The Metabotropic GABA_B Receptor Directly Interacts with the Activating Transcription Factor 4*

Received for publication, March 31, 2000, and in revised form, July 28, 2000
Published, JBC Papers in Press, August 2, 2000, DOI 10.1074/jbc.M002727200

Ralf B. Nehring†§, Hiroshi P. M. Horikawa§§, Oussama El Far¶, Matthias Kneussel¶, Johann Helmut Brandstätter*†‡, Stefan Stamm§§, Erhard Wischmeyer‡, Heinrich Betz¶, and Andreas Karschin†¶

From the †Department of Molecular Neurobiology of Signal Transduction, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, the Departments of ‡Neurochemistry and ¶¶Neuroanatomy, Max Planck Institute for Brain Research, 60528 Frankfurt, and the §§Research Group for Neuron-specific Splicing, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany

G protein-coupled receptors regulate gene expression by cellular signaling cascades that target transcription factors and their recognition by specific DNA sequences. In the central nervous system, heteromeric metabotropic γ-aminobutyric acid type B (GABA_B) receptors through adenylyl cyclase regulate cAMP levels, which may control transcription factor binding to the cAMP response element. Using yeast-two hybrid screens of rat brain libraries, we now demonstrate that GABA_B receptors are engaged in a direct and specific interaction with the activating transcription factor 4 (ATF-4), a member of the cAMP response element-binding protein/ATF family. As confirmed by pull-down assays, ATF-4 associates via its conserved basic leucine zipper domain with the C termini of both GABA_B receptor (GABA_BR) 1 and GABA_BR2 at a site which serves to assemble these receptor subunits in heterodimeric complexes. Confocal fluorescence microscopy shows that GABA_BR and ATF-4 are strongly coclustered in the soma and at the dendritic membrane surface of both cultured hippocampal neurons as well as retinal amacrine cells in vivo. In oocYTE coexpression assays short term signaling of GABA_BRs via G proteins was only marginally affected by the presence of the transcription factor, but ATF-4 was moderately stimulated in response to receptor activation in vivo reporter assays. Thus, inhibitory metabotropic GABA_BRs may regulate activity-dependent gene expression via a direct interaction with ATF-4.

The abbreviations used are: CRE, cAMP response element; CREB, cAMP response element-binding protein; bZIP, basic leucine zipper domain; GABA, γ-aminobutyric acid; GABA_BR, metabotropic B-type GABA receptor; Kir, inwardly rectifying potassium channel; NLS, nuclear localization signal; SFV, Semliki forest virus; Y2H, yeast-two hybrid; MEKK, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase; ATF, activating transcription factor; GST, glutathione S-transferase; MBP, maltose-binding protein; PBS, phosphate-buffered saline; EGFP, enhanced green fluorescent protein.
that subunit dimerization promotes proper posttranslational processing, membrane targeting, and assembly into specific signaling matrices in subcellular neuronal specializations (31).

By means of yeast-two-hybrid (Y2H) interaction cloning, biochemical, and functional reporter assays, as well as immunocytochemistry, we now provide evidence that metabotropic GABABRs are also capable of directly interacting with transcription factors and thus may utilize a mechanism for transcriptional regulation unique to membrane receptors. Our mutational analysis indicates that GABABR bind to ATF-4, a transcription factor of the leucine zipper/CREB family, via their C-terminal leucine zipper motifs, which in vivo may result in the regulation of gene transcription upon stimulation.

