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Initial state preparation with dynamically generated system-environment correlations
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The dependence of the dynamics of open quantum systems upon initial correlations between the
system and environment is an utterly important yet poorly understood subject. For technical con-
venience most prior studies assume factorizable initial states where the system and its environments
are uncorrelated, but these conditions are not very realistic and give rise to peculiar behaviors. One
distinct feature is the rapid build up or a sudden jolt of physical quantities immediately after the
system is brought in contact with its environments. The ultimate cause of this is an initial imbalance
between system-environment correlations and coupling. In this note we demonstrate explicitly how
to avoid these unphysical behaviors by proper adjustments of correlations and/or the coupling, for
setups of both theoretical and experimental interest. We provide simple analytical results in terms
of quantities that appear in linear (as opposed to affine) master equations derived for factorized

initial states.

I. OPEN SYSTEM INITIAL CORRELATIONS

An open quantum system is a quantum system ‘S’ that
interacts with some environment ‘E’ whose degrees of
freedom have been coarse grained (colloquially, ‘traced
out’ or ‘integrated over’ ). The unitary evolution of the
combined system + environment, ‘C’ (for combined or
closed), is generated by the Hamiltonian

Hc =Hs +Hg +Hy, (1)

where Hj denotes the system-environment interaction.
Specifying the initial of the combined system is neces-
sary to determine the open-system dynamics. The most
common choice is to assume factorized initial states for
the system and environment!

p(0) = ps(0) © pi(0). (@)
pi(0) = %mﬁﬂ | 3)

where Zg() denotes the partition function of the free
(noninteracting) environment and 7' = 1/ is the tem-
perature of the environment, which acts here as a thermal
reservoir.

When considering environments with a large number
of high-frequency modes and characterized by a UV fre-
quency cutoff A, such a factorized initial state (chosen
for mathematical simplicity) unfortunately engenders un-
physical behavior such as a sudden jolt in physical quanti-
ties near the initial time (this was analyzed in some detail
in Ref. [1]) or spurious cutoff sensitivity of certain system

1 Even after resolving issues of renormalization, the system will
typically be displaced by a finite amount of the order of the
induced damping within a very short time of the order of the
inverse UV cutoff of the environment.

correlators (see Ref. [2] and references therein). This kind
of initial conditions assumes that an uncorrelated sys-
tem and environment are instantaneously coupled with
non-vanishing strength. The pathological behavior arises
because the factorized initial state contains a number of
highly excited energy states of the full Hamiltonian (in-
cluding the interacting Hamiltonian), even when the ini-
tial reduced states of the system and environment are not
highly excited in the free theory, and it is a reflection of
the high-frequency modes of the environment quickly be-
coming correlated with the system within a time of order
1/A.

The next most common choice of initial state (see
Ref. [3]) has been to consider system deformations or
measurements of the global equilibrium state of the com-
bined system ‘C’, with density matrix

_ e} 7
pc(0) = Z 0, Zc(B) On, (4)

n

where the O and O’ operators are restricted to act on
the system. However, this method still gives rise to jolts
for sufficiently general deformations or measurements [4],
which can be understood as a consequence of altering the
state of the system instantaneously [5].

To cure or tame these drastic effects, especially in
the context of linear systems, the following procedure
has been suggested: a) force the system by a constant
amount, b) wait for it to relax into the displaced equi-
librium state, and then c) release the force [3]. Alterna-
tively and in order to generate interesting coherent su-
perposition states for the system, one can start with the
equilibrium state of the combined system and act on the
system, but for a non-vanishing time [5]. Essentially we
view the problem as an imbalance between initial corre-
lations and initial coupling strength; the imbalance can
be countered on either side. We also believe that the
most natural resolution should be a dynamical prepara-
tion which relies upon equilibration [3, (] followed by an



additional preparation of the system for a finite time [5].
Our key contribution is showing that this can be achieved
while still taking advantage of the simpler analytical re-
sults obtained when deriving the master equation for a
factorized initial state, without the need to introduce in-
homogeneous terms and an affine master equation [6].

In the next section we will briefly discuss the pertur-
bative open-system master equation which we will use to
approach these issues. Then in Secs. III and IV we will
provide resolutions based, respectively, on balancing the
coupling and the correlations.

