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Several studies have reported an association between dyslexia and implicit learning
deficits. It has been suggested that the weakness in implicit learning observed in dyslexic
individuals may be related to sequential processing and implicit sequence learning. In
the present article, we review the current literature on implicit learning and dyslexia. We
describe a novel, forced-choice structural “mere exposure” artificial grammar learning
paradigm and characterize this paradigm in normal readers in relation to the standard
grammaticality classification paradigm. We argue that preference classification is a
more optimal measure of the outcome of implicit acquisition since in the preference
version participants are kept completely unaware of the underlying generative mecha-
nism, while in the grammaticality version, the subjects have, at least in principle, been
informed about the existence of an underlying complex set of rules at the point of clas-
sification (but not during acquisition). On the basis of the “mere exposure effect,” we
tested the prediction that the development of preference will correlate with the gram-
maticality status of the classification items. In addition, we examined the effects of
grammaticality (grammatical/nongrammatical) and associative chunk strength (ACS;
high/low) on the classification tasks (preference/grammaticality). Using a balanced ACS
design in which the factors of grammaticality (grammatical/nongrammatical) and ACS
(high/low) were independently controlled in a 2 × 2 factorial design, we confirmed our
predictions. We discuss the suitability of this task for further investigation of the implicit
learning characteristics in dyslexia.
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Introduction

During the acquisition of reading and
writing skills, children develop the ability to
represent aspects of the phonological com-
ponent of language by an orthographic rep-
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resentation and relate this to a visuographic
input-output code. This is typically achieved
by means of a supervised learning process
(i.e., teaching), in contrast to natural lan-
guage acquisition, which is largely a spon-
taneous, non-supervised, and self-organized
acquisition process (Petersson, 2005a; Peters-
son, Ingvar, & Reis, 2009). Aspects of lan-
guage can also be an object of metalinguistic
awareness: the intentional and explicit control
over aspects of phonology, syntax, semantics,
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and discourse, as well as pragmatics. Children
gradually create explicit representations and
acquire processing mechanisms that allow for
reflecting and analyzing different aspects of
language use (Karmiloff-Smith, Grant, Sims,
Jones, & Cuckle, 1996). When children subse-
quently learn to read, this has repercussions
on the phonological representations of spo-
ken language (Morais, 1993; Petersson, Reis,
Askelöf, Castro-Caldas, & Ingvar, 2000; Peters-
son, Reis, & Ingvar, 2001; Ziegler & Goswami,
2005; see Goswami, this volume). Learning
to read involves both explicit as well as im-
plicit processes; typically children initially learn
grapheme–phoneme mappings explicitly, after
which they apply and continue to learn how
phonology is mapped onto its written repre-
sentation implicitly (Gombert, 2003; Peters-
son & Reis, 2006; Ziegler & Goswami, 2005).
Karmiloff-Smith (1992) proposed that cogni-
tive development relies on implicit/procedural
learning mechanisms to initiate the setup of
a new stage of representational development.
A deficit in implicit acquisition mechanisms
might therefore have a negative impact on the
acquisition of reading and writing skills and
therefore affect literacy acquisition. Dyslexia is
rarely studied within the framework of learning,
and a deficit in implicit learning might con-
tribute to difficulties associated with dyslexia
(Howard, Howard, Japikse, & Eden, 2006; see
also Bennet et al., this volume; Menghini et al.,
this volume; Stoodley et al., this volume). Re-
cently, Howard et al. (2006) provided evidence
suggesting that the weakness in implicit learn-
ing observed in dyslexic individuals might be
narrowed down to paradigms that involve se-
quential processing and they argued that the
implicit sequence learning deficit in dyslexia is
associated with selective deficits in the fronto-
striatal-cerebellar circuits that underlie implicit
sequence learning. It has been shown that
fronto-striatal circuits are involved in sequence
processing after implicit grammar acquisition
(Forkstam, Hagoort, Fernandez, Ingvar, & Pe-
tersson, 2006; Petersson, Forkstam, & Ingvar,
2004).

Implicit Learning

Humans are equipped with acquisition
mechanisms that extract structural regularities
implicitly from experience without the induc-
tion of an explicit model (Reber, 1967, 1993;
Stadler & Frensch, 1998). This capacity was
explored in the seminal work of Reber (1967),
showing that humans can successfully classify
strings generated from an implicitly acquired
artificial grammar and proposed that this pro-
cess is intrinsic to natural language acquisition.
Following this suggestion, it has been argued
that artificial grammar learning (AGL) is a rele-
vant model for investigating aspects of language
learning in infants (Gomez & Gerken, 2000),
exploring differences between human and an-
imal learning relevant to the narrow faculty of
language (Hauser, Chomsky, & Fitch, 2002),
and language learning in adults (Friederici,
Steinhauer, & Pfeifer, 2002; Petersson et al.,
2004). We suggest that it can serve as a device
for investigating the implicit aspects of struc-
ture learning related to reading and writing
acquisition as well. Reber (1967) suggested that
humans can acquire implicit knowledge of the
underlying structure of grammar through a sta-
tistical learning process and that the acquired
knowledge is put to use during grammatical-
ity classification. Reber (1967; but see Reber,
1993) argued that implicit learning mecha-
nisms abstracted “rule-based” knowledge, and
more recent studies seem to suggest that dual
mechanisms might be engaged (Forkstam et al.,
2006; Knowlton & Squire, 1996; Meulemans &
Van der Linden, 1997). Following Reber (1967)
and Seger (1994), Forkstam & Petersson (2005)
adapted four proposed defining characteristics
of implicit learning: (a) explicit access is lim-
ited to the knowledge acquired—subjects typ-
ically cannot provide a sufficient explicit ac-
count of what they have learned; (b) the nature
of the knowledge acquired is more complex
than simple associations or simple exemplar-
specific frequency counts; (c) implicit learn-
ing does not involve explicit hypothesis testing,
but is an automatic (incidental) consequence of
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the type and amount of processing performed
on the stimuli; and (d) implicit learning does
not rely on declarative memory mechanisms
that engage the medial temporal lobe memory
system.

Dyslexia: An Implicit Learning Deficit?

Developmental dyslexia is commonly de-
fined as a reading disability, a deficit in learning
to spell and write, occurring in children de-
spite normal intelligence, no sensory or neuro-
logical impairment, and conventional instruc-
tion and socioeconomic opportunity (Dilling,
Mombour, & Schmidt, 1991; Habib, 2000;
Shaywitz, 1998). However, dyslexia is rarely
studied in the framework of the contempo-
rary learning literature (Howard et al., 2006).
Learning to read involves both explicit as well
as implicit processes; children initially learn
the grapheme–phoneme correspondence ex-
plicitly, typically in a supervised manner, af-
ter which they apply and continue to learn
them implicitly in an unsupervised manner
(Gombert, 2003). A deficit in implicit learning
might contribute to difficulties associated with
dyslexia, but the literature on implicit learning
and dyslexia has yielded mixed results (Howard
et al., 2006). Most studies of implicit learning in
dyslexics have investigated serial reaction time
(SRT) types of tasks and there are, to our knowl-
edge, only two studies that investigate artificial
grammar learning (AGL). For a recent review
of these experimental task, see Forkstam and
Petersson (2005).

