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Abstract: Aspects of the D = 4, N = 4 superconformal symmetry relevant to the
AdS/CFT duality and integrability are reviewed. These include the Lie superalgebra
psu(2, 2|4), its representations, conformal transformations and correlation functions in
N = 4 super Yang–Mills theory as well as an illustration of the AdS5 × S5 superspace
on which the dual string theory is formulated.
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1 Introduction

The AdS/CFT correspondence predicts the exact equivalence of N = 4 super Yang–
Mills (SYM) theory with IIB superstrings propagating on the AdS5 × S5 background.
One of the immediate checks is that the two models have coincident global symmetries:
N = 4 superconformal symmetry on the one hand and the isometries of the AdS5 × S5

superspace on the other are both given by the Lie supergroup P̃SU(2, 2|4) or its algebra
psu(2, 2|4).

Symmetry serves as an important ordering principle — e.g. for objects with simi-
lar properties — and leads to structural constraints — e.g. for correlation functions.
Furthermore, supersymmetry often implies that selected quantities are protected from
receiving quantum corrections. Two famous examples are the exact quantum conformal
symmetry of N = 4 SYM due to absence of a beta-function [1] and the exactness of
correlators for certain BPS operators in agreement with a prediction of the AdS/CFT
duality,see the review [2]. Nevertheless, agreement of the symmetry groups is far from
sufficient to prove an exact duality.1 To verify the AdS/CFT conjecture one therefore
needs tests involving dynamical quantities which are not protected by the symmetry.
Much of the activity concerning AdS/CFT integrability is devoted to such tests. Making
use of superconformal symmetry has helped the progress at various stages.

The present paper reviews some aspects of the Lie superalgebra psu(2, 2|4) relevant to
AdS/CFT integrability. The presented facts are by no means restricted to integrability;
they were known long before AdS/CFT integrability was discovered, and little progress
was made in connection with the latter. Nevertheless, many results in AdS/CFT inte-
grability are based on a good knowledge of psu(2, 2|4). This paper therefore serves a
different purpose than the other chapters of the review collection [3]: It is not so much
a review of one particular aspect of AdS/CFT integrability, but should be viewed as a
reference guide to key concepts concerning the underlying global symmetry.

This work is split into three parts: In Sec. 2 we shall review purely algebraic aspects
of psu(2, 2|4) such as the algebra itself as well as some essential representation theory.
In Sec. 3 we apply it to local operators in N = 4 SYM and their correlation functions.
In Sec. 4 we discuss the AdS5×S5 background on which superstrings can propagate and
which is a particular coset of P̃SU(2, 2|4).

2 The psu(2, 2|4) Algebra

Definition. The algebra psu(2, 2|4) is a real Lie superalgebra of (even|odd) dimension
30|32, see e.g. [4]. In order to define it, it is convenient to start with complex 4|4-
dimensional square supermatrices

X =

(
A B
C D

)
. (2.1)

1In this case the large amount of (super)symmetry at least makes both constituent models essentially
unique and exceptional, which may be viewed as a hint towards the validity of the correspondence.
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Each block A,B,C,D is a 4 × 4 matrix of (non-Graßmannian) complex numbers. The
blocks A,D are considered even and B,C odd. The Lie superalgebra gl(4|4,C) is the
32|32-dimensional vector space of these supermatrices. Its graded Lie bracket is defined
as the graded commutator of supermatrices (in the following Y is the analog of X in
(2.1) with blocks E,F,G,H)

[X, Y } = XY − (−1)XY Y X :=

(
AE +BG− EA+ FC AF +BH − EB − FD
CE +DG−GA−HC CF +DH +GB −HD

)
.

(2.2)
It differs from a conventional commutator through the signs for the odd-odd products
FC and GB. It also satisfies a graded Jacobi-identity

(−1)XZ
[
[X, Y }, Z

}
+ (−1)Y X

[
[Y, Z}, X

}
+ (−1)ZY

[
[Z,X}, Y

}
= 0. (2.3)

This algebra is not simple, it has non-trivial ideals: One is related to the supertrace
STrX := TrA−TrD which is zero for graded commutators STr[X, Y } = 0. Demanding
that STrX = 0 thus removes a derivation from gl(4|4,C), and restricts it to the subalge-
bra sl(4|4,C). Furthermore, the identity supermatrix 1 commutes with all other matrices,
[1, X} = 0. Hence it generates the centre and can be projected out from gl(4|4,C) yield-
ing pgl(4|4,C). The combination of restriction and projection is the 30|32-dimensional
complex Lie superalgebra psl(4|4,C).2

Real Form. To restrict to the real form psu(2, 2|4) one imposes a hermiticity condition
on the supermatrices (

A B
C D

)
=

(
HA†H−1 −iHC†
−iB†H−1 D†

)
, (2.4)

where H is hermitian matrix of signature 2, 2. There are two natural choices for H: In
the first, H is diagonal, written in terms of 2× 2 blocks

H =

(
+ 0
0 −

)
, X =

 M1 iN −iQ1

iN̄ M2 +iQ2

Q̄1 Q̄2 R

 , X ′ =

 M1 −iQ1 iN
Q̄1 R Q̄2

iN̄ +iQ2 M2

 . (2.5)

Here the hermitian blocks M1 and M2 generate the maximally compact subalgebra
su(2) ⊕ su(2) ⊕ u(1) = so(4) ⊕ so(2) of su(2, 2) = so(4, 2). This choice is useful in the
context of the AdS5 spacetime, cf. Sec. 4, and for unitary representations. Equivalently
one can choose an off-diagonal H

H =

(
0 1
1 0

)
, X =

 L P −iQ
K L̄ −iS̄
S Q̄ R

 , X ′ =

 L −iQ P
S R Q̄
K −iS̄ L̄

 . (2.6)

2It is not possible to restrict to TrA = TrD = 0 because the graded commutator does not close
onto such supermatrices; The centre proportional to the unit supermatrix can only be projected out or
removed by redefining the graded commutator accordingly.

