SHORT COMMUNICATION

Neurons in the Rat Occipital Cortex Co-expressing the Substance P-Receptor and GABA: a Comparison Between In Vivo and Organotypic Cultures

D. Echevarría¹, C. Matute² and K. Albus¹
¹Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, PO Box 2841, D-37070 Göttingen, Germany
²Departamento de Neurociencias, Universidad del País Vasco, E-48940 Leioa, Spain

Keywords: colocalizations, immunohistochemistry, inhibitory interneurons, neocortex, tachykinin receptor

Abstract

The morphology and the distribution of neurons expressing the NK1-receptor (NK1R) and the co-expression of γ-aminobutyric acid (GABA) in these neurons were studied in the rat occipital cortex and in organotypic cultures (OTCs) derived from this structure. By employing immunohistochemistry, we demonstrate that the NK1R-expressing neurons are non-pyramidal neurons and co-express GABA. Some differences were noted between in vivo and OTCs. NK1R-expressing neurons in OTCs had larger somata and longer dendrites and the proportion stained with an anti-GABA-antibody (~50%) was smaller than in vivo (90%). The preferential location of NK1R-expressing neurons in layers II/III and VI, seen in vivo is not present in OTCs where these neurons distribute rather homogeneously through layers II–VI. Our findings imply that in contrast to the cat and monkey, in the rat occipital cortex the effects of substance P are almost exclusively mediated via inhibitory interneurons.

Introduction

The tachykinin peptide family whose members are known to be present in the neocortex comprise substance P (SP), neurokinin A (NKA), neuropeptide K (NPK), neuropeptide γ and neurokinin B (NKB) (Arai and Emson, 1986; Takeda et al., 1990). The tachykinin peptides interact differentially with three tachykinin receptors: the NK1-receptor (NK1R) prefers interaction with SP, the NK2-receptor with NKA, NPK and neuropeptide γ and the NK3-receptor with NKB (Helke et al., 1990). Radioimmunoassay and binding studies have demonstrated the presence of these receptors in the cortex (Dam et al., 1988). The presence of mRNA coding for functional NK1R in the visual cortex has been demonstrated by means of the oocyte expression system (Matute et al., 1993a). By means of microiontophoretic techniques it has been shown that in the cortex exogenous tachykinins depolarize, i.e. excite, neurons (for review see Albus et al., 1992). Tachykinin-induced suppressions, or hyperpolarizations, were attributed to an indirect action of the tachykinins mediated via inhibitory interneurons (Olpe et al. 1987; Albus et al., 1992).

Recent investigations employing in situ hybridization histochemistry (Maeno et al., 1993; Matute et al., 1993b) or immunohistochemistry (Liu et al., 1994; Nakaya et al., 1994) have revealed species differences in the morphology and laminar distribution of neurons expressing the NK1R. In the cat visual cortex most of these neurons are pyramidal cells in layers II, III and V; in the rat neocortex they are non-pyramidal neurons which distribute through all layers. In order to substantiate and extend the latter findings we have studied the morphology, transmitter identity and intracortical location of neurons expressing the NK1R in the rat occipital cortex. In addition, as a first step to analyse NK1R-receptor functions at a cellular level, we wondered whether the characteristic properties of NK1R-expressing neurons are maintained in organotypic cultures (OTCs) of the rat occipital cortex. Due to a high degree of accessibility these long term culture systems have been claimed to be particularly well suited to study basic cellular mechanisms of neuronal functions (Güwiler, 1981).

Materials and methods

Sprague-Dawley rats and Wistar rats (240–260 g) were deeply anaesthetized with sodium pentobarbitone (60 mg/kg) and perfused through the ascending aorta with PBS (145 mM NaCl, 10 mM sodium phosphate, pH 7.4), followed by a solution of 4% paraformaldehyde and 0.1% glutaraldehyde in PBS. After perfusion, the brain was removed and postfixed in 4% paraformaldehyde in PBS for a period of 2–6 h. Vibratome sections of neocortex were cut at 45–50 μm thick.

OTCs of the occipital cortex of rats (Wistar) were prepared and maintained in vitro by employing the protocol described by Güwiler (1981). Culture tubes were supplied with 0.75 ml semi-artificial medium (50% Eagle’s basal medium, 25% Hank’s balanced salt
solution, 25% inactivated horse serum, 1 mM L-glutamine, 0.65% D-glucose and 1.26 mM Ca\(^{2+}\)). All procedures were carried out in sterile conditions. The medium was changed every 4–5 days. For immunohistochemical experiments OTCs about 3 weeks in vitro were immersed in 4% paraformaldehyde and 0.1% glutaraldehyde for 1 day.