An important weakness of all studies of im-
plicit learning in dyslexics to date is that they
lack a developmental design (Goswami, 2003).
Another weakness of some of the studies is that
they report null findings. These null findings
are difficult to interpret in the context of small
study samples and experimental designs that
are not always carefully controlled. Therefore,
it is likely that the absence of significant re-
sults reflects a lack of statistical power as well
as the presence of confounding factors. On the
other hand, the conflicting literature on im-

plicit learning and dyslexia might suggest that
it is not enough to investigate simple implicit
acquisition tasks or just to contrast implicit and
explicit learning. In this brief but comprehen-
sive review, we will give priority to those studies
which find an implicit learning deficit in dyslex-
ics, but we will also comment on those which
report null findings, beginning with those stud-
ies that have investigated SRT-type tests and
subsequently turning our attention to the AGL
studies.

Vicari et al. (2003) reported deficient im-
plicit learning in dyslexic children on visuo-
motor SRT-type tasks that used sequences of
colors. They also included a test of declara-
tive (explicit) memory capacities. Their main
finding suggests that individuals with devel-
opmental dyslexia are impaired in the acqui-
sition of implicit sequence knowledge, while
there was no significant difference between the
dyslexic and control groups in terms of ex-
plicit sequence learning. Some studies have re-
ported null-findings on similar SRT-type tasks
(Kelly, Griffiths, & Frith, 2002; Waber et al.,
2003), and Rüsseler et al. (2006) questioned
the implicit learning deficit in dyslexia based
on these and their own null findings. However,
Waber et al. (2003) investigated a sample of chil-
dren with “heterogeneous learning problems,”
which makes their findings difficult to interpret
in the context of dyslexia, and although there
was no significant learning difference between
the dyslexic and normal readers in Rüsseler
et al. (2006), the dyslexic subjects showed con-
sistently longer response times (RTs) on the
SRT task compared to the normal controls.
This was also the case in Kelly et al. (2002). Of
inportance, in a follow-up study, Vicari et al.
(2005) used the classical SRT task as well as
an implicit mirror drawing test, and showed
that the children with developmental dyslexia
were impaired on both tasks. Their SRT re-
sults suggest a deficit in sequential learning and
that the deficit does not depend on the mate-
rial being learned (with or without motor se-
quence of response action), but only on the im-
plicit character of the task. These behavioral
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findings were further replicated in an fMRI
study of adult dyslexics (Menghini, Hagberg,
Caltagirone, Petrosini, & Vicari, 2006). Consis-
tent with this perspective, both Stoodley et al.
(2006) and Howard et al. (2006) provided fur-
ther evidence that the implicit learning deficits
observed in dyslexic individuals can be nar-
rowed down to paradigms that involve sequen-
tial processing. Stoodley et al. (2006) found
significant differences in implicit learning be-
tween good and poor readers on the SRT
task. In addition, the dyslexic group showed
less of an RT decrease on the repeated se-
quence, while the RTs were similar to that of
the control group on the random trials. Re-
cently, Sperling et al. (2004) argued that poor
implicit learning could hinder the establish-
ment of good phonological processing as well
as learning orthographic–phonological repre-
sentations, whereas Gombert (2003) proposed
that children with dyslexia have a phonological
deficit that prevents normal implicit learning
of linguistic regularities and hence interferes
with reading development. Howard et al. (2006)
showed that adult dyslexics are impaired on
implicit acquisition in an alternating (higher-
order) SRT task in which sequential depen-
dences exist across nonadjacent elements. They
compared the performance on the alternating
SRT task with the performance on a simple
spatial context learning task in which the global
configuration of a display cues the location of
a search target. Their results suggest that col-
lege students with a history of dyslexia are im-
paired in implicit higher-order sequence learn-
ing, but unimpaired in spatial context learning.
They also argue that evidence from functional
neuroimaging, and transcranial magnetic stim-
ulation investigations in patients suggest that
sequence learning depends on fronto-striatal-
cerebellar circuitry and that the acquisition of
nonadjacent, higher-order, sequential regular-
ities calls on fronto-striatal-cerebellar circuitry,
whereas spatial contextual learning depends
on medial temporal lobe structures (Chun &
Phelps, 1999; Howard et al., 2006; Packard
& Knowlton, 2002a). The fMRI results of

Menghini et al. (2006) suggest that an implicit
learning deficit in dyslexia is associated with
a level of activation in higher cerebellar and
parietal regions (see also the morphometric re-
sults reported by Menghini et al. in this volume).
These investigators speculate that automatiza-
tion is required to achieve reading fluency and
that the cerebellum might be important for the
development of automaticity. However, it is im-
portant to note that the development of auto-
maticity does not necessarily overlap with im-
plicit learning. Automaticity can also arise from
repetitive application of explicit, conscious pro-
cedures, over and over again, until adequate
performance is achieved (Cohen, Dunbar, &
McClelland, 1990; Cohen, Servan-Schreiber,
& McClelland, 1992; Logan, 1988; MacLeod
& Dunbar, 1988; Petersson, Elfgren, & Ingvar,
1997, 1999; Petersson, Sandblom, Gisselgård,
& Ingvar, 2001). Howard et al. (2006) also re-
ported significant positive correlations between
measures of reading ability and accuracy-based
implicit acquisition measures. Notably, they
were able to rule out several nonspecific ex-
planations for their results, including a general
cognitive or attention deficit, task difficulty, or
age, and established that deficits in implicit
sequence learning occur even when explicit
learning can be ruled out. They emphasize that
dyslexics do not suffer from a general implicit
learning deficit, but that this deficit is specific
to sequential processing, highlighting the im-
portance of sequence complexity (i.e., the level
of structure present in the sequences), consis-
tent with the findings of Vicari et al. (2003,
2005).

Much less is known about the implicit ac-
quisition of artificial grammars in dyslexics. To
date, only two studies on dyslexia have been
conducted using this paradigm. Rüsseler et al.
(2006) used a short acquisition session and re-
ported null findings only in terms of correct
responses on the grammaticality classification
task; no baseline classification was included
in the experiment, and they did not control
for local substring regularities (i.e., ACS-type
information, cf. below). Although there was
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no significant difference between the dyslexic
and normal readers, the dyslexic subjects per-
formed at a lower level (mean number of cor-
rect responses) on the classification task. In an
interesting study by Pothos and Kirk (2004),
the artificial grammar of Knowlton and Squire
(1996) was used in two AGL tasks of equal
formal complexity, but with different stimu-
lus format in a between-subject design: in one
of the tasks (the geometric-shapes-embedded
AGL task), the stimuli were created so as to
encourage whole stimulus perception, deem-
phasizing the constituent elements, while in the
other task (geometric-shapes-sequential AGL
task) the constituent elements were emphasized
by presenting them serially. Pothos and Kirk
(2004) controlled for local substring regularities
(i.e., ACS), but did not manipulate this dimen-
sion experimentally. The dyslexic group per-
formed equally well on the ‘‘grammaticality’’
classification in both tasks, and the nondyslexic
group performed as well as the dyslexic group
on the visual-embedded, but less well on the
visual-sequential task. These findings were in-
terpreted as indicating that the dyslexic partic-
ipants were less able to process the individual
stimulus elements, suggesting that dyslexic in-
dividuals are sometimes prevented from adopt-
ing an explicit strategy, which would have
interfered with the implicit acquisition mech-
anisms supporting geometric-sequential AGL.
This is consistent with recent work associating
dyslexia with problems in focused attention and
attention shifting. Thus, Pothos and Kirk (2004)
proposed that competent real-world learning is
achieved via an interaction of implicit and ex-
plicit learning processes.

