GAS41, a Highly Conserved Protein in Eukaryotic Nuclei, Binds to NuMA*

Received for publication, February 7, 2000, and in revised form, July 3, 2000
Published, JBC Papers in Press, July 25, 2000, DOI 10.1074/jbc.M000994200

Jens Harborth‡, Klaus Weber, and Mary Osborn

From the Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany

The yeast two-hybrid system was used to identify binding partners of NuMA, a component of the nuclear matrix in interphase cells. By using the C-terminal half of NuMA as bait, a human cDNA sequence coding for a 223-amino acid protein with a non-helical N-terminal domain and a C-terminal α-helical portion was identified and fully sequenced. It was identical to GAS41, a sequence amplified in human gliomas. The sequence of the homologous Drosophila protein was established, and the alignment for GAS41 from nine different species showed that GAS41 is a general eukaryotic protein found in species as diverse as Arabidopsis, Drosophila, Caenorhabditis elegans, yeast, and man. Northern blot analysis showed a single transcript in eight human tissues. A polyclonal antibody to GAS41 showed a dotted staining pattern in interphase nuclei and a uniform distribution in mitotic cells. A GFP-GAS41 fusion protein displayed equivalent patterns. In vitro GAS41 bound to the C-terminal part of the rod region of NuMA, as shown by dot overlay and by surface plasmon resonance measurements. The Kd of the complex was 2 × 10−7 M. GAS41 is related to the AF-9 and ENL proteins, which are putative transcription factors found as fusion proteins in some acute leukemias. The NuMA/GAS41 interaction may provide a link between nuclear structure and gene expression.

The knowledge of proteins that form the nuclear skeletal structure in interphase is still incomplete. NuMA, the nuclear mitotic apparatus protein, is a protein that shows a striking change in localization during the cell cycle moving from the nuclear matrix in interphase to the spindle poles in mitotic cells (1). This change in location is accompanied by specific changes in phosphorylation of the NuMA molecule (2, 3) and presumably also by changes in the binding partners with which NuMA interacts. In interphase NuMA is a component of the nuclear matrix since it remains insoluble after DNase and high salt treatments of the nucleus. It is also resistant to extraction by non-ionic detergents, but it can be solubilized by high concentrations of urea (1, 4, 5). NuMA can bind specifically to DNA matrix regions (6). It also binds to the nonerythroid isofrom of protein 4.1R located within the nucleus (7).

Transient overexpression of NuMA in HeLa cells results in regular nuclear networks that fill the nucleus, are stable to detergent extraction, and can be visualized by electron microscopy. Immunelectron microscopy shows that these nuclear lattices are built from NuMA (8). In addition, we have shown that recombinant NuMA expressed in Escherichia coli can self-assemble in vitro under physiological salt conditions into a novel higher order structure, the multiarm oligomer. Computer modeling suggests that these oligomers could be the structural unit of the lattices seen in electron microscopy in the nuclei of cells transfected with NuMA (9). These lattices could possibly provide a framework where nuclear processes such as transcription take place.

The importance of NuMA in interphase as well as the fact that it plays an essential role in mitosis (4, 10–12) suggest that it would be of interest to characterize binding partners. We therefore used the yeast two-hybrid system (13) to screen a HeLa library for proteins that interact with NuMA. Our screen has revealed surprisingly that the protein product of a gene previously shown to be amplified in gliomas (GAS41) is a binding partner for NuMA. GAS41 is amplified in 23% of globlastomas and in 80% of grade I astrocytomas. GAS41 was the first gene shown to be amplified in low grade glioma, and its definition showed that gene amplification is not limited to late events in tumor progression (14). Here we report that GAS41 is a highly conserved protein since homologs to the human form were found in Arabidopsis, Drosophila, Caenorhabditis elegans, and yeast. We further show that GAS41 is a nuclear protein giving a dotted pattern in interphase cells and is present in a variety of human tissues. The specific interaction of GAS41 with NuMA was confirmed in vitro by immunoprecipitation experiments and surface plasmon resonance binding assays.

EXPERIMENTAL PROCEDURES

RNA Preparation—mRNA was prepared using the messenger RNA isolation kit from Stratagene (La Jolla, CA). HeLa cells were homogenized in guanidinium isothiocyanate and β-mercaptoethanol. 3′-Polyadenylated mRNA was isolated using oligoh(dT)-cellulose. Drosophila melanogaster embryo poly(A)+ RNA was obtained from CLONTECH.