EXPERIMENTAL PROCEDURES

Yeast Two-hybrid Screening—Two independent Y2H assays were used in parallel. Both the MATCHMAKER II (CLONTECH) and the LexA (OriGene Technologies) systems were used to screen rat brain cDNA libraries constructed with the activation domain vectors pAD-GAL4 and pG4-5, respectively, using amino acids 488–960 of the C-terminal coding region of GABABR1a (18) as bait. C-terminal baits were amplified by polymerase chain reaction from a rat brain library and transformed into a yeast DNA-binding domain vector pG5B9 and the galactose-inducible vector pG1G1a, respectively. Screening with the pG1B9 and pG1Ga bait yielded colonies that grew on the corresponding selection plates complemented with 10 μl 3-aminotriazole for the MATCHMAKER system and were positive in the β-galactosidase assay. Isolated plasmids were sequenced on both strands using the ABI PRISM sequenase dye terminator kit on an automatic sequencer. For analysis of the interaction site, GABABR1 and ATF-4 deletions were generated by polymerase chain reaction with specific oligonucleotides and subcloned into pG1B9 and pAD-GAL4. Yeast strains HF7c and EGY 48 were cotransformed with 100 ng each of bait and prey vector, streaked out on agar plates lacking tryptophan, leucine, and histidine (MATCHMAKER), and also lacking uracil (LexA). Colony growth/activation of the HIS3 and LEU reporter genes, respectively, as well as β-galactosidase activity were controlled after 4 days.

Preparation of Brain Homogenates—Rat cerebral cortices were homogenized in a Teflon glass Potter homogenizer with 12 strokes at 900 rpm in 20 ml of ice-cold 0.32 M sucrose, 4 μM HEPES/NaOH, pH 7.3, containing Complete and a protease inhibitor mixture (Roche Diagnostics). The homogenate was centrifuged for 10 min at 800 × g in a Sorvall SS-34 rotor (DuPont). The resulting pellet (P2) was resuspended in 3 ml of Tris-buffered saline (25 mM Tris, pH 7.4, 150 mM NaCl, and protease inhibitors). After ultracentrifugation at 100,000 × g for 1 h, the supernatant was incubated for 5 h with 30 μl of glutathione beads preloaded with either GST or GST-ATF-4 (150 μg). Bound material was recovered from glutathione beads after washing four times with Tris-buffered saline alone. A fusion protein was then eluted with SDS sample buffer. Proteins were analyzed by Western blotting using polyclonal goat anti-GABABR1 antibody (Santa Cruz Biotechnology).

Miscellaneous Methods—SDS-polyacrylamide gel electrophoresis was performed on 6%, 10%, or 12% polyacrylamide gels. For Western blot analysis, proteins were transferred to nitrocellulose membranes (Schleicher & Schuell). Antibodies were overlaid with goat anti-rabbit or anti-mouse horseradish peroxidase-coupled secondary antibodies, and chemiluminescence was detected using the Pico detection kit (Pierce).

In Vivo Reporting Systems—The trans PathDetect™ reporting system (Stratagene) was used to test if ATF-4 was involved in activating transcriptional expression of a reporter gene. For experiments, HEK293-GCR cells were transfected with pSFV1 (Life Technologies, Inc.) and also lacking uracil (LexA). Colony growth/activation of the HIS3 and LEU reporter genes, respectively, as well as β-galactosidase activity were controlled after 4 days. Yeast Two-hybrid Screening—With the MATCHMAKER system and were positive in the β-galactosidase assay. Isolated plasmids were sequenced on both strands using the ABI PRISM sequenase dye terminator kit on an automatic sequencer. For analysis of the interaction site, GABABR1 and ATF-4 deletions were generated by polymerase chain reaction with specific oligonucleotides and subcloned into pG1B9 and pAD-GAL4. Yeast strains HF7c and EGY 48 were cotransformed with 100 ng each of bait and prey vector, streaked out on agar plates lacking tryptophan, leucine, and histidine (MATCHMAKER), and also lacking uracil (LexA). Colony growth/activation of the HIS3 and LEU reporter genes, respectively, as well as β-galactosidase activity were controlled after 4 days.

Preparation of Brain Homogenates—Rat cerebral cortices were homogenized in a Teflon glass Potter homogenizer with 12 strokes at 900 rpm in 20 ml of ice-cold 0.32 M sucrose, 4 μM HEPES/NaOH, pH 7.3, containing Complete and a protease inhibitor mixture (Roche Diagnostics). The homogenate was centrifuged for 10 min at 800 × g in a Sorvall SS-34 rotor (DuPont). The resulting pellet (P2) was resuspended in 3 ml of Tris-buffered saline (25 mM Tris, pH 7.4, 150 mM NaCl, and protease inhibitors). After ultracentrifugation at 100,000 × g for 1 h, the supernatant was incubated for 5 h with 30 μl of glutathione beads preloaded with either GST or GST-ATF-4 (150 μg). Bound material was recovered from glutathione beads after washing four times with Tris-buffered saline alone. A fusion protein was then eluted with SDS sample buffer. Proteins were analyzed by Western blotting using polyclonal goat anti-GABABR1 antibody (Santa Cruz Biotechnology).