In summary, there is a cumulating series of
investigations of implicit learning in dyslexia,
and taken as a whole, these studies suggest that
there are aspects of implicit learning that might
operate at subnormal levels in dyslexic indi-
viduals. The lack of a developmental design in
these studies (Goswami, 2003) prevents us from
making any conclusions concerning the causal
role of an implicit acquisition deficit in dyslexia.
It might be an outcome of dyslexia rather than

a cause, similar in character to the many par-
allel findings between the dyslexic and illiterate
brain (Petersson et al., 2009; Petersson & Reis,
2006; Petersson, Reis, et al., 2001). A few ten-
tative conclusions are warranted, however: (a)

dyslexia does not seem to be associated with a
general implicit learning deficit; (b) the implicit
learning deficit observed does not seem to be
related to nonspecific factors such as general
cognitive or attention deficit, task difficulty, or
age; (c) the implicit acquisition deficit seems
to be related to sequence processing, which is
likely related to sequence complexity (i.e., the
level of structure present in the sequences; for
a short review see Petersson, 2005b) and for a
comprehensive review see Davis et al., 1994);
and (d) the implicit learning deficit in dyslexia
can be observed when explicit learning is
intact.

Implicit Artificial Grammar Acquisition

The artificial grammar used by Reber
(1967), here and subsequently referred to as the
Reber grammar, is an example of a right-linear
phrase structure grammar which generates a
rational language (Perrin & Pin, 2004). This
type of grammar represents the simplest for-
mal model that captures the idea of the “infinite
use of finite means” (Petersson, 2005b; Peters-
son, Grenholm, & Forkstam, 2005). The Reber
grammar, like any right-linear phrase structure
grammar, can be implemented in a finite-state
architecture (see Fig. 1; from Petersson, 2005).
We used this grammar in the present study as a
generator of the stimulus material. The finite-
state machine can be viewed as an explicit gen-
erating mechanism and as a recognition device
for a formal language (e.g., Davis et al., 1994).
In general, a formal (artificial) grammar serves
as an intentional definition (Chomsky, 1986) of
a language, and represents a formal specifica-
tion of the mechanism that generates structural
regularities in the output. Here, it should be
noted that the term language in formal language
is technical and does not entail anything beyond
what is outlined above and that a formal (or
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Figure 1. The transition graph representation of
the Reber grammar, which was used to generate the
grammatical strings in the present study (Petersson,
2005).

artificial) grammar represents a specification of
a mechanism that generates (or recognizes) cer-
tain types of sequential structural regularities
(Petersson et al., 2004). It is also important to
note that the finite-state architecture is not lim-
ited to capturing local substring dependencies,
but that this architecture can also incorporate
long-distance dependencies (as long as there
is a fixed finite upper bound for these depen-
dencies; cf. Petersson, 2005b; Petersson et al.,
2005).

The typical artificial grammar learning
(AGL) experiment includes an acquisition
phase followed by a grammaticality classifica-
tion. During the acquisition phase, participants
are engaged in a short-term memory task using
an acquisition sample of symbol sequences gen-
erated from an artificial grammar. Subsequent
to the acquisition phase, subjects are informed
that the symbol sequences were generated ac-
cording to a complex system of rules and they
are asked to classify new items as grammatical
or not based on their immediate impression
(guessing based on “gut feeling”). The sub-
jects typically perform reliably above chance
(Forkstam et al., 2006; Petersson et al., 2004),
and it can be concluded that participants have
acquired knowledge about aspects of the un-
derlying generative structure. It is assumed that
the classification performance is based on im-
plicit acquisition mechanisms because subjects

are typically unable to provide sufficient rea-
sons to motivate their classification decisions
(Forkstam et al., 2006; Forkstam & Petersson,
2005; Stadler & Frensch, 1998). An alterna-
tive way of assessing the implicit acquisition of
an artificial grammar is the structural mere-
exposure version of AGL. This version is based
on the “mere exposure” effect, which refers to
the finding that repeated exposure to a stimulus
induces an increased preference for that stim-
ulus compared to novel stimuli (Zajonc, 1968).
The mere-exposure version might be a more
sensitive measure of implicitly acquired knowl-
edge because the participants are never made
aware of the existence of an underlying gener-
ative mechanism.

Goals of the Current Study

In the present study we characterize a new
forced-choice structural mere-exposure AGL
paradigm in normal readers based on pref-
erence classification. We compare this pref-
erence classification paradigm with the stan-
dard grammaticality classification paradigm.
We predict, on the basis of the mere-exposure
effect (Zajonc, 1968), that the development of
preference will start to correlate with gram-
maticality. In order to achieve these objectives,
we used a balanced associative chunk strength
(ACS) design (Forkstam et al., 2006; Meule-
mans & Van der Linden, 1997). In the bal-
anced ACS design, the factors grammatical-
ity status (grammatical/nongrammatical) and
ACS (high/low) are independently controlled
in a 2 × 2 factorial design. It has been ar-
gued that sensitivity to the level of ACS is a re-
flection of a statistical fragment-based learning
mechanism, whereas sensitivity to the gram-
maticality status of the items, independent of
ACS, is related to an implicit structure-based
acquisition mechanism. Moreover, it is not im-
plausible that learning based on ACS reflects an
explicit declarative memory mechanism involv-
ing the medial temporal lobe (Forkstam et al.,
2006; Lieberman, Chang, Chiao, Bookheimer,
& Knowlton, 2004), while implicit learning
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of grammaticality status independent of ACS
reflects a procedural learning mechanism in-
volving the basal ganglia and the prefrontal
cortex (Forkstam et al., 2006). In this study,
the subjects participated in one implicit acqui-
sition session per day for 5 days; symbol strings
were presented visually one letter at a time,
which requires temporal integration of infor-
mation. Before the first acquisition session on
the first day, subjects participated in a base-
line preference classification task. Finally, after
the last acquisition session on the 5th day, sub-
jects performed a preference classification and
then the standard grammaticality classification
task.