II. OPEN-SYSTEM DYNAMICS

In the time-local representation (also called the con-
volutionless or Markovian representation), the dynamics
of the reduced density matrix of the system p can be
expressed with a quantum Liouville equation

L ot) = £(1) (1) (5)

for any factorized initial condition. As a perturbative ap-
proximation, £(t) is expanded in powers of the system-
environment interaction Hj(¢) and truncated to some or-
der. (We momentarily consider full time dependence in
this section as the more general relations will be neces-
sary for our techniques.) Such perturbative master equa-
tions can be derived in a variety of ways [7—9] and find
application in many branches of physics and chemistry
[10-13]. The expansion of L£(t) will then take the form

L(t) = Lal(t), (6)
k=0

Lop=[—1Hs(t),p] (7)
where Lo, = O(H?*) and to zeroth-order the system is
driven in a unitary manner by its Hamiltonian Hg(t). We
take the expansion to be even as we only consider Gaus-
sian noise, which is symmetric. A Gaussian noise distri-
butional is necessary for higher-order perturbation the-
ory to be non-secular in the late-time limit [14], though
at second order one is effectively truncating the noise cu-
mulants in a manner consistent with Gaussian noise.

The linear master equation is derived under the general
assumptions of a factorized initial state and an expansion
of the interaction as a sum of separable operators:

Hi(t) =Y La(t) ® Lu(t), (8)

where Ly, (t) and 1,(t) are system and environment oper-
ators respectively. The environment coupling operators
1,,(t) will typically be collective observables of the envi-
ronment, with dependence upon very many modes.

Using the notation of Ref. [14], the second-order master
equation can be expressed as

Lo{p} = Z [me(AanLM)T — (Apmo L) P] )
” (9)

where the A operators and ¢ product define the second-
order operator

t

(Ao L) (t) = /droznm(t,r) {Go(t, 7) Lin(1)} -

0
(10)
Here Go(t,7) : p(7) — p(t) is the free-system propaga-
tor, which for a constant Hamiltonian H is given by

Go(t, 7_) p= e—z(t—'r)H pe+z(t—r)H , (11)

while o, (¢, 7) are the environment correlation functions
defined by

anm (t,7) = (L,(t) L(7))g (12)

where 1,(¢) represents the time-evolving 1,, in the interac-
tion (Dirac) picture. In general the correlation function
is Hermitian and positive definite. For constant coupling
to any stationary environment, the correlation function
will also be stationary, a(t,7) = a(t—7). Furthermore,
for a thermal environment the correlation function will
satisfy the KMS relation [15, 106]:

a(w) = & (~w)e ™, (13)
where a(w) = fj;: dt a(t) et denotes the Fourier

transform.

From this perspective, the mathematical cause of the
initial jolt becomes clear. For constant Hamiltonians and
an initially stationary environment, the second-order op-
erator obeys the relation

& (Ao L) (1) = (1) {Go() L} . (14
which can be extremely large near the initial time when
considering an environment with a sufficient amount of
high frequency modes (such as low-temperature ohmic
and supra-ohmic environments) since «(t) is typically a
very localized distribution in those cases. For a finite but

large cutoff A, the correlation function becomes of order
A for a time of order 1/A.

III. COUPLING SWITCH-ON

One method for balancing the initial coupling between
the system and environment with their initial lack of cor-
relation, is to turn on the coupling slowly with a time-
dependent interaction such as

Hi = 0,0) Y Lo @1, (15)

where 64(t) : [0,00) — [0,1) is a smooth switch-on func-
tion with a characteristic timescale 7, which vanishes at
the initial time and becomes (effectively) one for times
longer than 75. To some extent, this was considered for
linear systems in Ref. [17].



Such a time-dependent interaction is equivalent to em-
ploying the second-order operator

(Ao Ly,)(t) = Hs(t)/dT Os(t—7) apm (7) {Go(7) L}

° (16)
for otherwise constant couplings and Hamiltonians.
Therefore, any initial jolt due to the localized nature of
a(t) will be suppressed by 64(t) as long as 7 > 1/A. As
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FIG. 1. Zero-temperature, ohmic decay rate for the e instan-
taneously coupled and - gradually coupled initial states of a
two-level system with exponential cutoff frequency A = 100 2.
In this case the switch-on function is exponential, 6s(t) =

1— eft/TS, and the switch-on times 7 are chosen to take the
values 1/A, 2/A, 4/A, 8/A, 16/A.

can be seen in Fig. 1, the cutoff-frequency jolts are es-
sentially replaced by jolts of frequency min[A, 1/7] and
amplitude proportional to the same value. This ap-
proach provides a useful way of generating initial system-
environment correlations when 74 is much larger than 1/A
but smaller than any other relevant timescales (such as
the system frequencies). Furthermore, even if a mild jolt
is still present, the important point is that it is cutoff
insensitive (for fixed 75 and sufficiently large A).

