The SNAP-25 Linker as an Adaptation Toward Fast Exocytosis

Gábor Nagy,*†‡ Ira Milosevic,*‡§ Ralf Mohrmann,* Katrin Wiederhold,|| Alexander M. Walter,* and Jakob B. Sørensen*

*Department of Cell Biology, Yale University, School of Medicine, ‡These authors contributed equally to this work.

© 2008 by The American Society for Cell Biology 3769

The assembly of four soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into a complex is essential for membrane fusion. In most cases, the four SNARE-domains are encoded by separate membrane-targeted proteins. However, in the exocytotic pathway, two SNARE-domains are present in one protein, connected by a flexible linker. The significance of this arrangement is unknown. We characterized the role of the linker in SNAP-25, a neuronal SNARE, by using overexpression techniques in synaptosomal-associated protein of 25 kDa (SNAP-25) null mouse chromaffin cells and fast electrophysiological techniques. We confirm that the palmitoylated linker-cysteines are important for membrane association. A SNAP-25 mutant without cysteines supported exocytosis, but the fusion rate was slowed down and the fusion pore duration prolonged. Using chimeric proteins between SNAP-25 and its ubiquitous homologue SNAP-23, we show that the cysteine-containing part of the linkers is interchangeable. However, a stretch of 10 hydrophobic and charged amino acids in the C-terminal half of the SNAP-25 linker is required for fast exocytosis and in its absence the calcium dependence of exocytosis is shifted toward higher concentrations. The SNAP-25 linker therefore might have evolved as an adaptation toward calcium triggering and a high rate of execution of the fusion process, those features that distinguish exocytosis from other membrane fusion pathways.

INTRODUCTION

The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are central to vesicular trafficking (Fasshauer, 2003; Jahn and Scheller, 2006; Rizo et al., 2006) and characterized by a stretch of 60–70 amino acids, known as the SNARE motif (Terrian and White, 1997; Weimbs et al., 1997). The assembly of four SNARE domains into a coiled-coil bundle is a general mechanism in fusion of intracellular membrane compartments. The bundle is held together by layers of hydrophobic interaction, with the exception of the middle layer (layer “0”), which is formed by an arginine and three glutamines (Sutton et al., 1998). The SNARE domains can be subdivided into four homologous groups, named after their contribution to the zero layer: R, Qa, Qb, and Qc (Fasshauer et al., 1998b). SNARE assembly requires the participation of one domain from each group, resulting in a certain degree of specificity (McNew et al., 2000; Scales et al., 2000a).

In most cases, the four SNARE-domains are encoded by separate membrane-targeted proteins, but the SNAREs driving the fusion of vesicles with the plasma membrane (exocytosis) are special in that three proteins provide the four domains (Weimbs et al., 1998; Fukuda et al., 2000). One of the SNAREs in this pathway, exemplified by the best-known isoform synaptosomal-associated protein of 25 kDa (SNAP-25), seems to have been created by fusion of the Qb and Qc SNAREs. This arrangement necessitates a flexible linker, which runs back along the complex from the C-terminal end of the first (Qb) SNARE-domain and connects to the N-terminal end of the second SNARE-domain (Qc). This antiparallel linker is a special feature of exocytotic SNARE complexes in eukaryotic organisms from yeast to human.

The only function so far ascribed to the linker domain is the membrane-targeting of SNAP-25 and SNAP-23 through the palmitoylation of four to five cysteine residues in the N-terminal end of the linker (Gonzalo et al., 1999; Loranger and Linder, 2002). However, other members of the family (SNAP-29, SNAP-46, Sec9, and SPO20) lack linker cysteines. It remains controversial whether palmitoylation is needed for the function of SNAP-25 in exocytosis, or only for membrane targeting, and it is unknown whether the linker plays any other, more active role in determining the special features that distinguish exocytosis from other membrane fusion reactions: calcium-triggering and a high rate of execution of the fusion process.