3



1 2 3 4 5 6 7c© 2010 Niklas Beisert~ 1 2 3 4 5 6 7c© 2010 Niklas Beisert~

Figure 1: Two Dynkin diagrams for sl(4|4) = sl(2|4|2).

Now the hermitian conjugate blocks L, L̄ in X generate the Lorentz and scaling trans-
formations in sl(2,C) ⊕ gl(1) = so(3, 1) ⊕ so(1, 1). Obviously, this choice is adapted to
four-dimensional Minkowski space, see Sec. 3. In the context of the real form psu(2, 2|4)
it is often convenient to reorder the 2, 2|4 rows and columns, and move one of the 2’s
past the 4. The supermatrix X reordered in 2|4|2-block form is displayed in (2.5,2.6) as
X ′. From now on we shall exclusively use the 2|4|2-grading.

Simple Generators. A useful presentation of Lie algebras, which is frequently en-
countered in the solution of integrable systems, is through r triplets of simple (raising,
Cartan and lowering) generators Ek, Hk, Fk, (r is the rank of the algebra), see e.g. [5].
For the Lie algebras sl(n) the elements Ek, Hk, Fk with k = 1, . . . , n − 1, generate the
three main diagonals Xk,k+1, Xk,k − Xk+1,k+1, Xk+1,k. The remaining elements are ob-
tained by repeated Lie brackets, e.g. [Ek, Ek+1] generates Xk,k+2. Evidently, the algebra
generated by arbitrary repeated brackets is enormous and needs to be reduced by certain
relations. To that end, the simple generators satisfy a set of Chevalley–Serre relations
which encode all the information on the specific Lie algebra in a condensed form

[Hj, Ek} = +AjkEk, [Hj, Fk} = −AjkFk, [Ej, Fk} = +δjkHk,[
[Ek, Ek±1}, Ek±1

}
=
[
[Fk, Fk±1], Fk±1

}
= 0,

[Ej, Ek} = [Fj, Fk] = 0 for |j − k| > 1. (2.7)

Here Aj,k is the Cartan matrix; for sl(n) the three main diagonals take the values
−1,+2,−1 while the other elements are zero. For a superalgebra sl(n|m) the definition
is similar; the main difference is that some of the raising and lowering elements are odd.
For an odd Ek (k = 2, 6 in our case) one has to replace the relation [[Ek±1, Ek}, Ek} = 0
by two new ones3

[Ek, Ek} = 0,
[
[Ek−1, Ek}, [Ek+1, Ek}

}
= 0, (2.8)

and similarly for Fk. Furthermore for this k two Cartan matrix elements are modified:
Ak,k = 0 and Ak,k+1 = +1. Cartan matrices and Chevalley–Serre relations are often
displayed in the form of Dynkin diagrams. Two Dynkin diagrams for su(2, 2|4) are dis-
played in Fig. 1: Dots correspond to simple generators Ek, Hk, Fk; crossed dots indicate
odd generators Ek, Fk. Links stand for non-trivial relations between the corresponding
simple generators and non-trivial Cartan matrix elements. If two dots j and k are un-
linked, the generators Ek, Fk, Hk and Ej, Fj, Hj commute and Ajk = 0. Although the
two Dynkin diagrams lead to quite different relations, they describe the same algebra.

3It turns out that in physical applications the latter relations are dropped, cf. [6]. The new generators
Gk ∼ [[Ek−1, Ek}, [Ek+1, Ek}} (similarly for Fk) are part of an ideal of a substantially bigger algebra.
The ideal generates gauge transformations acting as the constraint Gk ' 0 for all physical states.
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Figure 2: Young diagram corresponding to sl(4) representation with Dynkin
labels [q1, p, q2]: A single block corresponds to a fundamental representation,
rows and columns correspond to symmetrisation and antisymmetrisation.

The point is that for Lie superalgebras there commonly exist inequivalent choices for the
set of simple generators. The two diagrams correspond to the two grading assignments
4|4 and 2|4|2 for the rows and columns of a supermatrix, cf. X vs. X ′ in (2.5,2.6).

Unitary Representations. In physical models, multiplets of states transform under
unitary representations of the symmetry algebra. Let us therefore review unitary repre-
sentations of psu(2, 2|4) [7]. As the (bosonic part of the) superalgebra is non-compact,
unitary representations are necessarily infinite-dimensional. An important class of uni-
tary representations are the lowest-weight (equivalently highest-weight) representations.
Under the maximally compact subalgebra su(2)⊕ su(2)⊕ su(4)⊕ u(1) such representa-
tions decompose into (infinitely many) finite-dimensional irreps, one of which is defined
as the lowest. All states corresponding to this lowest irrep are annihilated by the lowering
generators associated to the lower triangular blocks Q̄1, Q2, N̄ of X ′ in (2.5). The states
of the higher irreps arise from the repeated action of the raising generators associated to
the upper triangular blocks Q1, Q̄2, N of X ′.