In summary, the objectives of the present
study were to investigate the behavioral equiva-
lence of the forced-choice preference classifica-
tion to the standard grammaticality classifica-
tion task and to explore the effects of the factors
(a) grammaticality status (grammatical/non-
grammatical) and (b) ACS (high/low) on the
classification task (preference/grammaticality).
In the Discussion section, we argue that these
AGL paradigms are suitable for further inves-
tigation of the implicit learning characteristics
in dyslexia.

Methods

Participants

Thirty-two right-handed (16 females and 16
males; mean age ± SD = 22 ± 3 years; mean
years of education ± SD = 16 ± 2), healthy
Dutch university students volunteered to par-
ticipate in the study (part of a larger fMRI
project; data not shown). They were all pre-
screened, and none of the subjects used any
medication, had a history of drug abuse, head
trauma, neurological or psychiatric illness, or
a family history of neurological or psychiatric
illness. All subjects had normal or corrected-to-
normal vision. Written informed consent was
obtained from all participants according to the
protocol of the Declaration of Helsinki, and

the local medical ethics committee approved
the study.

Stimulus Material

We generated 569 grammatical (G) strings
from the Reber grammar (5–12 consonants
from the alphabet [M, S, V, R, X]; see Fig. 1).
For each item we calculated frequency distribu-
tion of 2- and 3-letter chunks for both terminal
and complete string positions in order to derive
the associative chunk strength (ACS) for each
item (cf. Knowlton & Squire, 1996; Meulemans
& Van der Linden, 1997). Then, iteratively, we
randomly selected 100 strings, generating an
acquisition set that was comparable in terms of
2- and 3-letter chunks to the complete string set.
Subsequently we generated the nongrammati-
cal string, derived from each remaining gram-
matical string by a switch of letters in two non-
terminal positions, and these were selected to
match the grammatical strings in terms of both
terminal and complete string ACS (i.e., col-
lapsed over order information within strings).
Finally, in an iterative procedure, we randomly
selected three sets of 60 strings each from the
remaining grammatical strings, in order to gen-
erate the three classification sets consisting of
50% grammatical and nongrammatical strings,
as well as 50% high and low ACS strings rel-
ative to ACS information in the acquisition
set and independent of grammaticality status.
Thus the stimulus material included an acquisi-
tion set and two classification sets (all sets were
disjoint). The classification sets were used for
the 2 × 2 factorial design of the classification
task. Thus each classification set consisted of 30
strings of each string type: high ACS grammat-
ical (HG), low ACS grammatical (LG), high
ACS nongrammatical (HNG), and low ACS
nongrammatical (LNG).

Experimental Procedures

The subjects were informed on the first
day that they were to participate in a short-
term memory experiment. The complete
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experiment was conducted over 5 days with
an acquisition session each day. An initial
preference classification test (PC) was per-
formed before the first acquisition session
on the first day (AGL1). A second prefer-
ence test was performed after the last ses-
sion on the 5th day (AGL2). After the AGL2,
the grammaticality instruction was introduced
(AGL3). During both acquisition and classifi-
cation sessions, each string was centrally pre-
sented letter-by-letter on a computer screen
(2.7–6.9 s corresponding to 5–12 letters; 300 ms
letter-presentation duration, 300 ms inter-
letter interval) using the Presentation software
(http://nbs.neuro-bs.com).

Implicit Acquisition Task

During each acquisition session, all subjects
were presented with the 100 acquisition strings
(acquisition set) on a computer screen (presen-
tation order randomized for each acquisition
session). When the last letter in a string dis-
appeared, the subject was instructed to imme-
diately reconstruct the string from memory by
typing on a keyboard in a self-paced fashion. No
performance feedback was given and only pos-
itive examples (i.e., grammatical strings) were
presented during acquisition. The acquisition
phase lasted approximately 20–40 min.

Classification Tasks

The classification task consisted of a yes/no
forced-choice procedure, and the subjects were
instructed to make their choice based on their
immediate impression (“gut feeling”). On the
first day, the subjects were given the preference
classification instruction (AGL1); they were in-
structed to classify novel strings as preferable
or not (likeable/pleasant or not) and told that
there was no right or wrong response. The sub-
jects were given the same preference instruction
on the last day (AGL2). After the AGL2, par-
ticipants were informed about the grammati-
cal nature of the grammar and were instructed
to classify new strings as grammatical or not
(AGL3). During classification on days 1 and 5,
the participants were presented with novel let-

ter strings from the classification set in the same
way as during acquisition. During a classifica-
tion session 30 strings were presented one at
a time on a computer screen. After a 1-s pre-
stimulus period, the strings were presented for
3 s, followed by a 1-s motor preparation de-
lay period. The subject then had 2.5 s to make
his or her classification decision and push the
corresponding key with the left or right index
finger, based on the preference. The classifica-
tion sets and string presentation order were bal-
anced over subjects. Each classification session
was split in two in order to balance response fin-
ger within subject, each lasting approximately
20 min. The stimuli were presented via an LCD
projector, projecting the computer display onto
a semitransparent screen that the subject com-
fortably viewed through a mirror device. At the
end of the experimental procedure on day 5,
participants were presented with a generation
task and then a 31-item fragment-completion
task. In the generation task, participants were
instructed to generate 10 letter strings that
they regarded as grammatical; in the fragment-
completion task they were instructed to com-
plete each item with the letter they thought
would render the string grammatical.

Data Analysis

Repeated-measures ANOVAs were used for
the analysis of the data, unless otherwise stated
(statistical software package SPSS). A signifi-
cance level of P < 0.05 was used. Scores were
based on hit and endorsement rates. The hit
rate is defined as the sum of all hits (accepted
grammatical strings) and correct rejections (re-
jected nongrammatical strings). The endorse-
ment rate is defined as the number of all strings
classified as grammatical, independent of the
actual grammaticality status (cf. Forkstam et al.,
2006; Meulemans & Van der Linden, 1997).

Results

On the baseline preference classification
(AGL1; that is, before any exposure to the
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TABLE 1. Endorsement Rates over Grammaticality and ACS levelsa

AGL1 AGL2 AGL3

High ACS Low ACS High ACS Low ACS High ACS Low ACS

G 53 (15)% 45 (18)% 73 (16)% 62 (20)% 82 (20)% 71 (21)%
NG 51 (21)% 48 (13)% 41 (22)% 34 (17)% 32 (22)% 27 (21)%

aPercentage of items endorsed (i.e., item classified as grammatical independent of actual grammaticality
status) by condition (grammatical/nongrammatical × high/low associative chunk strength (ACS) status; mean per-
formance level and standard deviation). G = grammatical; NG = nongrammatical; ACS = associative chunk strength.

grammar) subjects classified at the expected
chance level [50 ± 7% correct, T (31) = 0.42,
P = 0.67]. Consistent with previous find-
ings (Forkstam et al., 2006; Petersson et al.,
2004) the overall correct classification perfor-
mance was clearly above chance on prefer-
ence [AGL2; 65 ± 14% correct, T (31) =
5.7, P < 0.0001] and grammaticality classi-
fication [AGL3; 73 ± 16% correct, T (31) =
7.7, P < 0.0001]. Thus, subjects classified items
reliably above chance on both the preference
classification (AGL2) and the grammaticality
classification (AGL3) tasks. The classification
performance improved after the grammatical-
ity instruction was provided [F (1, 31) = 8.8,
P = 0.006].