Construction of the pAD-GAL4 cDNA Library and Two-hybrid Screening—Starting from 5 μg of poly(A)+ RNA, a cDNA library of HeLa cells was constructed in the phagemid pAD-GAL4 (GAL4 activation domain vector) using the HybriZAP two-hybrid cDNA Gigapack cloning kit (Stratagene) followed by mass excision. cDNA synthesis was oligoh(dT)-primed. This library was used to identify novel components that interact with “bait” NuMA cDNA constructs. Different NuMA cDNA fragments obtained by PCR1 amplification and EcoRI and SalI treatment were ligated into the corresponding sites of pBD-GAL4 (GAL4 binding domain vector, Stratagene). PCR amplification was done

* This work was supported in part by the Deutsche Forschungsgemeinschaft (OS70/2-3). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EBI Data Bank with accession number(s) AJ245746.
‡ To whom correspondence should be addressed. Tel.: 49 551 201 1347; Fax: 49 551 201 1578; E-mail: jharbor@gwdg.de.

1 The abbreviations used are: PCR, polymerase chain reaction; RACE, rapid amplification of cDNA ends; bp, base pair; kb, kilobase pair; GST, glutathione S-transferase; PBS, phosphate-buffered saline; GFP, green fluorescent protein.
using Vent polymerase (New England Biolabs, Schwabach, Germany), which has 3’ to 5’ proofreading exonuclease activity. NuMA clones a1 and a2 (5), or full-length cDNA, were used as template. Primer pairs for the different two-hybrid bait constructs (Fig. 1) and the amino acid residues in which they result were as follows: N (33, 54, 1–1068), C (53, 38, 1048–2115), H (33, 55, 1–215), T (35, 38, 1701–2115), Ncoil (27, 54, 1–1068), and C (53, 38; 1048–2115). The restriction enzyme site within the primer sequence is underlined. The stop codon is shown in bold. Base pair positions refer to the sequence of the pGEX-Kcat expression vector. A single E. coli colony BL21 DE3(pLysS) transformed with the construct was used to inoculate 2 × YT (2% glucose + 1% tryptone) containing ampicillin (100 μg/ml) to an absorbance of 0.1 at 600 nm. The culture was grown at 37 °C with shaking until it reached an absorbance of 0.5. The rate constants were determined by the Bradford assay (17). The rate constants were used to calculate the dissociation constant (Kd) surface plasmon resonance studies were performed using the BIAcore 2000 apparatus (BIAcore, Uppsala, Sweden). Purified NuMA constructs a1 and a2 were immobilized on a CMS sensor chip via their primary amino groups following the manufacturer’s instructions. Both proteins were coupled at a density of 9000 resonance units. For all further experiments, PBS (137 mM NaCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.3) was used as running buffer at a flow rate of 0.5 μl/min. 0.5% SDS, 10 mM NaOH was used to regenerate the sensor surface after each experimental cycle (16). Purified GST-NuMA fusion protein was used at concentrations ranging from 50 to 1000 μM, and GST as a control to monitor nonspecific binding. Protein concentrations were determined by the Bradford assay (17). The rate constants were determined with the BIAcore evaluation software 3.0, assuming first order kinetics (1:1 interaction).

**RESULTS**

**Identification of a Binding Partner for NuMA in the Yeast Two-hybrid Assay**—The two-hybrid system was used to screen for proteins that interact with NuMA. We used the fusion protein GAL4-BD-NuMA (amino acid residues 1048–2115 of NuMA) bait in the pBD-GAL4 vector (Fig. 1A) and the human HeLa cDNA library in the pHybZAP fusion to the GAL4 activation domain in pADGAL4. Screening was performed using the semi-dry transfer procedure (5).

**Ligand Interaction Studies**—To determine dissociation constants (Kd) for target proteins, the following procedures—SDS polyacrylamide gel electrophoresis (PAGE) and Western blot analysis were used. Proteins were transferred to nitrocellulose using the semi-dry transfer procedure (5).

**Gel Electrophoresis and Western Blot Analysis**—By Standard Procedures—SDS polyacrylamide gel electrophoresis was used to remove acrylamide gels. Proteins were transferred using the semi-dry transfer procedure (5).
AD, nor did the GAL4-AD-X hybrid interact with the unfused GAL4-BD (data not shown). Fusing the original bait (NuMA-C) into the pAD vector and the target protein into the pBD vector also gave a positive result (Fig. 1B). The same clone was found in a second independent screen. This led to the isolation of a cDNA clone with a length of 652 base pairs. This clone X showed an open reading frame of 50 amino acids and a long 3'-translated region that included a polyadenylation signal and the poly(A) tail. The interaction of clone X with the other NuMA constructs shown in Fig. 1A was also tested. Clone X interacted strongly with the C-terminal part of the coiled-coil rod domain (amino acid residues 1048–1700). Thus it interacted with the NuMA C and the NuMA Ccoil constructs but did not interact with the N, H, T, or Ncoil constructs (Fig. 1B). The data from the two-hybrid assay show that the C-terminal 50 amino acids predicted by the clone X sequence bind to residues 1048–1700 of NuMA.