In Vivo Reporting Systems—The trans PathDetect™ reporting system (Stratagene) was used to test if ATF-4 was involved in activating transcriptional expression of a reporter gene. For experiments, HEK293-GCR cells were transfected with pSFV1 (Life Technologies, Inc.) and also lacking uracil (LexA). Colony growth/activation of the HIS3 and LEU reporter genes, respectively, as well as β-galactosidase activity were controlled after 4 days.

Interaction of GABA_BR and ATF-4

RESULTS

Y2H Assay—Using the Y2H system (35), we sought to isolate candidate proteins that directly interact with and modulate the signaling function of GABA_BR receptors. Therefore, the complete C-terminal intracellular region of GABA_BR1a was initially used as bait to screen rat brain cDNA libraries. Two independent screenings of 1.5 × 10⁹ recombinants resulted in the isolation of 27 and 180, respectively, positive clones, the open reading frames of which all encoded regions of the same polypeptide. Data base analysis indicated very high similarity to the mouse transcription factor rATF-4 (36), also known as C/ATF (37) or mTrxR67 (38). The complete open reading frame of the rat orthologue (rATF-4) is shown in Fig. 1. rATF-4 harbors a conserved basic leucine zipper (bZIP) dimerization domain. The rATF-4 sequence has been deposited to GenBank under accession no. AF252627.

Retina Preparation and Immunocytochemistry—Adult albino rats were anesthetized deeply with halothane and decapitated. Eyes were enucleated and opened along the ora serrata, and the posterior eyecups with the retinae attached were immersion-fixed for 15–30 min in 4% (w/v) paraformaldehyde in 0.1 M PB, pH 7.4. After dissection retinae were cryoprotected in 10% (w/v), 20% (w/v) sucrose in PB for 1 h each and in 30% (w/v) sucrose in PB overnight at 4 °C. Pieces of retinae were mounted in freezing medium (Reichert-Jung, Bensheim, Germany), sectioned vertically at 12-μm thickness on a cryostat, and collected on slides. For double-labeling experiments, guinea pig anti-GABA_BR1 (1:1000; PharMingen) and rabbit anti-CREB/2/ATF-4 antibodies (1:1000; Santa Cruz Biotechnology) were used and visualized by red and green fluorescence secondary antibodies, goat anti-rabbit IgG, and goat anti-guinea-pig IgG (Alexa₅₉₄, Alexa₄₈₈; 1:500; Molecular Probes). Sections were examined by confocal laser-scanning microscopy (Leica DM IRBE; Leica Microsystems, Heidelberg, Germany) using a ×63 objective and special filter settings (Leica TCS SP).

Fig. 1. Amino acid sequence alignment of rat and mouse ATF-4. Shown are the leucine zipper I and II motifs, the putative mitogen-activated protein kinase phosphorylation site, and the basic DNA binding domain. The rATF-4 sequence has been deposited to GenBank under accession no. AF252627.

Fig. 2. GAL-4-based Y2H analysis of the interaction between GABA_BR1 and ATF-4. A, deletion constructs of GABA_BR1 (amino acid region on the left) were used as baits for binding ATF-4 as prey. The HIS3 marker was used as reporter in the Y2H assay. B, the equivalent analysis is shown for deletion constructs of rATF-4 used as prey for binding the C terminus of GABA_BR1. Functional sites depicted in Fig. 1 are boxed in this schematic representation of ATF-4. C, helical wheel diagrams of the putative leucine zipper-based interface between GABA_BR1 and rATF-4. The view is from the N termini starting from S887 (position α in GABA_BR1a) and Q299 (α′ in rATF-4). Heptad positions are labeled α–g (α′–g′).