Classification Performance: Hit Rates

The analysis of hit rate (classification per-
formance) showed that the subjects were sen-
sitive to the grammaticality status of the items
[F (2, 62) = 26, P < 0.0001]. In particular, the
participants classified the grammatical strings
correctly more often (AGL2 > AGL1), and
the hit increased further on the AGL3 task
compared to both AGL1 and AGL2. Specific
contrast comparisons revealed that the group
improved its classification performance for LG
strings [F (2, 62) = 15.6, P < 0.0001] and LNG
strings [F (2, 62) = 17.8, P < 0.0001] after the
grammaticality instruction (AGL3) in compari-
son to both the AGL2 and AGL1 tasks, whereas
the classification performance for HNG strings
improved in comparison only to the AGL1 task
[F (2, 62) = 10.8, P < 0.0001].

Classification Performance:
Endorsement Rates

We then analyzed the performance data in
terms of endorsement rate (i.e., item classified
as grammatical independent of actual gram-
maticality status). Both grammaticality and
ACS status influenced the endorsement rate
(Table 1, Figs. 2 and 3). A repeated-measures
ANOVA with task (AGL1/2/3), grammatical-
ity (G/NG), and ACS (H/L) as within-factors
showed significant main effects of grammatical-
ity [F (1, 31) = 47, P < 0.0001] and ACS [F (1,
31) = 18, P < 0.0001], whereas the main effect
of task type was nonsignificant [F (2, 62) = 1.4,
P = 0.25]. In addition, there was a significant
interaction between task and grammaticality
[F (2, 62) = 37, P < 0.0001], while the interac-
tion between task and ACS was nonsignificant
[F (2, 62) = 0.48, P = 0.57]. This shows that
grammaticality is the main contributor to the
increased classification performance between
the baseline and the two classification tasks af-
ter implicit acquisition of the grammar. These
results suggest that subjects implicitly acquired
knowledge about the underlying grammar af-
ter only 5 days of acquisition. Moreover, there
was a significant interaction between grammat-
icality and ACS [F (1, 31) = 8.9, P < 0.05].
Post-hoc analysis revealed that this interaction
was due to the overall difference in classifi-
cation performance of AGL2/3 compared to
the baseline performance (AGL1), as well as
the comparison between AGL2 and AGL3.
No other interactions reached significance
(P > 0.9).
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Figure 2. Endorsement rates over grammaticality and ACS levels. The endorsement rates
(i.e., item classified as grammatical independent of actual grammaticality status) as a function
of grammaticality status as well as associative chunk strength (GH: grammatical high ACS
strings, GL: grammatical low ACS strings, NGH: nongrammatical high ACS strings, NGL: non-
grammatical low ACS strings). The endorsement rate of grammatical versus nongrammatical
items increases as a function of repeated acquisition for both high and low ACS strings. Error
bars correspond to standard error of the mean.

Specifically, preference classification (AGL2)
was significantly affected by grammaticality
status [F (1, 31) = 31.7, P < 0.0001] and ACS
status [F (1, 31) = 15.4, P < 0.0001]. These ef-
fects were also observed in grammaticality clas-
sification [AGL3; grammaticality status, F (1,
31) = 61.6, P < 0.0001; ACS status, F (1, 31) =
13.6, P < 0.001], while the interaction between
grammaticality and ACS was not significant on
either task [AGL2: F (1, 31) = 3.8, P = 0.059;
AGL3: F (1, 31) = 2.6, P = 0.11].

We further investigated the effects of gram-
maticality, following Chang and Knowlton
(2004), who argued that ACS might not be
a useful cue for the low ACS items, but that
correct performance on these items has to be

based on knowledge of structural regularities
rather than local substring familiarity. Similarly
to Lieberman et al. (2004), we found no ef-
fects of grammaticality status for both high and
low ACS strings on the baseline test [AGL1;
HG vs. HNG: F (1, 31) = 0.42, P = 0.52; LG
vs. LNG: F (1, 31) = 0.65, P = 0.43], while
we observed significant effects for preference
classification [AGL2; HG vs. HNG: F (1, 31) =
34, P < 0.0001; LG vs. LNG: F (1, 31) = 24,
P < 0.0001] and grammaticality classification
[AGL3; HG vs. HNG: F (1, 31) = 59, P <

0.0001; LG vs. LNG: F (1, 31) = 55, P <

0.0001]. We also observed a significant effect
of ACS for both grammatical and nongram-
matical strings during preference classification
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Figure 3. Endorsement rates over grammaticality and ACS main factor categories. The
endorsement rates (i.e., item classified as grammatical independent of actual grammaticality
status) as a function of grammaticality status (G = grammatical strings, NG = nongrammatical
strings) as well as associative chunk strength (H = high ACS strings, L = low ACS strings). The
endorsement rate for grammatical versus nongrammatical items, but not for high versus low
ACS items, increases as a function of repeated acquisition sessions. Error bars correspond to
standard error of the mean.

[AGL2; HG vs. LG: F (1, 31) = 22, P <

0.0001; HNG vs. LNG: F (1, 31) = 4.04, P =
0.05]. However, for grammaticality classifica-
tion, ACS only had an effect on the grammat-
ical strings [AGL3; HG vs. LG: F (1, 31) = 21,
P < 0.0001], but not on the nongrammatical
strings (HNG vs. LNG: F (1, 31) = 2.9, P =
0.09].

In addition, we compared LG versus HNG
based on the argument that this maximally
contrasts structural versus substring knowledge;
if grammaticality status is used for classifica-
tion, the acceptance of an LG item would
crucially depend on the grammaticality sta-
tus of the item, whereas if substring knowl-
edge is used, the low ACS status would pro-

mote a rejection decision. On the other hand,
if substring knowledge is used for classification,
the acceptance of HNG items would depend
on the high ACS status, while if grammat-
ical status is used, the grammaticality status
would indicate a rejection decision. As pre-
dicted, we found a significant advantage for
LG over HNG strings in both preference clas-
sification [AGL2; LG > HNG: T (31) = 3.28,
P = 0.003] and grammaticality classification
[AGL3; LG > HNG; T (31) = 5.82, P <

0.0001]. Taken together, these results show that
grammaticality status independent of ACS is
used for structural generalization in classifying
novel strings and provide support for the notion
that grammatical structure other than substring
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or fragment features is used for successful
classification.

