English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Reflections on the neurobiology of syntax

MPS-Authors
/persons/resource/persons69

Hagoort,  Peter
Unification, MPI for Psycholinguistics, Max Planck Society;
Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, External Organizations;
Neurobiology of Language Group, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-279F-6
Abstract
This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.