Lowest-weight unitary representations of psu(2, 2|4) are thus specified by an irrep
under the maximally compact subalgebra su(2)⊕ su(2)⊕ su(4)⊕ u(1). Irreps of the two
su(2)’s are specified by their non-negative half-integer spin 1

2
s1,2 or equivalently by the

non-negative integer Dynkin labels [s1] and [s2]. Analogously, irreps of su(4) are specified
through three non-negative integer Dynkin labels [q1, p, q2]. An alternative description
uses a Young diagram with no more than three rows, see Fig. 2, cf. [8] Finally, a u(1)
irrep is specified through a number E. Here there is a subtlety: The abelian algebra
u(1) = R can either generate the compact group U(1) or the non-compact additive
group R. For a compact group E is restricted to an integer whereas a non-compact
group merely requires E to be real. The supergroup PSU(2, 2|4) contains the compact
version and hence the spectrum of E is discrete. However, PSU(2, 2|4) has a non-trivial

universal cover P̃SU(2, 2|4) where the abelian subgroup becomes non-compact. It is
this universal cover which has applications to physics, and consequently we shall allow
continuous values for E.

Altogether, a unitary representation is specified by the Dynkin labels [s1], [s2],
[q1, p, q2] and the number E. These combine into su(2, 2|4) Dynkin labels:

[s1; r1; q1, p, q2; r2; s2], rk = 1
2
E + 1

2
sk − 3

4
qk − 1

2
p− 1

4
q3−k. (2.9)

Finally, we should note that the value of E must be above a certain bound which is most
conveniently expressed in terms of the rk

rk ≥ 1 + sk or rk = sk = 0. (2.10)
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If one of the bounds for the first condition is saturated or one of the second conditions is
satisfied, the representation is called atypical or short. In this case certain combinations
of the raising generators annihilate the lowest-weight state. Otherwise there are no addi-
tional restrictions on the representation of the raising generators, and the representation
is called typical or long.

3 Superconformal Symmetry in N = 4 SYM

ForN = 4 supersymmetric gauge theory on four-dimensional Minkowski space the super-
Poincaré algebra extends to the superconformal algebra psu(2, 2|4). In the following we
shall discuss the representation theory of psu(2, 2|4) related to this gauge theory, see
also [2] for an extended review.

Conformal Transformations. Conformal transformations preserve the metric up to
a local rescaling of distances. In four-dimensional Minkowski space conformal symmetry
is based on the Lie algebra so(4, 2) = su(2, 2). It contains the sl(2,C) Lorentz rotations
L, L̄ and translations P which form the Poincaré algebra. In addition, there are the
dilatation D and the conformal boosts K. The extension to the superconformal algebra
consists of the internal su(4) rotations R, the supertranslations Q, Q̄ as well as the
superconformal boosts S, S̄. These are precisely the generators discussed around (2.6).

The conformal generators P,D,K act on the coordinates xµ of Minkowski space with
metric ηµν as

Pµx
ν = iδνµ, Dxµ = ixµ, Kµxν = ixµxν − i

2
ηµνx · x. (3.1)

The action of the odd generators is rather complicated and requires the introduction of
fermionic coordinates; we refrain from spelling out the explicit form. Fields on Minkowski
space transform according to the above rules, but in addition they have intrinsic trans-
formation properties such as spin and conformal dimension. For example, the conformal
representation on a scalar primary field Φ(x) of dimension d reads

PµΦ = i∂µΦ, DΦ = idΦ+ ix · ∂Φ, KµΦ = idxµΦ+ ixµx · ∂Φ− i
2
x · x∂µΦ. (3.2)

The representation for spinning fields is slightly more complicated, and the representation
of the complete superconformal algebra requires fields on superspace. Both of these
aspects will not be considered explicitly.

Correlators. The power of conformal symmetry is that it constrains correlation func-
tions in a conformal quantum field theory, see e.g. [9]. In particular, the spacetime
dependence of two- and three-point functions is fully determined〈

Φ1(x)Φ2(y)
〉

=
N

|x− y|2d
, (requires d1 = d2 = d),〈

Φ1(x)Φ2(y)Φ3(z)
〉

=
C123

|x− y|d1+d2−d3|y − z|d2+d3−d1|z − x|d3+d1−d2
. (3.3)

6



Indices for spinning fields are typically contracted with suitable tensors, e.g. Iµν = ηµν−
2(x − y)µ(x − y)ν/(x − y)2. The reason for complete determination is that any three
points can be mapped to any other three points by conformal transformations. The value
of the correlator at one configuration of three points thus determines the value of the
correlator at any other configuration. For four or more points there exist conformally
invariant cross ratios, e.g. |x12||x34|/|x13||x24|, on which the correlation functions can
depend without constraints. Note that there exist superconformal cross ratios of the
fermionic coordinates already for three points in superspace.4

The above constraints on correlators hold for all fields which have well-defined trans-
formation properties under superconformal symmetry. This includes the fundamental
fields (to some extent), but more importantly also composite local operators. The latter
are local products of the fundamental fields and their derivatives. In the free field the-
ory, they transform in tensor products of the fundamental field representation. Let us
therefore discuss the superconformal representations that come to use.

