the dominant contributions to cαs,t
correspond to

cαs,t
≈ σfs,t. In the numerical code, the full expressions

of the coefficients cns,t
and cαs,t

[10] are used.
Defining the tensor-to-scalar ratio at the pivot scale k0

as r(k0) ≡ Pt(k0)/Ps(k0), it follows that

r(k0) = 16ǫV (k0) + crδPl(k0) , (9)

where cr = 8[3α0(3 + 5σ + 6σ2) − ν0σ(6 +
11σ)]ǫV (k0)/[9(σ + 1)] − 16σα0ηV (k0)/3. These results
show that LQC corrections modify the standard formu-
las in slow-roll inflation.
In the quasi-de Sitter background, δPl ∝ k−σ gives

the relation δPl(k) ≈ δPl(k0)(k/k0)
−σ = δPl(ℓ0)(ℓ/ℓ0)

−σ,
where ℓ are the CMB multipoles related to k via k ≈
(h/104)ℓ Mpc−1 (h ≈ 0.7 is the reduced Hubble con-
stant). With the large-volume expansion of quantum
corrections, we require that δPl(k) ≪ 1 at all scales.
For σ > 0 the LQC correction is most significant on the

largest scales observed in the CMB (ℓ = 2). This prop-
erty can be clearly seen in Fig. 1, where the pivot scale
for the scalar power spectrum is taken to be ℓ0 = 29.
Imposing the condition δPl(ℓ = 2) ≪ 1, this gives the
bound

δPl(ℓ0) ≪ (2/ℓ0)
σ (10)

at the multipole ℓ0. For larger σ and ℓ0, δPl(ℓ0) is con-
strained to be smaller.
For concreteness, let us consider the power-law poten-

tial V (ϕ) = λϕn, for which ǫV = n2/(2κ2ϕ2) and

ηV =
2(n− 1)

n
ǫV , ξ2

V
=

4(n− 1)(n− 2)

n2
ǫ2
V
. (11)

Among the variables σ, α0, and ν0 we have the rela-
tion (1), a condition under which, for given n and σ,
the inflationary observables can be expressed via ǫV and
δ ≡ α0δPl for σ 6= 3, or by ǫV and δ̃ ≡ ν0δPl for σ = 3.
We carry out the CMB likelihood analysis by vary-

ing the parameters ǫV and δ in the Cosmological Monte
Carlo (CosmoMC) code [11]. We use the 7-year WMAP
data combined with Baryon Acoustic Oscillations (BAO)
and the Hubble constant measurement from the Hubble
Space Telescope (HST), which are currently considered
to be the best dataset for the estimate of cosmological pa-
rameters [12]. We take the pivot wavenumber k0 = 0.002
Mpc−1 (ℓ0 ≈ 29) used by the WMAP team. δ(k0) and
ǫV (k0) are constrained at this scale. While the bound on
δ depends on the pivot scale (and it tends to be smaller
for larger k0), that on kσ0 δ(k0) does not.
The exponential term e−σx = (k0/k)

σ in Eq. (8) gives
rise to the enhancement of the power spectra on large
scales, as we see in Fig. 1. For σ & 3, the growth of
this term is so significant that δPl(ℓ) must be very much
smaller than 1 for most of the scales observed in the
CMB, in order to satisfy the bound δPl(ℓ = 2) ≪ 1. More
precisely, LQC corrections manifest themselves mainly at
ℓ = 2, 3 where cosmic variance dominates, so it seems
implausible to isolate these effects. For σ < 3, the LQC
modification to the classical power spectra also affects
larger multipoles ℓ, and hence it seems possible to con-
strain it from CMB anisotropies.
In Fig. 2 we plot the 2D posterior distributions on the

parameters δ(k0) and ǫV (k0) with k0 = 0.002 Mpc−1 for
n = 2 and σ = 2. The two parameters are constrained to
be δ(k0) < 7 × 10−5 and ǫV (k0) < 0.012 (95% CL). The
modification of the large-scale power spectra (ℓ . 20)
shown in Fig. 1 leads to the upper bound on δ(k0). The
condition (10) gives the prior δPl(ℓ0) ≪ 4.8 × 10−3 at
ℓ0 = 29, so that for α0 = O(1) the observational bound
is smaller by two orders of magnitude.
For smaller σ the observational upper bound on δ(k0)

tends to be larger, with milder enhancement of the power
spectra on large scales. In Fig. 3 we show the likelihood
results for σ = 1, in which case the LQC correction is con-
strained to be δ(k0) < 3.7× 10−2 (95% CL). Meanwhile,
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FIG. 2: 2D marginalized distribution for the quantum-gravity
parameter δ(k0) = α0δPl(k0) and the slow-roll parameter
ǫV (k0) with the pivot k0 = 0.002 Mpc−1 for n = 2 and σ = 2,
using the data of WMAP7+BAO+HST. The internal and ex-
ternal solid lines correspond to the 68% and 95% confidence
levels, respectively.
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FIG. 3: 2D marginalized distributions as in Fig. 2, but for
the case n = 2 and σ = 1.

the a-priori criterion (10) gives δPl(k0) ≪ 6.9×10−2. For
α0 = O(1), the case σ = 1 is marginally consistent with
the combined SR/δPl truncation.

For σ . 1, the exponential factor e−σx does not change
rapidly with smaller values of fs,t, so that the LQC effect
on the power spectra would not be very significant even
if δ(k0) was as large as ǫV (k0). Our likelihood analysis
shows that the observational upper bound on δ(k0) ex-
ceeds the a-priori upper limit of δPl(k0) given by Eq. (10).
Since δ(k0) can be as large as 1, the validity of the ap-

proximation δ(k0) < ǫV (k0) used in the main formulas
may break down in such cases.
Under the conditions ǫV ≪ 1 and δ ≪ 1, it fol-

lows that ǫV ≈ (κ2/2)(ϕ̇/H)2. Then the number of e-

foldings during inflation is given by N ≡
∫ tf

t
dt̃H ≈

κ
∫ ϕ

ϕf

dϕ̃/
√

2ǫV (ϕ̃), where ϕf is the field value at the

end of inflation [which is determined by the condition
ǫV ≈ O(1)]. For the power-law potentials one has
N ≈ n/(4ǫV ) − n/4, which gives ǫV ≈ n/(4N + n). For
n = 2, the theoretically constrained range 45 < N < 65
corresponds to 0.008 < ǫV < 0.011. The probability dis-
tributions of ǫV in Figs. 2 and 3 are consistent with this
range even in the presence of the LQC corrections, so the
quadratic potential is compatible with observations as in
standard cosmology.
In summary, in inflation combined with LQC inverse-

volume corrections we provided general formulas for the
scalar and tensor power spectra and placed observational
bounds on the size of the correction δPl for a quadratic
potential. We have shown that interesting and nontriv-
ial effects can arise from the modified spacetime struc-
ture underlying the dynamics. Even though quantum-
geometry corrections are small, they can significantly
change the runnings of spectral indices. Thus, the obser-
vational bounds on δPl can be much closer to theoretical
expectations than often thought in quantum gravity.
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