For immunolocalization of the NK1R, a rabbit polyclonal NK1R antibody (Vigna et al., 1994) was used. Sections (free floating) of occipital cortex and OTCs (on coverslips) were pre-incubated with H\(_2\)O\(_2\) in PBS for a period of 20 min and then blocked over 30–45 min in 2% normal goat serum with 0.5% Triton X-100 (or in the case of OTCs 1% Triton X-100) in PBS. Next, they were incubated overnight at 4°C with the NK1R primary antibody diluted 1:500.

After washing thoroughly with PBS, a biotinylated goat anti-rabbit (dilution 1:200) secondary antibody was added for 60 min and later incubated for 60 min in avidin–biotin–peroxidase complex (Vectastain, Burlingame, CA). The immunoreaction product was visualized with diaminobenzidine and H\(_2\)O\(_2\). Sections and cultures were then washed in PBS, mounted onto gelatinized slides, dehydrated and coverslipped.

For the colocalization experiments, a double immunofluorescence staining method was performed. Following the preincubation and blocking procedure (see above), sections and OTCs were incubated overnight with the NK1R primary antibody at 1:500 dilution. Labelling was achieved by using a fluorescein isothiocyanate-labelled goat anti-
rabbit antibody (dilution 1:200; Sigma). Subsequently, after several washes in PBS the same sections were incubated overnight at 4°C with a mouse monoclonal anti-GABA antibody (3A12; Matute and Streit, 1986) diluted 1:20 000 followed by incubation of biotinylated horse anti-mouse secondary antibody diluted 1:100 and labelled with Texas Red conjugated streptavidin (dilution 1:100; Chemicon International Inc., Temecula, CA). As a control, in some sections GABA was visualized with fluorescein isothiocyanate and the NK1R primary antibody with Texas Red. The results of both staining procedures were the same. As a further control, primary antibodies were omitted from these immunohistological procedures, and no staining was observed. Labelled cells were viewed under the corresponding UV excitation frequency and photographed.

In order to determine the proportion of GABA-positive neurons expressing the NK1R, four sections were analysed in detail. Labelled neurons were counted in square areas with 330 µm sidelength centred on upper, middle or lower layers of occipital cortex. A total of 40 square areas was analysed, of which 16 comprised layers I-IV, 12 layer V and 12 layer VI including the adjacent white matter.

Results

NK1R-specific immunoreactivity was observed exclusively in non-pyramidal neurons and was associated with the soma and the complete dendritic tree (see also Liu et al., 1994). With regard to the staining intensity, two populations of neurons were found: intensely stained neurons with large somata and weakly stained neurons which usually had smaller somata and which were more numerous in upper than in lower layers (Fig. 1). Most neurons had multipolar dendritic patterns, the dendrites being spine-free or sparsely spinous. A few of the other types of non-pyramidal neurons present in the visual cortex of the rat (Feldman and Peters, 1978), namely bitufted and bipolar neurons (Fig. 1B, C), were also found to express the NK1R; these neurons presented spine-free or very sparsely spinous dendrites as well. In layer VI and in the adjacent white matter as well as in layer II dendrites of some neurons were oriented parallel to the cortical surface (Fig. 1C, D).

In OTCs from the rat occipital cortex, almost all neurons with
NKIR-specific immunoreactivity were intensely stained and had a non-pyramidal morphology either with multipolar or bitufted or a bipolar dendritic pattern (Fig. 2). Dendrites were either spine-free or carried fine hair-like appendages, which were seen occasionally also on the soma (Fig. 2D). Quite a number of dendrites were beaded (Figs. 2A, C, D). Hairlike processes on dendrites and soma and beaded dendrites were not observed in vivo. The most striking difference in the morphology of NKIR-positive neurons in vivo and in OTCs, however, was soma size which was smaller in vivo than in OTCs (in vivo: mean ± SD = 13.5 ± 4 μm; n = 225; upper and lower 95% confidence interval 15.3 μm and 11.7 μm respectively; in vitro: mean ± SD = 20 ± 4.3 μm; n = 168; upper and lower 95% confidence interval 20.7 μm and 19.4 μm respectively). The difference was statistically significant (Mann-Whitney test, two-tailed P value < 0.0001). In addition, in OTCs dendrites were longer (at ~16%) than those observed in vivo (in vitro: mean ± SD = 358.4 ± 118.4 μm; n = 21; upper and lower 95% confidence interval: 412.3 and 304.5; in vivo: mean ± SD = 309 ± 89.4 μm; n = 21 upper and lower 95% confidence interval 349.9 and 268.2). The difference was not significant, however (Mann-Whitney test, two-tailed P value > 0.05).