IV. DYNAMICALLY PREPARED INITIAL
STATES

Alternatively, in order to balance the initial correla-
tions with an initially non-vanishing interaction strength,
we will consider here initial states with suitable correla-
tions to the environment. Such states will be obtained
via an auxiliary construction which involves evolving an
initially uncorrelated state for a sufficiently long time (a
similar procedure was used in Ref. [18, 19] within the
context of semiclassical gravity). The system-enviroment
correlations are then dynamically generated through the
environmental interaction itself. Our first examples of
equilibrium preparation will be the simplest mathemati-
cally, while the final examples of non-equilibrium prepa-
ration will be closer to actual laboratory experiments.

In all cases we will take the system and environment
to be uncorrelated not at t = 0 but in the infinite past.

pc(=00) = ps(—00) @ pr(—00), (17)

for some (possibly unimportant) system state pg(—o00)
and thermal pg(—00). We then define the system Hamil-
tonian piecewise in time

Hs(t) = { gt(t) 2

such that in past the system is allowed to equilibrate with
the environment for an infinite time, which determines
the correlated initial state at ¢ = 0. The second-order
master equation is then determined by

(18)

<t
<0

(Ao Lip)(t) :/ AT (6, 7) {Gs(t, 7) L (1)} .

— 00
(19)
To analyze the coefficients associated with the initially-
correlated state, we will reduce them to a sum of coeffi-
cients for the auxiliary initially-uncorrelated state involv-
ing various time ranges. First, we split the integration

into two parts
t t 0
/ d’r:/d'rJr/ dr, (20)
—o00 0 —o0

with the first integral depending only upon G4 (¢, 7) and
corresponding to the uncorrelated coefficients. Inserting
the product G_(0,t) G_(¢,0), which equals the identity,
the second integral can be written as

0
M(t)/_ At (8, 7) {G_(t, 7) Lyn(7)} (21)

given the operator
M(t) =G4 (t,0) G_(0,¢) . (22)
The integral in Eq. (21) is then broken up into two parts

0 t t
/ d’r:/ dT*/dT, (23)
—o00 —o0 0

corresponding to the asymptotic and finite-time coeffi-
cients for an initially uncorrelated system driven by the
time-independent preparation Hamiltonian H_. Finally,
our correlated coefficients can be expressed in terms of
the uncorrelated coefficients as

(Anm<> Lm)(t) = (Anm<> Lm)+(t) (24)
correlated uncorrelated

= MO (A0 Lin) (1) = (Auno L) _(00)

jolt suppression

preparation eraser

where the subscripted (A ¢ L), coefficients are defined
as
t

(Ao Lpy)s(t) = /OIdTOénm(t,T) {Gi(t,7)Ln(7)} .
(25)



If the system frequencies are always small as compared to
the cutoff, we can inspect the early-time behavior (and
jolts) by letting G4 (t) ~ 1. Then one can see that the
first two terms of Eq. (24) will precisely cancel in the
early-time regime. Therefore, the correlated initial states
are jolt-free given sufficiently small system frequencies as
compared to the cutoff: Q <« A. The final term in turn
is such that in the late-time limit it precisely cancels the
second term and erases all memory of H_. Finally note
that, quite trivially, if we choose H(¢) = H_, then the
first two terms cancel and we recover the equilibrium
coeflicients at any finite time.

A. Equilibrium preparation

To prepare an initial state in this approach, we choose
the past Hamiltonian H_ such that its dynamics along
with the environment interaction relaxes our system to
the desired initial state:

lim €' #~(>) p; = p; (26)

t—o0

L_(0)py=0, (27)

where £_(c0) is the stationary limit of the Liouvillian
for a system with the past Hamiltonian as well as the
coupling to the environment.

Our target state p, will only be specified to zeroth
order in the system-environment interaction. This is be-
cause for sufficiently long times (and in particular for the
asymptotic equilibrium state) the diagonal elements of
the reduced density matrix in the energy basis cannot be
determined beyond zeroth order anyway when using the
second-order perturbative master equation [20]. Due to
unavoidable degeneracy present in all open-system dy-
namics, one actually requires components of the fourth-
order master equation to calculate the full second-order
solutions. The second-order master equation provides for
all second-order dynamical quantities, such as frequency
shifts, dissipation, diffusion and decoherence rates. We
are concerned here with the induced jolts, which are dy-
namical quantities, and so this subtle point does not raise
any additional problems for us.