Ca2+-triggered exocytosis from SNAP-25 null mouse chromaffin cells is nearly abolished, but it can be rescued by viral expression of SNAP-25 isoforms (Sørensen et al., 2003b).
Here, we used this approach and fast electrophysiological techniques to address the role of the SNAP-25 linker domain in exocytosis. By mutating linker-cysteines in SNAP-25 and substituting the SNAP-23 linker for its SNAP-25 counterpart, we verify the function of cysteines in membrane targeting, and we show that the cysteine-containing part of the SNAP-25 and SNAP-23 linker is interchangeable. However, a short 10-amino acid stretch at the C-terminal end of the SNAP-25 linker is necessary for fast calcium triggering of exocytosis. These data establish the SNAP-25 linker as an integral part of the membrane fusion machinery, and they suggest that the arrangement of the Qa and Qb motifs in one protein together with a linker is an adaptation toward fast exocytosis.

MATERIALS AND METHODS

Cell Culture and Expression Constructs

Snap-25 null animals and control littermates were obtained by crossing heterozygotes and recovered by Cesarean section at embryonic days 17–19. Primary cultures of mouse chromaffin cells were prepared and cultured as described previously (Sorensen et al., 2003b). SNAP-25a cysteine mutants and SNAP-25a/SNAP-23 chimeras were produced by polymerase chain reaction (PCR), and all constructs were verified by DNA sequencing. Semliki Forest virus particles expressing mutant/chimera together with enhanced green fluorescent protein from a bicistronic message were generated as described (Ashery et al., 1999). For bacterial expression of the SNAP-25a and SNAP-23 linker domain constructs, corresponding DNAs were cloned into a PET28a vector via the Ndel/EcoRI cleavage sites.

Immunofluorescence on Plasma Membrane Sheets

Plasma membrane sheets were generated 6 h after viral infection of mouse embryonic chromaffin cells and subsequently fixed, washed, and blocked as described previously (Nagy et al., 2005). The membrane sheets were incubated with the primary antibodies (mouse anti-SNAP-25, dilution 1:100; rabbit anti-syntaxin 1, dilution 1:100; Synaptic Systems, Göttingen, Germany) for 3 h and subsequently with cyanine (Cy3)- and Cy5-coupled secondary antibodies for 60 min (dilutions 1:200; Jackson ImmunoResearch Laboratories, West Grove, PA). All antibodies were diluted in phosphate-buffered saline (PBS) containing 1% bovine serum albumin. 1-(4-Trimethyl-amino phenyl)-6-phe- nyl-1,3,5-hexatriene (Invitrogen, Carlsbad, CA) was used for visualizing the plasma membrane. Samples were examined with an Axiovert 100TV fluorescence microscope (Carl Zeiss, Oberkochen, Germany) with a 100 × 1.4 numerical aperture plan achromatic objective by using appropriate fluorescence filters. Digital images were taken in a cooled-illuminated frame-transfer charge-coupled device camera (512 × 512-NTE Chip, 24 × 24-pixel size; Scientific Instruments, Monmouth Junction, NJ) with a magnifying lens (2.5× Optivar). Digital image analysis was performed using MetaMorph software (Molecular Devices, Sunnyvale, CA). To quantify fluorescence intensities in a region-of-interest was defined on the randomly selected membrane and transferred to the other channels. The fluorescence intensity was calculated by measuring the average intensity of the area and subtracting the local background. At least 10 membrane sheets from each animal were analyzed, and the mean value for each animal was used to calculate population mean and SEM (5–13 animals per condition). Correlative features of fluorescent spots were analyzed as described in Nagy et al. (2005).

Immunoblotting

Bovine chromaffin cell preparation was performed essentially as described previously (Nagy et al., 2002). The primary antibodies used were rabbit anti-SNAP-25 (1:1300; kindly provided by J. Jackson ImmunoResearch Laboratories, West Grove, PA), mouse anti-SNAP-23 (1:200; Jackson ImmunoResearch Laboratories, West Grove, PA), goat anti-valosin-containing protein (VP; 1:3000; catalog no. ab11433, Abcam, Cambridge, United Kingdom), which was used as a loading control. Equal amounts of proteins were separated on a 4–20% SDS-polyacrylamide gel (30 μg per lane) and transferred to nitrocellulose membranes (Amersham Hybond ECL; GE Healthcare Bio-Sciences, Uppsala, Sweden). After incubation with secondary antibodies (goat anti-rabbit/anti-mouse horseradish peroxidase-conjugated immunoglobulin G (IgG); 1:2000; Jackson ImmunoResearch Laboratories), the membranes were washed three times and incubated in ECL Western blotting detection reagent (SuperSignal, West Pico; Pierce Chemical, Rockford, IL). Chemiluminescence was detected by a digital gel documentation system; quantification was performed by densitometry using ImageJ software (National Institutes of Health, Bethesda, Maryland). The expression level was corrected for the infection efficiency, which was estimated as the ratio of green fluorescent protein (GFP)-expressing cells to the total cell number.