Double immunofluorescence labelling revealed that NKIR-positive neurons express the inhibitory transmitter GABA: in vivo >90% of these neurons were stained with an antibody against GABA (Fig. 3), whereas in OTCs this proportion was less, ~50% (Fig. 4). In order to determine the proportions of GABA-positive neurons containing the NKIR in vivo, a total of 426 GABA-positive cells was analysed (see above); 95 of these (22.3%) were NKIR-positive. The proportions of double labelled neurons were higher in lower parts (mean ± SD: 38.7 ± 24.1) as compared to upper parts (mean ± SD: 19.3 ± 10.3) of occipital cortex (Mann-Whitney test, two-tailed P value < 0.05). Differences in proportions between lower and middle, and middle and upper parts of cortex were statistically not significant. Since in the rat visual cortex about ~16% of the neurons express glutamic acid decarboxylase, the synthetic enzyme for GABA (Penny et al., 1986), one can estimate the population of neurons expressing both the NKIR and GABA to make up ~3% of all neurons.

Pyramidal neurons containing NKIR specific immunoreactivity were detected neither in vivo nor in vitro. However, these negative findings do not definitely prove that the NKIR is absent in pyramidal neurons of the rat's occipital cortex. The level of NKIR could be much lower in pyramidal neurons than in non-pyramidal neurons and thus escape detection by immunohistochemistry.

The laminar distributions were similar in Wistar and Sprague-Dawley rats, and between the primary visual area and surrounding visual areas (Swanson, 1992) and data therefore were pooled. As can be seen (Fig. 5), in vivo proportions of NKIR-expressing neurons in layers II/III and VI, including adjacent white matter, are two to three times higher than in layer I, IV or V. In OTCs the NKIR-expressing neurons distribute throughout all layers in a rather homogenous manner.

Discussion

Our results confirm earlier findings that neurons expressing the NKIR distribute through all layers of the rat neocortex (Maeno et al., 1993;
Liu et al., 1994; Nakaya et al., 1994). We demonstrate that these neurons reside preferentially in layers II/III, and in layer VI including adjacent parts of the white matter, and that most of them are inhibitory interneurons co-expressing GABA. The latter result confirms suggestions on an inhibitory function of NK1R expressing neurons which were made on the basis of morphological criteria (Liu et al., 1994; Nakaya et al., 1994). According to our findings, a few NK1R expressing neurons do not express GABA.

The failure of double staining with GABA in quite a number of NK1R neurons in OTCs could indicate higher proportions of NK1R neurons without GABA in OTCs than in vivo. Downregulation of the GABAergic phenotype in a particular class of neurons has been reported to occur in OTCs of the retina (Rowerendleman et al., 1996). On the other hand, Mihály et al. (1991) have suggested that low proportions of neuronal somata with GABA-like immunoreactivity present in acute slices of hippocampus and also in some OTCs of neocortex (Caesar et al., 1989) could be attributed to an efflux of GABA from the soma into the dendrites and axon, during the slicing procedure or later, during incubation. The latter suggestion is supported by our observation that in OTCs, dendrites and axons of neurons displaying GABA-like immunoreactivity have occasionally no label in their soma. The proportion of NK1R-expressing neurons colocalizing with GABA in OTCs is therefore possibly underestimated using the present methodology.