1. Preparation by decoherence

For L, all commuting with each other, one can force
a general environment into f-state preparation via de-
coherence. If the past Hamiltonian is deactivated, or
more generally taken to commute with L,,, then since all
system operators commute with each other, the master
equation and its solutions will trivially result in a system
which decoheres in the f-basis associated with the L,,.
Thus, coefficients prepared in this manner are consistent
with any initial state which is a completely incoherent
mixture of {-states. [Note that if pg(—o0) corresponds

4

to a pure eigenstate of the set {L,}, this procedure sim-
ply adjusts the state of the environment, while system
and environment remain unentangled.]

2. Preparation by equilibration

A finite-temperature environment allows mixed state
preparation by equilibration. Essentially one chooses the
past Hamiltonian so that its thermal state (or some other
steady state) is the desired initial state. For a positive-
temperature environment, at zeroth order one can pre-
pare a (sufficiently) mixed state p, with the past Hamil-
tonian H_ = —T log(p,). However, one must be careful
that past system frequencies are small as compared to the
high frequency jolts, otherwise this preparation will fail
to remedy jolting. One can work out that the adiabatic
preparation regime is given by

Pmax  eBA (28)

Pmin

where A is the jolt frequency and p are the initial state
probabilities of preparation energy levels connected by
L,,. (Clearly, for this method to work there can only be
a finite number of such energy levels.)

3. Preparation by freezing

To prepare an initially pure state via equilibration
at the order that we are working, one requires a zero-
temperature environment for preparation by freezing.
Then one can choose any H_ with ground state p,. It is
important to emphasize that the reduced density matrix
of the system corresponding to the ground state of the
combined system will not be a pure state in general due
to the entanglement between the system and the environ-
ment: the free ground state of the system is a pure state,
but the reduced density matrix of the open system is in
general a mixed state beyond zeroth order in the system-
environment coupling. However, this point becomes irrel-
evant at the order that we are working since, as explained
above, when using the second-order perturbative master
equation to prepare the initial state by equilibration, one
cannot meaningfully specify p, beyond zeroth order.

B. Non-equilibrium preparation

In order to consider situations closer to actual lab-
oratory experiments, here we will first allow the sys-
tem to equilibrate with the environment (as described
in the previous subsection) and then choose some prepa-
ration Hamiltonian Hp(t), which would (in the absence
of coupling to the environment) generate the desired ini-
tial state in some finite time 7p. Omne simply applies
the master-equation coefficients in Eq. (24) with future
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FIG. 2. Zero-temperature, ohmic decay rate for the e un-
prepared and - prepared initial states of a two-level system
with exponential cutoff frequency A = 100{2. In this case
preparation by freezing was used to create an initially excited
state.

Hamiltonian

H+U){i§%§ ﬁZE ; ’ (29)

where Hy(t) is the desired post-preparation Hamiltonian.
All jolts will be avoided if 1/7p < A: the introduction
of a non-vanishing preparation frequency serves to tame
the jolts and eliminate their high-cutoff sensitivity.

1. State flipping

A possible preparation Hamiltonian, which could
model as a particular case Rabbi oscillations induced by
an appropriate laser field acting on a two-level system, is
the following:

Hp = % ([o)O0] + [0)Xxbol) - (30)

Assuming that one has a zero-temperature environment
and that the system is already equilibrated, driving the
system with this Hamiltonian for a time 7p provides a rel-
atively easy way of preparing an initial pure state |¢g).
As discussed above, the reduced density matrix of the
system will actually be a mixed state in general, because
of the system-environment entanglement of the equilib-
rium state as well as the interaction to the environment

while evolving the combined system during this addi-
tional finite preparation time. In fact, the preparation
time 7p cannot be too long if we want the state of the
system to be more or less close to |1)g).

2. State swapping

Let us consider a system which is initially equilibrated,
without making any assumption as to the temperature of
the environment. We couple the system to an ancillary
and analog system (equivalent Hilbert spaces) that is al-
ready prepared in the desired initial state. The system
of interest and ancilla are temporarily coupled in such a
way that they swap states, for instance by means of the
following block-matrix preparation Hamiltonian:

™ |01
neo o [01). )
In the absence of coupling to the environment this would
exactly swap the system and ancilla states in a time 7p.
The same remarks as for state flipping concerning the
purity and accuracy of the prepared state when taking
into account the coupling to the environment also apply
in this case.

3. Other possibilities

Within the second-order perturbative approach, gener-
ation of equilibrium correlations in a laboratory setting
can always be calculated using Eq. (24). One only needs
to make sure that any additional state preparation does
not rely upon large system energies as compared to the
bath cutoff. For instance, one can consider the prepa-
ration of Ref. [5], which relies on ancillary degrees of
freedom to drive the equilibrium state into a coherent
superposition. In fact, one could simply apply their own
time-dependent Hamiltonian to our formulas as H (t)
and obtain results consistent with theirs.
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