RESULTS

Palmitoylation of the SNAP-25 Linker

We asked whether the palmitoylation of linker cysteines in SNAP-25 is necessary for exocytosis triggering per se, or merely plays a role for membrane targeting. To that end, we expressed SNAP-25a mutants, where one or all four linker cysteines were replaced by serines (mutated C/S mutants) using the Semliki Forest Virus expression system in chromaffin cells isolated from Snap-25 null mice. We first investigated the targeting of SNAP-25a C/S mutants to the plasma membrane by generating plasma membrane sheets from expressing chromaffin cells. Pulse SNAP-25a immunostaining of all C/S mutants was found (Figure 1A). However, quantitatively all C/S mutants showed significant reductions in the staining compared with overexpressed WT SNAP-25a (Figure 1B). For quantification of the overall expression level we used Western blotting of bovine chromaf-fin cells, because cultures from a single mouse embryo do not yield sufficient protein level for quantification. It showed that all single cysteine mutants were expressed at similar level as wild-type (WT) SNAP-25a (Figure 1C; WT SNAP-25a).
25a was overexpressed sevenfold, and the single cysteine mutants 4.7- to 6.9-fold, 3 experiments). The elimination of a single cysteine therefore sufficed to reduce membrane targeting to <50%, as reported previously (Washbourne et al., 2001). In the quadruple C/S mutation, both the overall expression level was reduced (Figure 1C; 0.6- to 1-fold expression, 3 experiments) and the amount of mutated protein on the plasma membrane, which reached only 4% of the level measured after WT overexpression (Figure 1B). Cystaining of membrane sheets against syntaxin-1 showed that the level of syntaxin-1 staining was unchanged between sheets overexpressing WT SNAP-25a (308 ± 18 arbitrary units [a.u.], 4 experiments with 31–58 sheets each) and sheets overexpressing the quadrupel C/S mutant (303 ± 20 a.u., 4 experiments with 43–52 sheets each).

In addition to their function in membrane association, the palmitoylated cysteines might directly participate in exocytosis, either by assuring a tight membrane association of the Q-SNARE dimer or by positioning palmitate within the inner membrane leaflet. We therefore investigated whether ablation of single cysteines impairs the ability of SNAP-25a to mediate fast Ca2+-triggered exocytosis. Secretion from mouse chromaffin cells was stimulated by flash photorelease of Ca2+ and monitored by simultaneous measurement of the capacitance increase, it is possible to distinguish between the formation of a narrow fusion pore, which gives rise to a prespike "foot signal" in the amperometric recording, and the full fusion event, which results in the amperometric spike (Jackson and Chapman, 2006). Interestingly, in 4xC/S-expressing chromaffin cells with a solution containing ~13.5 mM calcium and recorded single resolved amperometric spikes (Table 1). Because each vesicle fusion event gives rise to one amperometric spike, it is possible to estimate parameters of individual fusion events. Especially, it is possible to distinguish between the formation of a narrow fusion pore, which gives rise to a prespike "foot signal" in the amperometric recording, and the full fusion event, which results in the amperometric spike (Jackson and Chapman, 2006). Interestingly, in 4xC/S-expressing chromaffin cells the duration of the pre-spike foot signal was prolonged (Table 1). Notably, spikes in the Snap-25 knockout cells were found to have on average shorter prespike feet (Sorensen et al., 2003b). This finding demonstrates that the presence of the 4xC/S mutation does not result in an inter-
mediate phenotype between the Snap-25 knockout and the wild-type situation caused by the lower expression level, but that the 4xC/S mutant causes slower secretion even on the level of individual fusion events. In addition, the 4xC/S mutation resulted in a mild and less significant increase in the charge of each spike, i.e., the quantal size.

Overall, our data show that the association of the SNARE complex with the plasma membrane through SNAP-25 palmitoylation is important for optimizing the speed of exocytosis triggering and the duration of the fusion pore.