Since the HeLa library was oligo(dT)-primed, we used the 5'-RACE technique to obtain the sequence 5' to the new cDNA. The full-length cDNA was amplified, cloned, and sequenced. The nucleotide and corresponding amino acid sequences are shown in Fig. 2A. DNA sequencing revealed a nucleotide sequence that is underlined in the cDNA clone X sequence.

Fig. 1. A, top, secondary structure of NuMA indicating the long coiled-coil region flanked by non-helical head and tail domains, Middle, constructs used for the two hybrid system (N, C, H, T, Ncoin, and Ccoin). Bottom, constructs used for the in vitro binding assay (1a and 2b). The amino acid sequence numbers for NuMA are shown in the 2nd line, and the exact limits of each of the constructs are given in the text. B, specific interaction between NuMA and GAS41 observed by the yeast two-hybrid system. The bait protein (the NuMA construct) was fused to the GAL4 DNA-binding domain (pBD vector). The interacting protein (the pAD vector) activates the transcription of the HIS3 and lacZ genes when the probe and interactor associate physically. Constructs in the pAD vector are always in the top line, and constructs in the pBD vector are always in the bottom line. Note that clone X interacted strongly with constructs containing the C-terminal part of the coiled-coil rod domain but did not react with the H, T, N, or Ncoin constructs. Cloning X into the pBD vector and NuMA C into the pAD vector also revealed strong interaction. The unlabeled parts of this figure are not relevant to this study.

Fig. 2. A, the nucleotide and corresponding amino acid sequence of human GAS41. The translational stop codon is marked by an asterisk. The underlined protein sequence indicates the residues where the cDNA was fused to the GAL4 activation domain (the original clone from the two-hybrid screen). The polyadenylation signal in the 3'-translated region is underlined. These sequence data have been submitted to the EMBL data base under accession number AJ245746. B, secondary structure of GAS41. Predictions were made using the Chou-Fasman algorithm (28) with the overall probability procedure introduced by Nishikawa (29) (top) or the Garnier-Osguthorpe-Robson algorithm (20) (bottom). C, hydropathy blot according to Kyte and Doolittle (30) with a window size of 10 residues.
Fig. 3. Alignment of the amino acid sequences of GAS41 from 9 different species, showing that the protein is conserved from yeast to man. The human sequence and the D. melanogaster DNA sequences are from this study. Open reading frames or ESTs from other species were found in the data bases. For R. norvegicus, A. thaliana, and A. nidulans only partial sequences are available. Missing parts of the sequence are indicated by dashes. Gaps introduced to optimize the alignments are indicated by dots. Bold type is used to identify residues that are identical in at least 7 of the 9 sequences or where all except one or two of the known sequences, show identical residues. The amino acid numbers for the human sequence are shown at the top.

Fig. 4. Alignment of human AF-9, ENL, and GAS41. Identical amino acid residues are shown in black boxes and similar residues in gray boxes. Note that GAS41 corresponds only to the first 208 or 206 residues of the longer proteins AF-9 and ENL (568 or 559 residues total).

A1012982) were also found. So were sequences for Arabidopsis thaliana (H76547) and Aspergillus nidulans (AA78444). An alignment of all nine sequences is shown in Fig. 3. The human and Drosophila protein sequences show 61% identity and 70% similarity, whereas the human and the C. elegans sequences show 48% identity and 59% similarity. The GenBank™ search also showed that the cloned human sequence was identical to GAS41, a gene shown by Fischer et al. (14) to be amplified in some human gliomas.

The N-terminal part of GAS41 seems to be highly conserved between different species (Fig. 3) with the region corresponding to residues 80 and 94 of the human sequence being especially well conserved. Secondary structure prediction rules (20) show that the C-terminal 60 amino acids are essentially well conserved. Secondary structure prediction rules (20) show that the C-terminal 60 amino acids are essentially well conserved. Secondary structure prediction rules (20) show that the C-terminal 60 amino acids are essentially well conserved. Secondary structure prediction rules (20) show that the C-terminal 60 amino acids are essentially well conserved. Secondary structure prediction rules (20) show that the C-terminal 60 amino acids are essentially well conserved.
GAS41 shows 39% identity and 59% similarity to the human AF-9 protein and 37% identity and 61% similarity to the human ENL protein (Fig. 4). AF-9 and ENL share 56% identity and 68% similarity, with the highest homology located to 140 residues at the N terminus and 67 residues at the C terminus. AF-9 and ENL are thought to belong to a new class of transcription factors (24).