Fundamental Field Representation. Consider first a scalar field Φ in four dimen-
sions. In the free theory Φ obeys the conformal transformation rules (3.2) with d = 1.
For a local operator we shall need Φ and its derivatives at the point x which for conve-
nience we assume to be the origin of spacetime x = 0. In other words, we represent Φ(x)
through its Taylor series around x = 0

Φ(x) = Φ(0) + xµ∂µΦ(0) + 1
2
xµxν∂µ∂νΦ(0) + . . . . (3.4)

We can now see that the conformal representation (3.2) acts on these Taylor components
(we drop the argument x = 0):

PµΦ = i∂µΦ, DΦ = idΦ, KµΦ = 0,

Pµ∂ρΦ = i∂ρ∂µΦ, D∂ρΦ = i(d+ 1)∂ρΦ, Kµ∂ρΦ = idδµρΦ,

. . . . (3.5)

This is a lowest-weight representation, where K serves as the lowering generator to an-
nihilate the primary field Φ. The raising generator P is used to access the descendants
∂µΦ, ∂µ∂νΦ, . . . , while D essentially measures the number of derivatives, cf. Sec. 3.

There is one noteworthy peculiarity of the boost acting on ∂ρ∂σΦ

Kµ∂ρ∂σΦ = i(d+ 1)δµσ∂ρΦ+ i(d+ 1)δµρ∂σΦ− iηρσ∂µΦ. (3.6)

When acting on the D’Alembertian derivative ∂ · ∂Φ one obtains 2i(d − 1)∂µΦ which
vanishes precisely for the physical scaling dimension d = 1. This means that the lowest-
weight representation is reducible, and we should divide out a subrepresentation by
imposing the free equation of motion ∂ · ∂Φ = 0.

The equation of motion implies the absence of certain components in the Taylor
expansion. The enumeration of non-trivial components is most transparent when using

4The number of invariants is related to the dimension of the group, the dimension of the stabiliser
and the number of coordinates. E.g., three points in superspace have 48 fermionic coordinates, but the
group has only 32. Hence there should be 16 invariant combinations of fermionic coordinates.
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pairs of spinor indices βα̇ instead of the vector indices µ. Now a trace ηµν is replaced by
a pair of antisymmetric sl(2,C) invariants εβδεα̇γ̇. For any pair of derivatives we can thus
exclude antisymmetrisation in both pairs of spinor indices by virtue of the equations of
motion. Furthermore, due to the commutative nature of derivatives, antisymmetrisation
in just one pair of spinor indices is also zero. Effectively it means that all spinor indices
of either kind must be fully symmetrised. Such symmetrisation is automatic for states
of a four-dimensional harmonic oscillator : We can replace

∂βα̇∂δγ̇ . . . Φ ' āβāδ . . . b̄α̇b̄γ̇ . . . |0〉, (3.7)

where the algebra of creation and annihilation operators is defined through the non-trivial
commutation relations

[aα, āγ] = iδαγ , [bα̇, b̄γ̇] = iδα̇γ̇ , {ca, c̄c} = δac . (3.8)

Here we have added a set of four fermionic oscillators c which make the generalisation to
all fields of N = 4 straight-forward: States have up to four excitations of c̄ transforming
in the su(4) representations 1,4,6, 4̄,1, respectively. This matches precisely with the
representations of the chiral part of the field strength Γαγ, the chiral fermions Ψαc, the
scalars Φac, the antichiral fermions Ψ̄ cα̇ and the antichiral field strength Γ̄α̇γ̇. Altogether,
for every state of the supersymmetric oscillator, subject to the constraint

Na −Nb + Nc ' 2, (3.9)

there is exactly one Taylor component of the on-shell fundamental fields of N = 4 SYM
[10]. The excitation number operators are defined as Na := −iāαaα, Nb := −ib̄α̇bα̇,
Nc := c̄ac

a.
The oscillator basis is also particularly convenient for the superconformal algebra:

All the generators are represented through bilinears in the oscillators:

Lαγ ' āγa
α − 1

2
δαγ āεa

ε, Ra
c ' c̄cc

a − 1
4
δac c̄ec

e,

L̄γ̇
α̇ ' bα̇b̄γ̇ − 1

2
δα̇γ̇bε̇b̄ε̇, D ' 1

2
āαa

α + 1
2
bα̇b̄α̇,

Pγα̇ ' āγb̄α̇, Kγα̇ ' bα̇aγ,

Qa
γ ' āγc

a, Sγa ' c̄aa
γ,

Q̄γ̇a ' c̄ab̄γ̇, S̄γ̇a ' bγ̇ca. (3.10)

These satisfy the psu(2, 2|4) algebra along with its reality conditions provided that

(āα)† = b̄α̇, (aα)† = bα̇, (c̄a)
† = ca. (3.11)

The algebra extends to u(2, 2|4) by introducing a derivation B ' c̄ac
a and a central

charge C ' −iāαaα + ibα̇b̄α̇ + c̄ac
a. The constraint (3.9) is equivalent to the vanishing

of the central charge, hence the above form a consistent representation of psu(2, 2|4).
Note that the above construction remains applicable to the interacting theory for the

sake of enumerating local composite operators: The r.h.s. of the equation of motion ∂ ·
∂Φ = . . . is not zero, but it is a product of fields which is already accounted for in the basis
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Figure 3: Field multiplet [0; 0; 0, 1, 0; 0; 0] (top component Φ at d = 1) and
current multiplet [0; 0; 0, 2, 0; 0; 0] (top component O at d = 2). Each dot corre-
sponds to a field of su(2, 2) ⊕ su(4): The two su(2) spins are indicated by hori-
zontal/vertical bars, while the su(4) representation is indicated through Dynkin
labels. SW/SE arrows correspond to the action of the Poincaré supercharges
Q/Q̄.

of local operators. Furthermore, to maintain proper gauge transformation properties,
partial derivatives should be replaced by their covariant counterparts. Consequently,
antisymmetries of derivatives are no longer excluded. They lead to commutators with
the field strength, which are again accounted for in the basis of local operators. The
only change in the quantum theory is that the representation on composite operators is
deformed in a specific way, see the chapters [11]. For example, the scaling dimensions of
composite operators generically receive continuous quantum corrections.