The SNAP-25 Linker Domain Speeds Up Exocytosis Triggering

We reported previously that the expression of the ubiquitous isoform SNAP-23 in Snap-25 null chromaffin cells supports some rescue of calcium-dependent exocytosis, but without a burst component (Sorensen et al., 2003b). Here, we first repeated this experiment with similar results, and then applied stronger stimulation into the [Ca^{2+}]i range to determine whether exocytosis in the presence of SNAP-23 might be shifted to higher [Ca^{2+}]i, and therefore have gone undetected in previous studies. The high-Ca^{2+} stimulation elicited much larger capacitance increases that were not correlated with an amperometric signal (Supplemental Figure 2, A and B). This observation has been attributed to the SNARE-independent fusion of a population of vesicles not containing catecholamines at [Ca^{2+}] >100 μM (Xu et al., 1998). Therefore, only the amperometric measurements were used for assaying catecholamine release under these conditions.

Table 1. Single fusion event characteristics as measured by amperometry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean ± SEM</th>
<th>Median ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of cells</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td>No. of spikes</td>
<td>562</td>
<td>561</td>
</tr>
<tr>
<td>Amplitude (pA)</td>
<td>21.7 ± 1.7</td>
<td>21.6 ± 1.7</td>
</tr>
<tr>
<td>Q^{1/3} (pC)^{1/3}</td>
<td>0.53 ± 0.01</td>
<td>0.58 ± 0.02</td>
</tr>
<tr>
<td>Half width (ms)</td>
<td>4.4 ± 0.6</td>
<td>4.6 ± 0.7</td>
</tr>
<tr>
<td>Rise time (ms)</td>
<td>0.63 ± 0.08</td>
<td>0.73 ± 0.15</td>
</tr>
<tr>
<td>Foot duration (ms)</td>
<td>2.4 ± 0.4</td>
<td>4.2 ± 0.8</td>
</tr>
</tbody>
</table>

The table gives mean ± SEM of the cell median for each parameter. The foot duration of the quadrupel cysteine mutation was significantly longer (p = 0.017) and the charge of the spike slightly larger (p = 0.040) than in cells rescued with wild-type SNAP-25a.

*p < 0.05 (Mann–Whitney test comparing to SNAP-25a rescue).
Overexpression of a chimeric protein (SN25aL23), where the SNAP-25 SNARE domains were fused to the SNAP-23 linker (Figure 3). The SN25aL23 chimera resulted in less exocytosis during the first 0.5 s after flash stimulation to 15–20 μM calcium (Supplemental Figure 2, A and B). Thus, Snap-25 null cells do not support fast LDCV release even when expressing SNAP-23 and stimulated to [Ca²⁺] > 100 μM.

Next, we asked whether there are any functional differences between the SNAP-23 and SNAP-25 linkers, which both act to anchor the protein in the plasma membrane. We therefore constructed chimeric proteins where the two SNARE domains from SNAP-25 were joined by the SNAP-23 linker. The crossover points of the chimera were the lysine-83(SNAP-25)/lysine-78(SNAP-23), and the glutamate-148(SNAP-25)/glutamate-153(SNAP-23) (also see Figures 4 and 5). The chimera (denoted SN25aL23) was overexpressed at similar levels as SNAP-25 WT protein (Figure 1C). When overexpressed in Snap-25 null chromaffin cells, SN25aL23 did not fully restore secretion (Figure 3), but it led to a slowdown and a reduction in exocytosis within the first second of stimulation (Figure 3A). This partial rescue already indicates that the linker plays another role than just membrane targeting (see also below). We investigated whether stronger stimulation might recover exocytosis driven by the chimera. We increased [Ca²⁺] to 60–80 μM to speed up exocytosis without eliciting capacitation increases uncorrelated to amperometric charge, which typically happens at >100 μM in an all-or-none manner (Xu et al., 1998). Indeed, we found that at 60–80 μM calcium, the burst of secretion within the first 0.5 s was largely restored, whether evaluated by capacitance, or by amperometric measurements (Figure 3B). The agreement between the two types of measurements shows that these recordings were not severely contaminated with fusing vesicles not containing catecholamines.