**GAS41 Is Present in a Variety of Human Tissues and in Cell Lines**—The distribution of transcripts of GAS41 in a variety of human tissues was examined by Northern blot hybridization analysis using as a probe the 1055-bp fragment starting in the 5'-translated region at base number 210 and ending in the 3'-untranslated region at base number 1264. We detected a single ~1.7-kb mRNA transcript corresponding to GAS41 in all eight tissues tested (Fig. 5A). When normalized using the β-actin probe as control, equivalent amounts of GAS41 seemed to be present in the eight tissues listed in Fig. 5.

To see if GAS41 is expressed in human cell lines, immunoblots were performed using an affinity-purified rabbit antibody to GAS41. The antibody was raised against the C-terminal peptide (260<sup>CLKNEIRKLEEDDQA<i>K</i></sup>)<sup>282</sup> and affinity-purified on the peptide coupled to bovine serum albumin. An immunoreactive band with an apparent molecular mass of ~26 kDa was detected in Western blots of whole cell extracts of HeLa and glioma cells (Fig. 6). In HeLa cells transiently transfected with the GFP-GAS41 construct the affinity purified antibody detected the endogenous GAS41 and an additional band of ~52 kDa in HeLa cells transfected with the GFP-GAS41 fusion protein. When the same cell extract was tested with a GST-GAS41 antibody, the 52-kDa protein was also found. However in addition a second slightly larger polypeptide that might correspond to a phosphorylated form of the fusion protein was also detected by immunoblotting (Fig. 6).

The subcellular localization of GAS41 was determined by immunofluorescence microscopy using the rabbit GAS41 antibody. In interphase cells GAS41 was found in dots throughout the nucleoplasm with the exception of the nucleolus (Fig. 7A). In metaphase GAS41 is found distributed throughout the mitotic cell but did not specifically bind to the chromosomes (Fig. 7B).

The nuclear localization of GAS41 was confirmed by monitoring HeLa cells transfected with the GFP-GAS41 construct (Fig. 7C). Again, the GFP fusion protein was distributed in a punctate form in the nucleoplasm of interphase cells, and the nucleoli were not stained.

**Interaction between GAS41 and NuMA: Immunoprecipitation Experiments, Dot Overlay Assays, and Surface Plasmon Resonance Experiments**—To determine whether GAS41 and NuMA interact <i>in vivo</i>, communoprecipitation using nuclear extracts from HeLa cells was performed. NuMA was precipitated using a polyclonal antibody directed against the head region. Subsequent detection with anti-GAS41 polyclonal antibody and an F<sub>1</sub>-specific second antibody showed a band in the expected range of 26 kDa, which was not detected in the control without first antibody (data not shown). This suggests that GAS41 and NuMA are contained in the same protein complex <i>in vivo</i>. The relatively low efficiency of communoprecipitation suggests that only a fraction of these molecules associate together <i>in vivo</i>.

An interaction between GAS41 and NuMA was verified <i>in vitro</i> using dot overlay assays (Fig. 8). GAS41 was expressed as a GST fusion protein in <i>E. coli</i>. The NuMA N-terminal construct (λ1a, residues 1–851) and the construct including the C-terminal part of the rod (λ2b, residues 670–1,700) were soluble when expressed in <i>E. coli</i> and purified to homogeneity as described earlier (5). These constructs were spotted onto nitrocellulose and incubated with either the purified GST-GAS41 fusion protein or with GST. Binding was monitored by treating the dot blots with the GST-specific antibody. The results show that the GST-GAS41 fusion protein bound to the λ2b construct but not to the λ1a construct (Fig. 8A). SDS gel electrophoresis of the protein preparations used in the dot blot
assays show that there were no contaminating proteins present that might have mediated this interaction (Fig. 8B). Since GST alone did not bind to the λ2b construct, our results imply a direct binding of GAS41 to the C-terminal part of the coiled-coil rod domain of NuMA.

Finally, we analyzed the kinetic properties of the complex formation between NuMA and GAS41 by surface plasmon resonance measurements. The two different NuMA constructs λ1a and λ2b (see Fig. 1A) were immobilized on the sensor chip surface. Binding and dissociation of either GST-GAS41 fusion protein or GST were monitored in terms of relative units (Fig. 9). The corresponding curves obtained binding and dissociation was easily monitored in the range of 50–1000 nM GST-GAS41. The corresponding curves obtained binding and dissociation was easily monitored in the range of 50–1000 nM GST-GAS41. The calculated dissociation constant of the NuMA-GAS41 complex was 2 × 10⁻⁷ M, and this is in the range commonly found for the interaction of cytoskeletal components (25).