Composite Operator Multiplets. Composite operators are local products of the
fundamental fields and hence they transform in tensor products of the above representa-
tion. Tensor products of lowest-weight representations typically decompose into sums of
lowest-weight representations. Thus composite operators form multiplets each of which
has a primary field.

The simplest non-trivial local operator is a traceless combination of two scalars5

Omn = ΦmΦn − 1
6
δmnΦpΦp transforming as (1,1; 20; d = 2) under sl(2,C), su(4) and

dilatations. It is annihilated by K, S, S̄ and hence it is the primary field for a multiplet
of local operators, cf. Fig. 3. This multiplet is very important because it contains all
the conserved currents for N = 4 SYM: the su(4) Noether current Jm

µn transforming as
(2,2; 15; d = 3), the supersymmetry currents Saµγ, S̄µbγ̇ transforming as (3,2; 4; d = 3.5)
and (2,3; 4̄; d = 3.5) and the energy-momentum tensor Tµν transforming as (3,3; 1; d =
4). The currents define all Noether charges for psu(2, 2|4), e.g.

Ra
b ∼

∫
d3xJm

0n, Qa
γ ∼

∫
d3xSa0γ, Pµ ∼

∫
d3x T0µ. (3.12)

Moreover, the multiplet contains two scalars Lkin,Ltop of dimension d = 4. These are

5In a gauge theory one should pick a gauge-invariant combination.
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exactly the parity-even kinetic and parity-odd topological parts of the Lagrangian density

Lkin = −1
4
Γ µνΓµν + 1

2
∂µΦm∂µΦm + . . . , Ltop = 1

8
εµνρσΓµνΓρσ. (3.13)

Next let us consider the labelling of representations for local operators. A lowest-
weight representation is characterised by its primary field. The latter is characterised
by the sl(2,C) spin, the su(4) representation and the conformal dimension d. For
instance the primary field Φm of the fundamental field representation transforms as
(1,1; 6; d = 1) while the primary field Omn of the energy-momentum representation
transforms as (1,1; 20; d = 2). This characterisation is analogous to the discussion of
unitary representations of su(4) in Sec. 2. The only difference is that the representation
on the Taylor expansion of local operators is not unitary :6 Surely sl(2,C) has no finite-
dimensional unitary representations and also the dilatation generator D has imaginary
eigenvalues, cf. (3.5). The point is that the Taylor components are not normalisable in
the scalar product defining unitarity. Nevertheless, there is a one-to-one map between
representations for local operators and unitary representations. It uses the following
complex conformal transformation of Minkowski space

(t, x, y, z) 7→ 2r−1(iw, x, y, z) with w = 1− 1
4
x · x and r = 1− it+ 1

4
x · x. (3.14)

It maps the dilatation generator to D 7→ iH where H is the generator of the decompact-
ified u(1) discussed in Sec. 2, so the scaling dimension d maps to the energy eigenvalue
E. Also the Lorentz algebra sl(2,C) is mapped to su(2)⊕ su(2) which is commonly used
to classify the spin of fields in four dimensions. For all practical purposes the complex
nature of the above conformal transformation is harmless in a perturbative quantum
field theory where one commonly continues into complex time directions anyway. There-
fore one often works with a dilatation generator D′ = −iD whose spectrum is real and
with su(2) ⊕ su(2) Lorentz generators L′ and L̄′. Hence one can classify multiplets of
local operators through unitary representation of psu(2, 2|4). For instance the funda-
mental field and energy-momentum multiplets have Dynkin labels [0; 0; 0, 1, 0; 0; 0] and
[0; 0; 0, 2, 0; 0; 0], respectively. Note that, the representations [0; 0; 0, p, 0; 0; 0] are excep-
tionally short; the lowest state is annihilated by (at least) half of the supertranslations
and hence the multiplet is called half-BPS.

Multiplet Splitting. Scaling dimensions d for unitary representations can take ar-
bitrary real values above a certain unitarity bound, cf. (2.10). Therefore, the scaling
dimension typically varies smoothly with the coupling constant of the quantum theory.
However, representations at the lower bounds (2.10) have fewer components in general.
For example, the scaling dimension for half-BPS representations [0; 0; 0, p, 0; 0; 0] is fixed
to d = p and cannot depend on the coupling.