were constructed and tested for complementation in the Y2H assay. These experiments showed that deletion constructs in the GABA_BR1 bait, removing partial sequences from the C terminus, allow binding of rATF-4 (Fig. 2A) until a leucine at amino acid position 915 (Leu-915) is removed (ΔL915) or exchanged by a glycine (L915G) or serine (L915S) residue (data not shown in the illustration). In contrast, replacement of Gln-914 by an alanine (Q914A) did not disturb the interaction. Further restriction analysis on the 5′ end of GABA_BR1a assigns the region of interaction to amino acids 887–915. Interestingly, this domain has been recently mapped to likely participate in the obligate assembly of GABA_BR1 and GABA_BR2 subunits into heteromeric receptor complexes (23, 41), suggesting a bifunctional role of this site.

Conversely, deletion constructs in rATF-4 demonstrated that the first leucine zipper on the putative mitogen-activated protein kinase site of rATF-4 were dispensable for binding, whereas the C-terminal leucine zipper (amino acids 301–337) was required for association with GABA_BR1 (Fig. 2B). When described in terms of the heptad patterns seen in a helical wheel diagram, the interaction sites between the C termini of
ATF-4 and GABABR1 conform with good approximation to classic coiled-coil structures (Fig. 3C). In the bZIP domain of rATF-4, the periodic array of leucines at every seventh position likely interdigitates with that of a matching helix formed by the GABABR1 C terminus to form a zipper-like structure. It has been suggested earlier that bZIP domains not only mediate association between transcription factors prior to DNA binding (42), but also form coiled-coil structures from up to four helices with various other proteins (43). Together with the array of leucines at position d in GABABR1 and d′ in ATF-4, several features are consistent with such an interaction: (i) the β-branched amino acids valine, isoleucine (and alanine) occur at the alternate hydrophobic positions a and a′; (ii) there are highly conserved breaks at these positions caused by polar asparagines; and (iii) the amino acids preceding the alternate juxtaposed hydrophobic residue and following the leucine of the next heptad are often oppositely charged in both proteins to allow electrostatic interactions (38). Consistent with our pull-down experiments using immobilized GST or GST-ATF-4 of rATF-4, was detected exclusively in the GST-GBR1, but not in the GST eluates (Fig. 3B, left). In parallel, we showed that ATF-4 can bind to native GABA_BR1 by performing similar pull-down experiments using immobilized GST or GST-ATF-4 and Triton X-100 extract from crude P2 rat brain fraction. Bound material was eluted and analyzed by Western blotting using anti-GABA_BR1 antibodies. A 130-kDa protein was detected exclusively in the GST-ATF-4, but not in the GST eluates (Fig. 3C).

Electrophysiology and in Vivo Reporting System—In a further series of experiments with heterologously expressed proteins, we sought to reveal a functional consequence of the interaction between GABA_BR and ATF-4. First, we investigated whether cytosolic ATF-4, when binding to the dimeric receptor, might provide a negative regulator of receptor function in that it interferes with G protein binding and thus classic short term signaling. This putative role of ATF-4 on G protein signaling of the receptors was studied in *Xenopus* oocytes under two-electrode voltage-clamp. Coinjection at a 1:1:1 ratio of cRNAs for GABA_BR1, GABA_BR2, and Kir3.1/3.2 concatemers as target channels for receptor signaling resulted in the expression of large basal and baclofen-induced inwardly rectifying K_1 currents in the absence (top left trace) and presence of injected ATF-4 antibodies (bottom left trace). High K_+ (96 mM, arrowheads) and 10 μM baclofen (black bars) were applied to the bath and oocytes voltage-clamped at -80 mV. Dashed lines indicate zero-current levels, scale bar represents 2 μA and 10 s. The right panel shows a bar graph summary of Kir3.1/3.2 inward currents at -80 mV in the presence (black bars) and absence (white bars) of overexpressed ATF-4 and injected anti-ATF-4 antibodies. B, *in vivo* luciferase trans-reporter assay performed on HEK293 cells stably transformed with GABA_BR1 and GABA_BR2. Fusion transactivator proteins between the GAL4 DNA binding domain and ATF-4 and Jun (activated with MEKK), respectively, were transfected together with the luciferase reporter gene under the control of the GAL4 promoter. Luciferase activity was measured in the presence or absence of 10 μM baclofen.