Signal Detection and Bias: Analysis
of the d-Prime and Beta Values

The subjects showed a stable d-prime ef-
fect in discriminating between grammatical (G)
and nongrammatical (NG) strings [except in
the baseline AGL1 test; mean d-prime val-
ues: AGL1 = 0.006, AGL2 = 0.94; AGL3 =
1.53; AGL2 > AGL1: T (31) = −4.91, P =
0.0001; AGL3 > AGL2: T (31) = −2.95,
P = 0.006, AGL3 > AGL1: T (31) = −7.63,
P = 0.0001]. No significant response bias
was found (mean beta-values: AGL1 = 1.02;
AGL2 = 1.01; AGL3 = 1.17; all P > 0.6).
However, participants showed no d-prime ef-
fect in discriminating between high and low
ACS strings (mean d-prime values: AGL1 =
0.15, AGL2 = 0.22; AGL3 = 0.21; all P >

0.66). In other words, no difference in the abil-
ity to discriminate better high than low chunks
was found. In addition, no significant response
bias was observed (mean beta-values: AGL1 =
0.99; AGL2 = 0.98; AGL3 = 1.00; all P >

0.8). We also investigated the behavioral data
for training effects on day 5 by dividing each
classification task (preference/grammaticality)
into four separate blocks for each task. The
statistical analysis yielded no differences in the
performance between the four blocks within
each classification task.

Subjective Reports

During each classification session
(AGL1/2/3), each subject was asked to
rate his or her level of attention, distraction,
engagement, boredom, and perceived difficulty
(“VAS” ratings four times evenly distributed
over each session). There was no significant
difference on these measures except for a small
increase in the level of attention [AGL1: 7.9 ±
1.1; AGL2: 7.9 ± 1.1; AGL3: 8.3 ± 1.0; F (2,
58) = 9.2, P = 0.0001] and the participants
also rated grammaticality classification as

more difficult than preference classification
[AGL1: 3.4 ± 2.3; AGL2: 3.2 ± 2.3; AGL3:
4.8 ± 2.8; F (2, 62) = 8.96, P = 0.001]. Most
participants reported that the stimuli presented
in the classification tasks were similar to what
they saw during the acquisition sessions, and
they noticed some regularity in the stimulus
during the acquisition task (typically, that the
strings would start with M or V). All but one
participant reported only vague criteria for his
or her preference and grammaticality decisions
(which would apply equally to all item types).

Fragment Completion and Generation
Performance

A fragment completion and a generation task
were administered after the last grammaticality
classification AGL3. In the fragment comple-
tion task, the participants had to fill in a missing
letter in 31 strings that they had never en-
countered before. All participants scored signif-
icantly above chance levels (20%; mean correct
completions = 74 ± 16%). Statistically signifi-
cant correlation between the number of correct
completions and the percentage of correct re-
sponses on both classification tasks (AGL2/3)
was found (AGL2: P = 0.025; AGL3: P =
0.013). In the generation task, the partici-
pants were asked to generate ten grammati-
cally correct strings; 27 participants could gen-
erate grammatically correct strings (mean =
5.3 ± 3.7). The generated strings were cat-
egorized as new (correct grammatical strings
that were never presented to the participants),
exact copies (correct grammatical strings that
were not new, but already presented during the
acquisition sessions), and copies with more or
less repeated trigrams. In the latter case, cor-
rect grammatical strings were not “new,” be-
cause if a repeated substring was deleted then
they would also have been presented already.
For example, if a participant were to write
MSVRXVRXVRXVS, and if some but not
all of the VRXs are deleted, then the string
was part of stimuli of the acquisition sessions.
According to this classification, participants
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generated on average 2.3 new grammatical
strings and 2.3 exact copies. A significant cor-
relation was found between the generation of
grammatical items and the percentage of cor-
rect responses on AGL3 (P = 0.0001), but not
on AGL2. The rating of perceived performance
did not correlate with the percentage of correct
responses on AGL3 (participants were asked to
rate this only after AGL3).

Discussion

The artificial grammar learning paradigm
has been used as a model of several aspects
of language acquisition and implicit learning.
In this experiment we modified the original
version of the paradigm by investigating both
grammaticality and preference classification.
It can be argued that preference classifica-
tion might be more optimal in characteriz-
ing the outcome of implicit acquisition since
in the preference version participants are kept
completely unaware of the underlying genera-
tive mechanism, whereas in the grammaticality
version, the subjects have at least, in princi-
ple, been informed about the existence of an
underlying complex set of rules at classifica-
tion (but not during acquisition). The results of
the present study showed that the participants
implicitly acquired knowledge about the un-
derlying artificial grammar, since participants
performed well above chance levels on both
preference (AGL2) and grammaticality classifi-
cation (AGL3) in comparison to baseline clas-
sification (AGL1). Participants improved their
performance in AGL3 compared to AGL2.
Thus the instruction type did influence the final
classification proficiency. However, this differ-
ence is quantitative rather than qualitative in
nature since all effects significant in grammati-
cality classification (AGL3) were already signifi-
cant in preference classification (AGL2), as well
as the reverse; only the pattern of results was
strengthened in AGL3 compared to AGL2. We
found that being informed about the existence
of an underlying generative mechanism during

the utilization of ACS did not increase in gram-
maticality classification and the significant ef-
fect of LG versus HNG was already present in
preference classification (AGL2; LG > HNG).
These results suggest that grammaticality sta-
tus independent of ACS is used for structural
generalization in classifying novel strings and
provides support for the notion that grammati-
cal structure other than local substring regular-
ities is to a large extent used for classification.
Thus, the abstraction of grammatical struc-
ture takes place during implicit artificial gram-
mar acquisition. This can be seen especially in
the quantitative performances between the two
classification tasks that take place without an
increase in the use of ACS-type information.
Furthermore, the use of a preference classifica-
tion baseline ensures that the effects observed in
the classification task are actually attributable
to information learned during the acquisition
phase. Subjective reports also suggested that
the participants did not utilize an explicit rule-
searching strategy, but that their classification
decisions were reached by guessing based on
“gut feeling.” In addition, the subjective ratings
of perceived performance did not correlate with
the actual classification performance. These re-
sults show that preference and grammaticality
classification are equivalent in terms of behav-
ioral effects and strongly support the notion
that humans can implicitly acquire knowledge
about a complex system of interacting rules by
mere exposure to the acquisition material that
can also be effectively put to use (Reber, 1967).
In other words, preference starts to correlate
with the grammaticality status of the classifica-
tion items without any explicit awareness of the
underlying generative mechanisms as predicted
by the mere exposure effect (Zajonc, 1968).

Dual Mechanisms in Implicit Artificial
Grammar Acquisition

Additional support for the implicit character
of AGL comes from lesion studies on amnesic
patients. Knowlton and Squire (1996) inves-
tigated amnesic patients and normal controls



Folia et al.: Implicit Learning and Dyslexia 145

on the original AGL task as well as a trans-
fer version of the task. The patients and their
normal controls performed similarly on both
AGL versions, while the amnesic patients could
not explicitly retrieve complete strings or any
substring information. Knowlton and Squire
(1996) argued that AGL depends on implicit
acquisition of both abstract (i.e., rule-based)
and exemplar-specific information, the lat-
ter indicated by the acquisition of distribu-
tional information of local substring regularities
(i.e., ACS-type information). The acquisition of
long-distance dependencies, as opposed to lo-
cal substring dependencies, has been demon-
strated both in visuomotor sequence learning
and in AGL (Poletiek, 2002). Moreover, it is
known that infants can rapidly acquire and gen-
eralize over local sequential regularities, and
several studies have shown rapid (on the or-
der of 2–10 min) “rule abstraction” (Marcus,
Vijayan, Bandi Rao, & Vishton, 1999), AGL
(Gomez & Gerken, 1999), and transition prob-
ability acquisition in artificial syllable sequences
(Saffran, Aslin, & Newport, 1996) capacities in
8-month-old infants. It is also clear from these
studies that distributional information of local
sequential regularities are acquired and used
for grammaticality classification in addition to
implicit abstraction of grammatical structure
(Forkstam et al., 2006; Meulemans & Van der
Linden, 1997).