Nevertheless, there is an option to combine two or more short representations at the
lower bound into a long representation whose scaling dimension can then be increased
smoothly. This process called multiplet joining (or multiplet splitting in reverse) is an

6Thanks to Gleb Arutyunov and Stefan Fredenhagen for helpful discussions regarding this issue. See
also [12] for implications on local operators, correlation functions, string states and their duality.
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Figure 4: Multiplet splitting at the unitarity bound.

analog of the Higgs effect where a massless vector particle combines with a massless
scalar particle to form a massive vector. The set of local operators in N = 4 SYM has
the exceptional feature that almost all short multiplets of the classical theory can be
combined into long multiplets in the quantum theory. Only few short multiplets have no
partner (such as all half-BPS multiplets [0; 0; 0, p, 0; 0; 0]) and their scaling dimensions
are therefore protected from quantum corrections.

Multiplet splitting takes place at the unitarity bound, cf. Fig. 4: Consider a long
multiplet which decomposes into two short multiplets at d = d0. The representation of
some generator J acts on states |1〉, |2〉 of the submultiplets qualitatively as follows

J|1〉 = c12|2〉+ . . . , J|2〉 = c21|1〉+ . . . . (3.15)

The algebra relations imply that c12c21 ∼ (d − d0) because splitting at d = d0 requires
c12 = 0 or c21 = 0. Unitarity furthermore implies c12 ∼ c∗21 hence c12 ∼ c21 ∼

√
d− d0.

Therefore at d = d0 the reality properties of the representation necessarily change, i.e.
d ≥ d0 is a unitarity bound.

4 Isometries of the AdS5 × S5 Superspace

Supersymmetric strings require a ten-dimensional supergravity background as the space
on which they can consistently propagate. Next to a flat spacetime there exist two more
maximally supersymmetric backgrounds. One of them is the AdS5 × S5 superspace.
According to the AdS/CFT correspondence this string theory is exactly dual to conformal
N = 4 SYM on Minkowski space being the boundary of AdS5 × S5, see [13] for an
extended review. In the following we shall discuss this superspace, its boundary and its
isometries which are generated by the algebra psu(2, 2|4).

AdS Spacetime. We start by defining the anti de Sitter spacetime AdSn+1 leaving n
generic for the time being. This (n + 1)-dimensional spacetime has homogeneous neg-
ative curvature in close analogy to hyperbolic space Hn+1. Similar space(time)s with
homogeneous positive curvature are the de Sitter spacetime dSn+1 and the sphere Sn+1

(to which we shall frequently contrast AdSn+1). There are several equivalent construc-
tions which we shall now review. One can embed it into Rn,2 as single-shell hyperboloid
specified by

AdSn+1 =
{
X ∈ Rn,2

∣∣X ·X = −1
}
, Sn+1 =

{
Y ∈ Rn+2

∣∣Y · Y = +1
}
. (4.1)
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The metric is induced from the flat metric on Rn,2 loosing one time-like direction due to
the condition X ·X = −1. An obvious alternative description uses time-like rays [X] in
Rn,2

AdSn+1 =
{

[X]
∣∣X ∈ Rn,2, X ·X < 0

}
, where [X] = [Y ] iff X = zY with z ∈ R+.

(4.2)
The points X or rays [X] transform canonically under SO(n, 2) and they are stabilised
by a SO(n, 1) subgroup. Consequently, AdSn+1 can be viewed as the coset space

AdSn+1 = SO(n, 2)/SO(n, 1), Sn+1 = SO(n+ 2)/SO(n+ 1). (4.3)

Thus the group of isometries of AdS5 is SO(4, 2). Due to the presence of fermions,
one should promote the orthogonal to spin groups. For n = 4 the group identities
Spin(4, 2) = SU(2, 2) and Spin(4, 1) = Sp(1, 1) furthermore allow to write

AdS5 = SU(2, 2)/Sp(1, 1), S5 = SU(4)/Sp(2). (4.4)

Coordinates. There exist several choices of coordinates on AdSn+1 which are useful
in different situations. One is an analog of angle coordinates on the sphere: Using
trigonometric functions it is straight-forward to construct a vector X ∈ Rn,2 with X ·X =
−1 (we shall use the signature −−+ . . .+)

X = (secσ cos τ, secσ sin τ, tanσ Ω), (4.5)

where Ω ∈ Sn−1 ⊂ Rn is a unit vector and ρ ∈ [0, 1
2
π), τ ∈ [0, 2π). The induced metric

reads
ds2 = sec2 σ (dσ2 − dτ 2) + tan2 σ dΩ2. (4.6)

On the coordinates Ω and τ the maximally compact subgroup SO(n) × SO(2) acts
canonically. The remaining 2n directions of SO(n, 2) act non-trivially.

A useful alternative are Poincaré-type coordinates x ∈ Rn−1,1, y ∈ R+ with the Rn,2

embedding
X = y−1

(
1
2
(x · x+ y2 + 1), x, 1

2
(x · x+ y2 − 1)

)
. (4.7)

These coordinates reveal the conformally flat nature of the AdSn+1 metric

ds2 = y−2(dx · dx+ dy2). (4.8)

A Poincaré subgroup of SO(n, 2) acts on the x while the corresponding dilatations act as
simultaneous scaling of x and y by the same factor. Special conformal transformations
mix up x and y non-trivially

δx ∼ x(ε · x)− 1
2
ε(x · x+ y2), δy ∼ y(ε · x). (4.9)

Finally we note that isometries of AdSn+1 also include reflections in Rn,2. For exam-
ple, a reflection in the first component of the above X corresponds to an inversion of
time τ or a conformal inversion of the coordinates (x, y) ∈ Rn,1

τ 7→ π − τ, (x, y) 7→ − (x, y)

x · x+ y2
. (4.10)
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Figure 5: Anti de Sitter space. The infinitely-extended solid cylinder represents
the universal cover ÃdSn+1 (light grey). AdSn+1 is obtained by identifying seg-
ments of time ∆τ = 2π (medium grey). The Poincaré patch AdSn+1/Z2 covers

half of AdSn+1 (dark grey). The boundary ∂ÃdSn+1 = R × Sn−1 is the outer
shell of the cylinder.