For demonstrating that GABA_BR1 is capable to interact with rATF-4 present in rat brain, we performed pull-down experiments with immobilized GST or GST-GBR1 using crude P1 rat brain extracts. Triton X-100 extracts from a crude rat brain nuclear fraction was incubated with GST or GST-GBR1, and protein binding to the fusion proteins was recovered by adding glutathione beads. Bound material was eluted and analyzed by Western blotting using anti-rATF-4 antibodies. A doublet of 95–100-kDa proteins, corresponding most probably to a dimer of rATF-4, was detected exclusively in the GST-GBR1, but not in the GST eluates (Fig. 3B, left). In parallel, we showed that ATF-4 can bind to native GABA_BR1 by performing similar pull-down experiments using immobilized GST or GST-ATF-4 and Triton X-100 extract from crude P2 rat brain fraction. Bound material was eluted and analyzed by Western blotting using anti-GABA_BR1 antibodies. A 130-kDa protein was detected exclusively in the GST-ATF-4, but not in the GST eluates (Fig. 3C).
ATF-4 interaction on transcriptional activation in HEK293 cells that were engineered to stably express GABA_B1R and GABABR2. In the trans-reporting assay, the GAL4 DNA binding domain was joined to ATF-4 and the construct cotransfected with a GAL4-driven luciferase reporter plasmid. Cells were assayed after 18 h in serum-free medium. Although results varied considerably between different wells, we found that stimulation with 50 \(\mu \text{M} \) baclofen for 1 h increased luciferase levels to 144 \(\pm 72\% \) (\(n = 10 \)) compared with unstimulated cells (Fig. 4B), which is a statistically significant increase (Student’s \(t \) test; \(p < 0.05 \)). In another experiment, the GAL4 DNA binding domain was fused to c-Jun and stimulated with constitutively activate MEKK. Under these conditions stimulation with baclofen significantly decreased luciferase levels to 56 \(\pm 16\% \) (Fig. 4B). The precise mechanisms underlying this differential receptor signaling are presently not understood, but are in accordance with previous findings, if we assume that endogenous ATF-4 is also present in HEK293 cells. ATF-4 has been found to suppress the transcriptional action of Jun family members (44), but is a transcriptional activator by itself (Ref. 45; see “Discussion”).

FIG. 5. Colocalization of ATF-4 and GABAB1R1a in hippocampal neurons. Confocal fluorescence micrographs of primary hippocampal cells immunostained with anti-GABAB1R1 antibodies and detected with Cy3-labeled secondary antibody (A). B, EGFP-tagged ATF-4 expressed through a recombinant Semliki forest virus. C, Fluorescence overlay in the detail figure of regions boxed in A and B shows complete coclustering of ATF-4 and GABAB1R1 in the dendritic membrane. D, fluorescence overlay of ATF-4-EGFP (green) and antibody-labeled synaptophysin (Syn, Cy3 signal in red). Scale bars, 20 \(\mu \text{m} \) (A and B), 10 \(\mu \text{m} \) (C), and 7 \(\mu \text{m} \) (D).

Neuronal Expression via SFV—The cellular expression of GABAB1R1 and ATF-4 in vivo was first analyzed in low density rat hippocampal cultures by immunofluorescence. Primary cultures of rat hippocampal neurons were infected with an SFV vector containing EGFP-tagged ATF-4 (ATF-4-EGFP) and expression evaluated 12–18 h after infection. In confocal images ATF-4 was found in the nucleus and diffusely in the cytoplasm, but primarily clustered at specific sites in the outer membranes of hippocampal cell somata and along dendrites (Fig. 5B). Under whole cell patch-clamp conditions, all hippocampal neurons cultured from this age displayed GABA_B Rs as revealed by prominent baclofen-induced inwardly rectifying K⁺ currents (data not shown). After staining with Cy3-labeled secondary antibodies, GABAB1R1 antibodies gave rise to a punctate membrane pattern of dendritic immunoreactivity that exactly colocalized with coexpressed ATF-4 (Fig. 5, A and C). A similar pattern of GABAB1R immunoreactivity was obtained in hippocampal cells that were not infected with ATF-4 SFV, ensur-
ing that overexpression of ATF-4 did not affect receptor distribution.