To understand the consequences for exocytosis of replacing the SNAP-25 linker with its SNAP-23 counterpart, we dual role of SNAP-25 linker domain.
performed a detailed kinetic analysis of the capacitance traces. This was done by fitting a sum of exponential functions to individual capacitance traces to identify the size of the releasable vesicle pools, RRP and SRP, together with their fusion kinetics (Figure 3, C and D). It was immediately clear that in SN25aL23-expressing cells the fusion kinetics was dramatically slowed down. At $[Ca^{2+}] < 35 \mu M$ (Figure 3, A, C, and E), only a single, slow phase of exocytosis was discernible. In addition, the delay between the $[Ca^{2+}]$ increase and the start of the capacitance trace was much longer than in cells expressing SNAP-25 WT (Figure 3C). The fastest resolvable time constant of release was increased by a factor ~ 20 (Figure 3E, bottom left), whereas the secretory delay was threefold longer in the SN25aL23-expressing cells (Figure 3E, bottom right). At higher postflash $[Ca^{2+}]$, (Figure 3, B, D, and F), both WT and mutant cells displayed faster kinetics, as indicated by faster time constants and shorter secretory delays (Figure 3, D and F). In SN25aL23-expressing cells, two exocytotic phases were now distinguishable (Figure 3D). Strikingly, when considering cells with a calci -

The Membrane-anchoring Parts of SNAP-25 and SNAP-23 Are Interchangeable

Even though the role of both the SNAP-25 and the SNAP-23 linker in anchoring the protein to the plasma membrane is well-established, it could not be ruled out that the chimeric SN25aL23 protein might somehow be defective in membrane-anchoring due to a mismatch between the linker and other parts of the protein. We therefore again compared the membrane anchoring, by using an antibody recognizing both SNAP-25 WT and SN25aL23. Both proteins were found in the plasma membrane after overexpression in mouse cells at 12- to 13-fold the endogeneous concentration (Figure 4, A and B). Costaining of membrane sheets against syntaxin-1 showed that the level of syntaxin-1 staining was unchanged between sheets overexpressing WT SNAP-25a (938 ± 13 a.u., 3 experiments with 34–44 sheets each) and sheets overexpressing the SN25aL23 (941 ± 20 a.u., 3 experiments with 34–48 sheets each).

Because it has been reported that SNAP-25 and SNAP-23 displays different affinities for lipid rafts in PC12 cells due to a difference in the cysteine-rich linker domain (Salaun et al., 2005b), we also investigated the colocalization between our chimeric construct and syntaxin by using double labeling and cross-correlation analysis (Nagy et al., 2005). This analysis showed no major difference in the correlation coefficient, with syntaxin between SNAP-25a and SN25aL23 (the point at 0 radial distance in Figure 4C). The r decays to zero when one of the two pictures are displaced with respect to the other (radial distance >0), indicating the finite dimension of correlating domains. This analysis shows that the punctate staining pattern for syntaxin-1 and SNAP-25a overlap to the same degree as syntaxin-1 and SN25aL23.

Next, we investigated whether the SN25aL23 chimera can form SNARE-complexes, by mixing equimolar amounts of bacterially expressed and purified SNARE-proteins for 1 h at room temperature, following by SDS-PAGE (Figure 4D). Both full-length SNAP-25a, and the SN25aL23 and SN25aL23Δ3–2 chimeras (see below), were able to form ternary SNARE-complexes with syntaxin-1 and synaptobrevin-2 (bands at arrow ~50 kDa in lanes 6–8, Figure 4D).

To identify the part of the linker responsible for the difference in exocytosis triggering, we constructed a number of chimeras (Figure 5) and tested them after overexpression in Snap-25 null cells. The expression level of these chimeras was unchanged as compared with SNAP-25 WT protein (Figure 1C). We first investigated whether the fact that the SNAP-23 linker is 10 amino acid residues longer than the SNAP-25 linker is functionally relevant. However, a SNAP-25aL23 chimera with the extra 10 amino acids deleted (SN25aL23Δ10) still displayed what we will refer to as the “linker phenotype,” i.e., incomplete rescue and a lower rate of exocytosis triggering at intermediate $[Ca^{2+}]$, which was overcome at higher concentrations. This is shown in Figure 6A, where we flashed to normal $[Ca^{2+}]$, (~20 μM, light blue traces) and very high $[Ca^{2+}]$, (150–200 μM, blue traces). The capacitance trace at very high $[Ca^{2+}]$, is contaminated by the population of noncatecholamine containing vesicles. Even though this procedure therefore does not allow detailed analysis like in Figure 3, the amperometric measurements performed in parallel (Figure 6A, bottom traces) clearly show rescue of catecholamine release at high $[Ca^{2+}]$, and therefore allows the fast distinction between the normal and the linker phenotype. Next, we constructed two chimeras where either the N- or the C-terminal half of the linker was from SNAP-25 (Figure 5). The former, SN25aL23Δ10-1, where the domain containing the linker cysteines was from