Universal Cover. In (4.5) it is clear that the time coordinate τ is periodic: τ ≡ τ+2π.
Closed time-like curves are inconvenient for physical applications, but luckily they can
be removed by lifting to the universal cover ÃdSn+1 on which a physical model can be
defined. Hence the coordinates (τ, σ,Ω) with non-periodic τ ∈ R define a global chart for

ÃdSn+1 which has the topology of an infinitely extended solid cylinder, see Fig. 5. The
natural embedding into Rn,2 identifies τ with τ + 2πZ and leads to AdSn+1. Moreover,
the Poincaré-type coordinates in (4.7) cover only half of AdSn+1. More precisely, if θ is
the angle between Ω and Ω0 = (0, . . . , 0, 1), then the Poincaré patch is a wedge of the
cylinder around τ = 0 defined by the inequality cos τ > sinσ cos θ, cf. Fig. 5.

The universal cover ÃdSn+1 also has a direct formulation as a coset: The groups
SO(n, 2) and SU(2, 2) have non-trivial coverings because their maximally compact sub-
groups contain the non-simply connected factors SO(2) and U(1), respectively. The
covering of AdSn+1 is thus defined as

ÃdSn+1 = S̃O(n, 2)/Spin(n, 1), ÃdS5 = S̃U(2, 2)/Sp(1, 1). (4.11)

The universal covers S̃O(n, 2) and S̃U(2, 2) are physically relevant because they allow
representations with arbitrary real energies as compared to integer values for SO(n, 2)
and SU(2, 2).

Boundary of AdS. The boundary ∂AdSn+1 of AdSn+1 is a n-dimensional spacetime.
It can be viewed as the space of light-like rays [X] in Rn,2, cf. (4.2)

∂AdSn+1 =
{

[X]
∣∣X ∈ Rn,2, X ·X = 0

}
, where [X] = [Y ] iff X = zY with z ∈ R+.

(4.12)
In the above coordinates of AdSn+1 it is located at σ = 1

2
π or at y = 0. From the former

the topology of the AdSn+1 boundary follows

∂AdSn+1 = S1 × Sn−1, ∂ÃdSn+1 = R× Sn−1. (4.13)

13



While the topology S1 of time in ∂AdSn+1 is periodic, the boundary of the universal cover

ÃdSn+1 has no closed time-like curves. Consequently it is the outer shell of the solid

cylinder ÃdSn+1. The metric of Rn,2 can be used to measure angles, but not distances
on the boundary, hence it merely induces a conformal metric on ∂AdSn+1

ds2 ' −dτ 2 + dΩ2 ' dx · dx. (4.14)

In other words the boundary is conformally flat. This is manifest in the Poincaré coordi-
nates (4.7) x ∈ Rn−1,1 (with y = 0) on which S̃O(n, 2) acts by conformal transformations,
cf. Sec. 3.

Note that the boundary is at infinite distance to all points of AdSn+1 (similarly to
hyperbolic space Hn+1 and its boundary ∂Hn+1 = Sn). Nevertheless the boundary can
interact with the bulk at finite times: A light ray originating from σ = τ = 0 reaches
the boundary σ = 1

2
π at τ = 1

2
π, cf. (4.6). From there it travels back to the point σ = 0

at time τ = π.

AdS5 × S5 Superspace. The AdS5 × S5 superspace is an extension of ÃdS5 and S5

by 32 fermionic directions. It is very conveniently expressed as a coset space: The groups
SU(2, 2) and SU(4) for the definition AdS5 and S5 in (4.4) combine into the supergroup
PSU(2, 2|4) which has 32 fermionic directions. Dividing by the bosonic denominator
groups in (4.4) one obtains the full superspace

ÃdS5 × S5 × C0|16 =
P̃SU(2, 2|4)

Sp(1, 1)× Sp(2)
. (4.15)

The curvature radii of the ÃdS5 and S5 subspaces are equal but opposite, such that the
overall scalar curvature vanishes.

In view of the AdS/CFT correspondence, we shall consider the boundary of this

spacetime. The sphere is closed such that the boundary originates from the ÃdS5 factor
alone. In the spherical coordinates (4.5), it resides at σ = 1

2
π. Let us approach the

boundary with a codimension-one surface at a fixed σ near σ = 1
2
π. This surface has

the topology R × S3 × S5. According to (4.6) the radius of the S3 is tanσ while the
radius of the S5 factor is constantly 1. Hence at the boundary the S5 shrinks to a point
in comparison to the S3. This means that effectively, the boundary of the AdS5 × S5

spacetime is given by the boundary ÃdS5 alone, i.e. R×S3. (A patch of) this spacetime
is conformally equivalent to Minkowski space R3,1. Presumably the boundary of the
superspace has additional 8 complex fermionic coordinates for N = 4 superspace.