The finding that most NK1R-expressing neurons in the rat neocortex are inhibitory interneurons implies differences in the cellular networks and in the functions mediated by substance P between rat and other species like cat and monkey. NK1R-expressing cells in the cat are preferentially pyramidal neurons (Matute et al., 1993b). In the monkey an expression of the NK1R in pyramidal neurons is suggested by the observation that SP-containing axon terminals make synaptic contacts preferentially with spines and dendritic shafts of pyramidal cells (Jones et al., 1988). Thus, in cat and monkey neocortex substance P seems to act preferentially on excitatory neurons projecting to other cortical and subcortical areas, whereas in the rat neocortex it exerts its functions almost exclusively via intrinsically projecting inhibitory neurons. Interestingly, species differences also exist with respect to the morphology of substance P expressing neurons. In the cat somatosensory cortex, ~10% of these neurons have been claimed to be pyramidal neurons (Conti et al., 1992). In the rat somatosensory cortex all neurons expressing SP are non-pyramidal neurons which co-express GABA (Penny et al., 1986). In a number of studies it has been shown that many of the unique properties of neocortex are maintained in organotypic cultures of this tissue. Pyramidal and non-pyramidal neurons from OTCs of rat neocortex and hippocampus display differentiation of morphology and in vitro distribution of neocortical and hippocampal tachykinin-immunoreactive material. A light and electron microscopic study on in situ and in vitro material. J. Hirnforsch., 33, 429-443. Caesar, M. and Schütz, A. (1992) Maturaton of neurons in neocortical slice cultures. A light and electron microscopic study on in situ and in vitro material. J. Hirnforsch., 33, 429-443. Arai, H. and Emson, P. C. (1986) Regional distribution of neuropeptide K and other tachykinins (neurokinin A, neurokinin B and substance P) in rat central nervous system. Brain Res., 399, 240-249. Feldman, M. L. and Peters, A. (1978) The forms of non-pyramidal neurons in the visual cortical of the rat. J. Comp. Neurol., 179, 761-734. Finsen, B. R., Tonder, N., Augood, S. and Zimmer, J. (1992) Somatostatin and neuropeptide Y in organotypic slice cultures of the rat hippocampus: an immunocytochemical and in situ hybridization study. Neuroscience, 47, 105-113. Göthert, J. (1984) GABA and the NK1 receptor in neocortical neurons specific phenotype restriction of NPY mRNA expressing cells occurring postnatally in the rat visual cortex occurs in co-cultures of cortex with thalamus but not in monocytes (Obst and Wahle, 1996). Others have reported changes in distribution and size of synapses in OTCs of rat neocortex; for example, in pyramidal neurons the proportion of axospinuous over axodendritic synapses was higher in vivo than in OTCs (Caesar and Schlitz, 1992). Another interesting finding was that of considerable sprouting of cut axons in the OTCs which would increase the probability of making contacts to neighbouring cells. Therefore, in order to decide whether OTCs are a useful model for studying NK1R functions, the axonal connections of NK1R expressing neurons should be studied in more detail in these culture system.

Acknowledgements

The authors wish to thank Dr S. R. Vigna (Duke University, Durham, NC) for kindly providing antibodies to the NK1R, P. Pérez-Cerdá and D. J. Fogarty for helpful comments on the manuscript and P. Stebbach for technical assistance. This work was supported by the Alexander von Humboldt Foundation (grant SPK0025) and the Gobierno Vasco, Spain (grant no. PI94-106 and grant no. BIF94-046).
and Basbaum, A. I. (1994) Synaptic relationship between substance P and
the substance P receptor: light and electron microscopic characterization of
the mismatch between neuropeptides and their receptors. Proc. Natl Acad.
Sci. USA, 91, 1009-1113.
P receptor (NK1-receptor) in the central nervous system. Mol. Brain Res.,
18, 43-58.
Matute, C. and Streit, P. (1986) Monoclonal antibodies demonstrating GABA-
Matute, C., Nguyen, Q. T. and Miledi, R. (1993a) mRNAs coding for neuro-
transmitter receptors in rabbit and rat visual areas. J. Neurosci. Res., 35,
652-663.
of neurons expressing substance P receptor messenger RNA in immature
GABA content and immunoreactivity in hippocampal slices. Brain Res.
Bull., 26, 559-564.
Immunohistochemical localization of the substance P receptor in the central
nervous system of the adult rat. J. Comp. Neurol., 347, 249-274.
depresses neuronal activity in the rat olfactory bulb in vitro and in vivo:
possible mediation via γ-aminobutyric acid release. Brain Res., 412,
269-274.
Obst, K. and Wahle, P. (1996) Shaping the molecular phenotype of cortical
interneurons: role of axonal connectivity and diffusible factors. Proc. 24th
Penny, G. R., Afsarypour S. and Kitai, S. T. (1986) Substance P-
immunoreactive neurons in the neocortex of the rat: a subset of glutamic
(1996) Expression and downregulation of the GABAergic phenotype
1074-1083.
Amsterdam.
distribution of neuropeptide gamma and other tachykinin peptides derived
Vigna, S. R., Bowden, J. J., McDonald, D. M., Fisher, J., Okamoto, A.,
McVey, D. C., Payan, D. G. and Bunnett, N. W. (1994) Characterization of
antibodies to the rat substance P (NK-1) receptor and to a chimeric substance