G. Nagy et al.
SNAP-25, nevertheless displayed the linker phenotype (Supplemental Figure 3). Conversely, the chimera where the N-terminal part—and therefore the linker cysteines—was from SNAP-23, but the rest of the linker from SNAP-25 (SN23aL23Δ10-2) exhibited full rescue and fast secretion indistinguishable from SNAP-25a (Figure 6B).

Overall, these data show that the membrane-anchoring part of the linker containing the palmitoylated cysteines is interchangeable between SNAP-25 and SNAP-23 without implications for expression level, membrane targeting or in vitro SNARE complex formation, whereas the C-terminal part of linker surprisingly is necessary for fast exocytosis triggering.

A Short Amino Acid Stretch in the C-Terminal Half of the SNAP-25 Linker Speeds Up Exocytosis

To further narrow down the decisive part of the linker, we continued testing the chimeras displayed in Figure 5. In brief, we found that all mutants depicted in red displayed the linker phenotype, i.e., secretion like SN25aL23, whereas mutants in green had a SNAP-25a-like secretory phenotype and mutants in blue showed an intermediate phenotype. The minimum region that gave an unperturbed SNAP-25-like phenotype was a 10-amino acid stretch encompassing the positions 120–129 in SNAP-25. Chimeras including this stretch were expressed and targeted to the membrane at wild-type levels (Figures 1C and 4B) and restored secretion to normal amplitude and kinetics (Figure 7 and Supplemental Figure 4A), regardless of whether the construct included the extra seven amino acids present in SNAP-23 N-terminal of this domain. However, a chimera containing the extra three amino acids (GAA) present in SNAP-23 immediately C-terminal of the 10-amino acid stretch from SNAP-25 displayed an intermediate phenotype (Supplemental Figure 4B), showing that the domain needs to be fused directly to the remaining part of the linker, which is largely conserved between SNAP-25 and SNAP-23.

Intermediate Phenotypes Identify the Critical Properties of the SNAP-25 Linker

The critical stretch in the SNAP-25 linker consists of the amino acid sequence (in single-letter code) VVDEREQMAI, which does not to our knowledge correspond to any known consensus sequences for protein–protein interaction domains. The domain starts with two and ends with three hydrophobic amino acids, which are separated by three charged and one hydrophilic residue. In the next set of experiments, we tried to determine which properties of this domain are required for fast triggering.

Figure 4. Normal plasma membrane targeting and in vitro SNARE-complex formation of SN25aL23 chimeras. (A) Plasma membrane sheets of Snap-25 null chromaffin cells expressing SNAP-25a WT (top three panels) or SN25aL23 (bottom three panels) and stained against SNAP-25 and syntaxin-1 (Syx-1). Bar, 3 μm. (B) Quantification of immunostaining of isolated membrane sheets stained with a SNAP-25 antibody, which also recognizes the chimeras. The amount of SN25aL23 and some other chimeric constructs (refer to Figure 5) in the plasma membrane after overexpression is unchanged compared with SNAP-25a. (C) The cross-correlation between the SN25aL23 chimera and immunostaining for syntaxin-1 is unchanged. The abscissa gives the radial displacement of one picture with respect to the other. At displacement 0, the value is equal to the r. As the displacement gets larger, the r decays to zero, indicating the finite size of correlating domains. (D) Formation of SNARE-complexes by chimeric SNAP-25 proteins. SDS-PAGE gel (12%) of bacterially purified proteins. Lane 1, Syntaxin 1 (syx) H3 domain (aa 180–262); lane 2, synaptobrevin (syb) full-length protein (aa 1–96); lane 3, SNAP-25a 4xC/S mutant (aa 1–206); lane 4, SN25aL23 chimera (aa 1–206); lane 5, SN25aL23Δ3C-2 chimera (aa 1–206); lane 6, equimolar mixture of syx H3 + syb + SNAP25a 4xC/S mutant after incubation for 1 h, band at ~50 kDa is the ternary SNARE complex (arrow); lane 7, equimolar mixture of syx H3 + syb + SN25aL23, SNARE complex indicated (arrow); and lane 8, equimolar mixture of syx H3 + syb + SN25aL23Δ3C-2 chimera, SNARE complex at arrow.
A chimeric protein where the two initial valines were substituted for the SNAP-23 residues isoleucine and threonine (SN25aL23Δ10-6) resulted in a construct with an intermediate phenotype between the linker phenotype and SNAP-25a (Figure 8A). With this construct, the normal amplitude of the exocytotic burst was recognizable, but the triggering rate was still somewhat decreased and also the sustained component of release was depressed. Therefore, the N-terminal hydrophobicity of the SNAP-25 domain is necessary for full rescue. Another chimera (SN25aL23Δ10-4) was created by substituting the last three amino acids of the stretch (MAI) with the uncharged SNAP-23 residues (QTT). This construct displayed the linker phenotype (Figure 8B); thus, the C-terminal part of the domain is absolutely necessary for fast exocytosis triggering.