Artificial Grammar Learning and
Functional Neuroimaging

A number of functional magnetic resonance
imaging (fMRI) studies have investigated im-
plicit (e.g., Forkstam et al., 2006; Lieberman
et al., 2004; Petersson et al., 2004; Seger, Prab-
hakaran, Poldrack, & Gabrieli, 2000) and ex-
plicit learning of material generated from arti-
ficial grammars (e.g., Fletcher, Buchel, Josephs,
Friston, & Dolan, 1999; Strange, Henson, Fris-
ton, & Dolan, 2001) and artificial languages
(e.g., Opitz & Friederici, 2003). In the explicit
learning studies (e.g., Fletcher et al., 1999; Opitz
& Friederici, 2003; Strange et al., 2001), the

experimental task can be characterized as ex-
plicit problem solving with performance feed-
back (Petersson et al., 2004). In this setup, the
participants are explicitly instructed to try to
extract the underlying rules based on feedback
(trial-and-error search). To overcome the ex-
plicit nature of the acquisition task in these
experiments, we have, as in this study, inves-
tigated grammaticality classification task after
implicit acquisition without performance feed-
back in which the participants only are exposed
to positive examples (i.e., well-formed strings,
Forkstam et al., 2006; Petersson et al., 2004).
The latter two studies showed that artificial syn-
tactic violations activated Broca’s region (left
Brodmann’s area (BA) 44/45; Fig. 4). In Fork-
stam et al. (2006), the activated frontal regions
were more extensive and also included right ho-
motopic regions. Importantly, the left inferior
frontal region (BA 45) was the only frontal re-
gion that was selectively sensitive to grammat-
icality, but not to the level of associative chunk
strength (ACS). This lends support for the sug-
gestion that the left inferior frontal cortex (BA
45) has a specific role in processing structural
regularities (Petersson et al., 2004). This is also
consistent with recent results showing that the
left prefrontal cortex subserves structured se-
quence processing (Fig. 4; Bookheimer, 2002;
Hagoort, 2005).

A recent study by Lieberman et al. (2004)
using an AGL paradigm similar to that of Fork-
stam et al. (2006) also reported that the cau-
date nucleus was sensitive to grammaticality
(Fig. 4). These findings are in line with a differ-
ence between the processing mechanisms that
retrieve linguistic structures and the procedu-
ral processing mechanisms that apply syntactic
“rules” (see, e.g., Ullman, 2004). Here the basal
ganglia support the procedural aspects of pro-
cessing. In this context, it is of interest to note
that the basal ganglia learning system (Packard
& Knowlton, 2002b) and the medial temporal
lobe memory system (Squire & Zola-Morgan,
1991) might interact in complex ways, compet-
itively (Poldrack et al., 2001) as well as cooper-
atively (Voermans et al., 2004).
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Figure 4. Regions related to phonological, syntactic, and semantic processing (cf.
Bookheimer, 2002, and Hagoort, 2005). Left: Activation related to artificial syntactic vi-
olations (Petersson et al., 2004). Right: Regions active in artificial grammatical versus
nongrammatical items in red and nongrammatical versus grammatical in blue (Forkstam et al.,
2006). (In color in Annals online.)

Neural systems supporting procedural learn-
ing, and important for online governing of the
parsing process, are thought to depend on re-
current networks implemented in corticostri-
atal loops (see, for example, Luciana, 2003;
Nelson & Webb, 2003). Classifications of G
items correlated with the activation of the cau-
date nucleus when contrasted with NG items.
Moreover, the opposite contrast of comparing
classifications of NG versus G items correlated
with activation of the left inferior frontal region.
In terms of laterality of the corticostriatal cir-
cuits, both the caudate and the inferior frontal
region were active bilaterally during processing
of grammaticality. The observed selective sen-
sitivity to grammaticality, as opposed to ACS,
in the left inferior frontal BA 45 suggests a left-
lateral bias in the use of corticostriatal circuits
for processing sequence structure.

Artificial Grammar Learning
and Dyslexia

As noted in the introduction, very little is
known about the AGL in dyslexic subjects. On
the basis of the tentative conclusions outlined
in the Introduction, we would like to suggest
that the AGL paradigm is a suitable device
for further investigation into the implicit learn-
ing characteristics in dyslexia. In particular,

since the implicit acquisition deficit observed
in dyslexia seems to be related to sequence pro-
cessing and to sequence complexity (i.e., the
level of structure present in the sequences), the
use of the artificial (formal) language frame-
work for defining and precisely quantifying
sequence complexity seems highly relevant
(Cutland, 1980; Davis et al., 1994; Hopcroft,
Motwani, & Ullman, 2000). Structural com-
plexity can be systematically varied in artifi-
cial grammars, thus making it possible to ex-
perimentally manipulate the level of structure
available in the stimulus material in a precise
and quantitative manner (Petersson, 2005b; Pe-
tersson et al., 2005). The AGL paradigm is
modality- and material-independent, which al-
lows for experimental investigation into the
role of material, sensory modality, and cross-
modality transfer effects: for example, results on
pure tone- and syllable sequences suggest that
performance is higher for syllables compared
to pure tone sequences (P = 0.01), and while
grammaticality classification was significant for
both types of sequences on day 5 (P < 0.001),
implicit acquisition effects for preference clas-
sification on day 5 were only observed for the
syllable group (P = 0.01) (cf. Faı́sca, Bramão,
Forkstam, Reis, & Petersson, 2007). As previ-
ously illustrated, issues related to temporal- and
spatial integration can be investigated as well
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(e.g., Forkstam et al., 2006; Petersson et al., 2004;
Pothos & Kirk, 2004). It is possible to separate
the effects related to local substring regularities
from those of structure abstraction in a precise
manner. Finally, sequence processing after im-
plicit artificial grammar acquisition is known to
involve fronto-striatal loops as well as the cere-
bellum (Forkstam et al., 2006; Lieberman et al.,
2004; Petersson et al., 2004), which is relevant
given the proposed fronto-striatal-cerebellar
circuit deficit in dyslexics (Howard et al., 2006).