In many cases these puncta were not congruent with synaptic regions, as indicated by the differential distribution of the presynaptic terminal marker synaptophysin (Fig. 5D) or glutamic acid decarboxylase that shows inhibitory GABAergic terminals (data not shown). Our findings suggest that GABA\(_B\)R1 and ATF-4 are clustered predominantly at extrasynaptic sites in neuronal cells.

Colocalization in the Retina—For the mammalian retina, it has been shown that GABA\(_B\)Rs are strongly expressed in amacrine cells both pre- and postsynaptically (46). We therefore investigated whether GABA\(_B\)Rs and ATF-4 would indeed co-cluster at distinct subcellular sites in a native central nervous system neuron. Fig. 6 depicts a wide field amacrine cell with the cell body located in the inner nuclear layer and its processes stratifying in the inner plexiform layer close to the inner nuclear layer. Immunocytochemical double-labeling experiments with anti-GABA\(_B\)R and anti-ATF-4 antibodies revealed the striking overlap of GABA\(_B\)R immunoreactivity (green) and ATF-4 immunoreactivity (red) both in the cytoplasmic compartment of the amacrine cell and also along its processes and terminal arborizations, suggesting a strong functional relationship between these two proteins in selected neurons.

DISCUSSION

Here we demonstrate for the first time a tight and direct interaction between a heptahelical neurotransmitter receptor and a soluble transcription factor (ATF-4). We show that the bZIP domain of ATF-4 associates with the GABA\(_B\)R C termini in a coiled-coil-confirmation, which is common, e.g., among structural proteins and contains between two and four helices. Given that the site at which ATF-4 interacts with both GABA\(_B\)R1 and likely GABA\(_B\)R2 overlaps with the putative interaction site between the two subunits (23, 41), it may be hypothesized that, at least temporarily, triple-helix structures exist. It is currently thought that individually neither of the two receptor subtypes is expressed and transported with high efficiency to the outer membrane, because of homodimer instability (41). Instead, the majority of native GABA\(_B\)Rs are likely to exist as heterodimers between GABA\(_B\)R1 and GABA\(_B\)R2 (19–23) with specific electrostatic interactions in their C termini giving rise to parallel coiled-coil \(\alpha\)-helices. Our assays convincingly showed that ATF-4 is tightly linked to GABA\(_B\)Rs expressed in neuronal membranes. Similarly, overlapping edge fluorescence of ATF-4 and GABA\(_B\)R1 immunoreactivity was observed by confocal microscopy after cotransfection into COS-7 cells (data not shown). In COS-7 cells that lack GABA\(_B\)R1 and GABA\(_B\)R2, ATF-4 was not seen at the plasma membrane, but only diffuse cytoplasmic staining was found, suggesting that GABA\(_B\)Rs play a role in recruiting ATF-4 to the outer plasma membrane. The notion that in neurons transcription factors are localized in dendrites and may be retrogradely transported to the nucleus has emerged only recently (47). One of the possible cellular consequences of the documented GABA\(_B\)R/ATF-4 interaction would be that agonist stimulation of the receptor at the outer surface membrane releases ATF-4, which then translocates into the nucleus to increase the nuclear pool of this transactivating protein. Like other transcription factors, ATF-4 is likely imported across the nuclear membrane by shuttling proteins that recognize nuclear localization signals (NLS; Refs. 48 and 49). A putative bipartite NLS sequence of clustered basic residues is present in the basic region of ATF-4 amino acid position 279–296. In analogy to the processes that mask and expose NLS in other transcription factors (50, 51), we speculate that the NLS of cytosolic ATF-4 is masked upon binding to the GABA\(_B\)R C-terminal region and available to shuttle carriers only after agonist-driven release. So far, the functional assays performed in our study do raise several unsolved questions on the stimuli and targets of cytosolic ATF-4. Although transfected COS cells and primary neurons in our experiments were depleted overnight of serum and other extracellular stimuli, prominent ATF-4 signals often remained in the nuclei. This may have masked a pronounced, visually detectable translocation signal of ATF-4 upon receptor stimulation with baclofen. As an alternative explanation, ligand binding to the receptor may be insufficient to fully activate ATF-4 as a transcriptional protein, but require a coincident stimulus through another signaling protein of the receptor matrix.