A two-hybrid screen using the NuMA C-terminal half as bait in the yeast two-hybrid system led to a human cDNA which by sequence was shown to correspond to GAS41. GAS41 specifically interacts with the C-terminal part of the central coiled-coil region of NuMA (residues 1048–1700). The C-terminal 50 residues of GAS41 were necessary for NuMA binding in the two-hybrid system. Dot overlays provided independent proof that the C-terminal part of the coiled-coil rod region of NuMA binds to GAS41 since construct λ2b, covering residues 670–1700, showed a strong reaction, whereas the N-terminal construct λ1a covering residues 1–851 did not. Independent evidence for the interaction between NuMA and GAS41, as well as the kinetic constants for association and dissociation of the NuMA-GAS41 complex were provided by surface plasmon resonance studies (Fig. 9). The NuMA fragment λ2b bound 3500 times more strongly to GAS41 than did λ1a. The calculated dissociation constant of the NuMA-GAS41 complex is 2 × 10⁻⁷ M, and this is in the range commonly found for the interaction of cytoskeletal components (25).

GAS41 is highly conserved among species as diverse as fungi, yeast, plants, and man (Fig. 3). Thus GAS41 is a general eukaryotic nuclear protein. This provides a handle to examine directly the function of GAS41, for instance by making knockouts in mice or C. elegans.

Northern blot analysis showed that the mRNA for GAS41 was expressed in all eight human tissues that were tested. Immunohistochemistry with GAS41-specific antibodies showed a nuclear-specific localization in interphase cells. Interphase nuclei were stained in a punctate fashion (Fig. 7A). An independent determination of the cellular localization of GAS41 used cells transfected with a GFP-GAS41 construct. In interphase cells again a punctate nuclear distribution of GAS41 was seen both in fixed cells assayed by immunofluorescence microscopy and in living cells analyzed for the distribution of the GFP construct (Fig. 7C). Further experiments using methods with higher resolution (for example 4P microscopy) are needed to see if GAS41 colocalizes to a subfraction of NuMA dots reported for instance with the NuMA 705 antibody (8). In mitotic cells GAS41 and NuMA have different localizations. GAS41 is found throughout the cell (Fig. 7B), and NuMA is associated with spindle poles (1, 4).

The sequence homology of GAS41 with the human AF-9 and ENL proteins is intriguing (Fig. 4 and Ref. 14). AF-9 is found fused to the ALL-1 gene in leukemias with t(9;11) translo-
tions, and ENL is found fused to the ALL-1 gene in leukemias with t(11;19) translocations. The fact that AF-9 and ENL have extensive sequence homology as well as several shared sequence motifs (e.g. a nuclear targeting sequence, serine-rich domains and stretches rich in proline or in basic amino acids) has led to the suggestion that the functional activities of the proteins coded for by AF-9 and ENL are related and are important in leukemia (24). Many genes associated with translocations in acute leukemia code for transcription factors (26) and are important in leukemia (24). Many genes associated with translocations in acute leukemia code for transcription factors (26) and in contrast to these two proteins lacks a typical DNA-binding domain for transcriptional activation (Fig. 4). However, GAS41 could activate transcription together with a second protein that contains a DNA-binding domain.

We speculate that the interaction between NuMA and GAS41 shown here may provide a direct link between nuclear architecture and gene expression. We have shown elsewhere that NuMA has the ability to polymerize into lattice-like structures in vitro (8), and we have also shown that NuMA can self-assemble in vitro into multiarm oligomers, which may be the structural unit for a nuclear scaffold (9). Obviously, to prove such a link further evidence has to be provided to show that GAS41 is involved in transcription and to define the nature and stoichiometry of the GAS41-NuMA complex.

Acknowledgments—We are very grateful to Dr. Stefan Höning for help with the surface plasmon resonance studies and to Heinz-Jürgen Dehne for expert technical assistance.

REFERENCES
GENES: STRUCTURE AND REGULATION: GAS41, a Highly Conserved Protein in Eukaryotic Nuclei, Binds to NuMA

Jens Harborth, Klaus Weber and Mary Osborn

doi: 10.1074/jbc.M000994200 originally published online July 25, 2000

Access the most updated version of this article at doi: 10.1074/jbc.M000994200

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 31 references, 18 of which can be accessed free at http://www.jbc.org/content/275/41/31979.full.html#ref-list-1