Ziegler and Goswami (2005) argue that atyp-
ical development of reading skills can arise from
variations in the initial conditions or constraints
on learning, or from variations in the train-
ing environment, or from an interaction be-
tween the two. They suggest that explicit ac-
cess to phonemes is not readily available prior
to reading and that all major theories of read-
ing acquisition argue that gaining access to
phoneme-size units is a crucial step for the
beginning reader of an alphabetic language
(Ziegler & Goswami, 2005). A major cause
of the early difficulty of reading acquisition is
that phonology and orthography initially fa-
vor different grain sizes and that structural
regularities present in the lexicon of spoken
word forms may form the basis of inciden-
tal/implicit learning about phonology (Ziegler
and Goswami, 2005). Building on an implicit
foundation of phonological knowledge, learn-
ing to read involves explicit as well as im-
plicit processes; typically children initially learn
grapheme–phoneme mappings explicitly, after
which they apply and continue to learn how
phonology is mapped onto its written represen-
tation implicitly (Gombert, 2003; Petersson &
Reis, 2006; Ziegler & Goswami, 2005). Ziegler
and Goswami (2005) suggest that it is these
explicit processes and their potential interac-
tions with the more implicit aspects of lexi-
cal processing that are missing from the mod-
els. The relationship between reading ability
and phoneme awareness is necessarily recipro-
cal (Petersson et al., 2009; Ziegler & Goswami,
2005). Awareness of sounds at the smallest grain
size (phonemes) does not develop automatically

as children get older and the discovery of the
phoneme as a psycholinguistic unit depends
largely on direct instruction in reading and
spelling (Ziegler & Goswami, 2005). Therefore,
in order to fully understand nonoptimal read-
ing and writing development it might be neces-
sary to investigate not only implicit acquisition
or explicit learning mechanisms, but their in-
teraction as well.

Conclusions

In this article we reviewed the literature on
implicit learning and dyslexia and tentatively
concluded that: (a) dyslexia does not seem to
be associated with a general implicit learning
deficit; (b) the implicit learning deficit observed
in dyslexia does not seem to be related to non-
specific factors like general cognitive or atten-
tion deficit, task difficulty, or age; (c) the im-
plicit acquisition deficit seems to be related to
sequence processing, which is likely related to
sequence complexity; and (d) the implicit learn-
ing deficit in dyslexia can be observed when ex-
plicit learning is intact. We also characterized
a novel forced-choice structural mere-exposure
artificial grammar learning paradigm in nor-
mal readers in relation to the standard gram-
maticality classification paradigm. We explored
the outcome of an acquisition mechanism ca-
pable of extracting structural regularities from
experience in an implicit fashion from posi-
tive examples alone and without any external
supervision or feedback. The results showed
that preference and grammaticality classifica-
tion are equivalent in terms of behavioral ef-
fects and strongly support the notion that hu-
mans can implicitly acquire knowledge about
a complex system of interacting rules by mere
exposure to the acquisition material that also
can be effectively put to use.
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M. 2001. Learning related modulation of functional
retrieval networks in man. Scandinavian Journal of Psy-

chology, 42: 197–216.
Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy,

D., Creso Moyano, J., Myers, C., et al. 2001. Inter-
active memory systems in the human brain. Nature,
414: 546–550.

Poletiek, F. H. 2002. Implicit learning of a recursive rule
in an artificial grammar. Acta Psychologica, 111: 323–
335.

Pothos, E. M., & Kirk, J. 2004. Investigating learning
deficits associated with dyslexia. Dyslexia, 10: 61–
76.

Reber, A. S. 1967. Implicit learning of artificial gram-
mars. Journal of Verbal Learning and Verbal Behavior, 5:
855–863.

Reber, A. S. 1993. Implicit learning and tacit knowledge: An essay

on the cognitive unconscious. New York: Oxford Univer-
sity Press.

Rüsseler, J., Gerth, I., & Münte, T. F. 2006. Implicit learn-
ing is intact in adult developmental dyslexic readers:
evidence from the serial reaction time task and artifi-
cial grammar learning implicit learning in dyslexia.



150 Annals of the New York Academy of Sciences

Journal of Clinical and Experimental Neuropsychology, 28:
808–827.

Saffran, J. R., Aslin, R. N., & Newport, E. L. 1996. Sta-
tistical learning by 8-month-old infants. Science, 274:
1926–1928.

Seger, C. A. 1994. Implicit learning. Psychological Bulletin,
115: 163–196.

Seger, C. A., Prabhakaran, V., Poldrack, R. A., & Gabrieli,
J. D. 2000. Neural activity differs between explicit
and implicit learning of artificial grammar strings:
an fMRI study. Psychobiology, 28: 283–292.

Shaywitz, S. E. 1998. Dyslexia. New England Journal of

Medicine, 338: 307–312.
Sperling, A. J., Lu, Z. L., & Manis, F. R. 2004. Slower

implicit categorical learning in adult poor readers.
Annals of Dyslexia, 54: 281– 303.

Squire, L. R., & Zola-Morgan, S. 1991. The medial
temporal lobe memory system. Science, 253: 1380–
1386.

Stadler, M. A., & Frensch, P. A. (Eds.). 1998. Handbook of

implicit learning. Thousand Oaks, CA: Sage.
Stoodley, C. J., Harrison, E. P., & Stein, J. F. 2006. Im-

plicit motor learning deficits in dyslexic adults. Neu-

rosychologia, 44: 795–798.
Strange, B. A., Henson, R. N. A., Friston, K. J., & Dolan,

R. J. 2001. Anterior prefrontal cortex mediates
rule learning in humans. Cerebral Cortex, 11: 1040–
1046.

Ullman, M. T. 2004. Contributions of memory circuits to
language: the declarative/procedural model. Cogni-

tion, 92: 231–270.
Vicari, S., Finzi, A., Menghini, D., Marotta, L., Baldi,

S., & Petrosini, L. 2005. Do children with develop-
mental dyslexia have an implicit? Journal of Neurology,

Neurosurgery, and Psychiatry, 76: 1392–1397.
Vicari, S., Marotta, L., Menghini, D., Molinari, M., &

Petrosini, L. 2003. Implicit learning deficit in chil-
dren with developmental dyslexia. Neuropsychologia,
41: 108–114.

Voermans, N. C., Petersson, K. M., Daudey, L., Weber,
B., van Spaendonck, K. P., Kremer, H. P. H., et al.
2004. Interaction between the human hippocampus
and caudate nucleus during route recognition. Neu-

ron, 43: 427–435.
Waber, D. P., Marcus, D. J., Forbes, P. W., Bellinger, D.

C., Weiler, M. D., Sorensen, L. G., et al. 2003. Mo-
tor sequence learning and reading ability: Is poor
reading associated with sequencing deficits? Journal

of Experimental Child Psychology, 84: 338–354.
Zajonc, R. B. 1968. Attitudinal effects of mere exposure.

Journal of Personality and Social Psychology Monograph Sup-

plement, 9(2): Part 2.
Ziegler, J. C., & Goswami, U. 2005. Reading acquisition,

developmental dyslexia, and skilled reading across
languages: a psycholinguistic grain size theory. Psy-

chological Bulletin, 131: 3–29.