When using the trans luciferase reporter assay, a moderate rise in transcriptional activity via ATF-4 was seen upon receptor stimulation. This trend was supported by a cis reporting assay in HEK-GBR1 stable cells, in which CRE-driven luciferase expression was enhanced by ~20% by baclofen in the presence of 10 ng/ml pertussis toxin (data not shown). In this assay gene expression was reduced by >30% in the absence of pertussis toxin which disrupts receptor stimulation of G\(_B\) proteins. This indicates that, even under experimental suppression of G protein-mediated GABA\(_B\) R signaling, ATF-4 may be involved in CRE-mediated stimulation of gene expression independent of G proteins. Yet, this action is far from being understood in detail. Similar to other proteins of the CREB/ATF family, ATF-4/CREB2 is known to bind to the transcriptional enhancer motif CRE as homo- or heterodimers in conjunction with c-Jun, but also together with TATA-binding protein, TFIIH, RAP30 subunit of TFIIF, or the coactivator CRED-binding protein CBP/p300 (38, 45, 52). It has been reported that ATF-4, like CREB, can act as a transcriptional activator (45), but under a variety of experimental conditions significantly represses CRE-dependent transcription (39, 44). This bifunctional role may be explained by the displacement of other CREB activator/coactivator proteins from the CRE promoter site by high amounts of ATF-4 (squelching), resulting in inhibition of transcriptional activation. A repressive action of ATF-4 orthologues on CREB1-mediated transcription in *Aplysia*, *Drosophila*, and rodents (53) has been interpreted to impede synaptic plasticity and affect spatial and social learning (54, 55). Based on its repressive character in the nervous system and in analogy to the function of tumor suppressor genes, CREB2/ATF-4 has been suggested to act as a “memory suppressor gene” that decreases synaptic strength or removes inhibitory constraints of long term memory storage (56, 57).

Heptahelical receptors are commonly thought to signal primarily through coupling to G proteins. Only recently, however, they have been found to interact with a growing number of membrane and cytosolic proteins, including proteins that function in signal termination (58), synaptic targeting (59), mitogenic signaling (60, 61), and translational regulation (62, 63). With the direct interaction of metabotropic GABA\(_B\)R and the ubiquitously expressed transcription factor ATF-4 demonstrated here, a novel alternative mechanism by which transcriptional regulation important for long term memory formation (64) may be initiated at inhibitory synapses of the mammalian central nervous system, is emerging.

Acknowledgments—We are grateful to Drs. B. Bettler and F. Doring for continuous intellectual and experimental support as well as D. Reuter, A. Niehuis, D. Magalei, A. Hildebrand, and O. Dick for excellent technical assistance. We also thank I. Herford and Dr. C. Rosenmund for providing and handling the hippocampal cell cultures, as well as A. Bührmann and Dr. J. Rettig for help with the SFV expression system.

REFERENCES

MECHANISMS OF SIGNAL TRANSDUCTION:
The Metabotropic GABA_B Receptor Directly Interacts with the Activating Transcription Factor 4

Ralf B. Nehring, Hiroshi P. M. Horikawa, Oussama El Far, Matthias Kneussel, Johann Helmut Brandstätter, Stefan Stamm, Erhard Wischmeyer, Heinrich Betz and Andreas Karschin

doi: 10.1074/jbc.M002727200 originally published online August 2, 2000

Access the most updated version of this article at doi: 10.1074/jbc.M002727200

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 64 references, 24 of which can be accessed free at http://www.jbc.org/content/275/45/35185.full.html#ref-list-1