Coset Space Sigma Model. In string theory isometries of the background spacetime
become conserved Noether charges. This becomes obvious in the construction of a coset
space sigma model, see the chapter [14]. Thus the group of global symmetries of super-

strings on AdS5×S5 is P̃SU(2, 2|4). It should be noted that the coset space sigma model
construction not only provides the correct target space metric, but also a non-trivial
superspace torsion and five-form supergravity flux coupling to the string worldsheet.
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The AdS5 × S5 coset has a couple of exceptional features which make it a suitable
background for a consistent quantum string theory: First of all, it has 10 bosonic and
32 fermionic coordinates. Furthermore the worldsheet theory on this coset has 16 kappa
symmetries to reduce the effective number of fermionic coordinates to 16. Finally, the
Killing form for PSU(2, 2|4) vanishes identically as required for conformal symmetry on
the worldsheet. Only few cosets share these features, cf. [15].

References

[1] M. F. Sohnius and P. C. West, “Conformal Invariance in N = 4 Supersymmetric
Yang-Mills Theory”, Phys. Lett. B100, 245 (1981). • S. Mandelstam, “Light Cone
Superspace and the Ultraviolet Finiteness of the N = 4 Model”,
Nucl. Phys. B213, 149 (1983). • L. Brink, O. Lindgren and B. E. W. Nilsson, “N = 4
Yang-Mills Theory on the Light Cone”, Nucl. Phys. B212, 401 (1983). • P. S. Howe,
K. S. Stelle and P. K. Townsend, “Miraculous Ultraviolet Cancellations in
Supersymmetry Made Manifest”, Nucl. Phys. B236, 125 (1984).

[2] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS/CFT
correspondence”, hep-th/0201253.

[3] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview”, arxiv:1012.3982.

[4] J. F. Cornwell, “Group Theory in Physics, Volume III: Supersymmetries and
Infinite-Dimensional Algebras”, Academic Press (1989), London, UK, Techniques of
Physics 10. • L. Frappat, P. Sorba and A. Sciarrino, “Dictionary on Lie Algebras and
Superalgebras”, Academic Press (2000), London, UK. • L. Frappat, P. Sorba and
A. Sciarrino, “Dictionary on Lie Superalgebras”, hep-th/9607161.

[5] J. F. Cornwell, “Group Theory in Physics: An Introduction”, Academic Press (1997),
London, UK.

[6] N. Beisert, “The su(2/3) dynamic spin chain”, Nucl. Phys. B682, 487 (2004),
hep-th/0310252.

[7] V. K. Dobrev and V. B. Petkova, “All Positive Energy Unitary Irreducible
Representations of Extended Conformal Supersymmetry”, Phys. Lett. B162, 127 (1985).

[8] S. Sternberg, “Group theory and physics”, Cambridge University Press (1994),
Cambridge, UK.

[9] G. Mack and A. Salam, “Finite component field representations of the conformal group”,
Ann. Phys. 53, 174 (1969).

[10] M. Günaydin and N. Marcus, “The Spectrum of the S5 Compactification of the Chiral N
= 2, D = 10 Supergravity and the Unitary Supermultiplets of U(2,2/4)”,
Class. Quant. Grav. 2, L11 (1985).

[11] J. A. Minahan, “Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in N = 4
SYM”, arxiv:1012.3983. • C. Sieg, “Review of AdS/CFT Integrability, Chapter I.2:
The spectrum from perturbative gauge theory”, arxiv:1012.3984. • A. Rej, “Review of
AdS/CFT Integrability, Chapter I.3: Long-range spin chains”, arxiv:1012.3985.

[12] R. A. Janik, P. Surowka and A. Wereszczynski, “On correlation functions of operators
dual to classical spinning string states”, JHEP 1005, 030 (2010), arxiv:1002.4613.

15

http://dx.doi.org/10.1016/0370-2693(81)90326-9
http://dx.doi.org/10.1016/0550-3213(83)90179-7
http://dx.doi.org/10.1016/0550-3213(83)90678-8
http://dx.doi.org/10.1016/0550-3213(84)90528-5
http://arxiv.org/abs/hep-th/0201253
http://arxiv.org/abs/1012.3982
http://arxiv.org/abs/hep-th/9607161
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.032
http://arxiv.org/abs/hep-th/0310252
http://dx.doi.org/10.1016/0370-2693(85)91073-1
http://dx.doi.org/10.1016/0003-4916(69)90278-4
http://dx.doi.org/10.1088/0264-9381/2/2/001
http://arxiv.org/abs/1012.3983
http://arxiv.org/abs/1012.3984
http://arxiv.org/abs/1012.3985
http://dx.doi.org/10.1007/JHEP05(2010)030
http://arxiv.org/abs/1002.4613


[13] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field
theories, string theory and gravity”, Phys. Rept. 323, 183 (2000), hep-th/9905111.

[14] M. Magro, “Review of AdS/CFT Integrability, Chapter II.3: Sigma Model, Gauge
Fixing”, arxiv:1012.3988.

[15] K. Zarembo, “Strings on Semisymmetric Superspaces”, JHEP 1005, 002 (2010),
arxiv:1003.0465.

16

http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://arxiv.org/abs/1012.3988
http://dx.doi.org/10.1007/JHEP05(2010)002
http://arxiv.org/abs/1003.0465

	Title
	1 Introduction
	2 The psu(2,2|4) Algebra
	3 Superconformal Symmetry in N=4 SYM
	4 Isometries of the AdS5 x S5 Superspace
	References