Interestingly, a chimera where only the methionine-127 from SNAP-25 was substituted for the glutamine residue in the SNAP-23 linker (SN25aL23Δ10-8) sufficed to speed the secretion up compared with the linker phenotype, even though not quite as much as when all three C-terminal amino acids MAI were from SNAP-25 (SN25aL23Δ10-7, Figure 9, A and B). The latter construct restored the size of the

![Figure 5. Overview of SNAP-25a/SNAP-23 chimeric constructs. SNAP-25 is depicted in green, SNAP-23 in orange. The sequences of the SNAP-25a and SNAP-23 linker domains are shown aligned, the color of the bar above indicates identical (red) and variant (blue) positions. The ends of the first and second SNARE domain are shown as hatched green boxes attaching to the linker domains. Gaps in the sequences are shown with dots. The names of the chimeras are shown to the left of the sequences, color-coded to show the secretory phenotype. Chimeras in green showed a secretory phenotype indistinguishable from SNAP-25a, red chimeras showed the linker phenotype, i.e., incomplete rescue and lower rate of exocytosis triggering at intermediate [Ca\(^{2+}\)], which was partly overcome at higher concentrations, blue chimeras displayed an intermediate phenotype between the linker phenotype and SNAP-25a.]

![Figure 6. The second half of the SNAP-25 linker is necessary for fast exocytosis. (A) Secretion in the SN25aL23Δ10 chimera, in which the extra 10 amino acids in the linker were deleted (see Figure 5). Exocytosis in the SN25aL23Δ10 chimera was depressed during stimulations to 20–30 μM [Ca\(^{2+}\)], (light blue traces, n = 19 cells), but it is largely rescued as assayed by amperometry during flashes to higher [Ca\(^{2+}\)], (blue traces, n = 20 cells). Note that the “overrescue” of the capacitance increase during stimulation to >100 μM is due to the fusion of vesicles that contain no catecholamines (see text for explanation). Therefore, only the amperometric trace contains information about the release of catecholamine-containing vesicles during high-[Ca\(^{2+}\)] stimulation. For comparison is shown the rescue with WT SNAP-25a in Snap25−/− (black traces). (B) A chimera where the second half of the linker is from SNAP-25 (refer to Figure 5; SN25aL23Δ10-2) rescues secretion when expressed in Snap−/− (green traces, n = 22 cells) similar to WT SNAP-25a (black traces, n = 22 cells).]
burst, but still left time constants of triggering and the delay slowed down by a factor 2–4. Also the sustained component of release was depressed. This is interesting, because in this construct the proline-127 from SNAP-23 was present, and the central charges (DERE) in SNAP-25 were missing. Furthermore, the two chimeras where the last three amino acids (MAI) were from SNAP-25 (SN25aL23/H9004 10-6 and SN25aL23/H9004 10-7) displayed indistinguishable phenotypes (compare Figure 8A and Figure 9A), even though the former construct contained the middle charged stretch (DEREQ) from SNAP-25, whereas the latter had the SNAP-23 sequence (NGQPP). Thus, both the C-terminal and N-terminal hydrophobicity of this stretch and especially methionine-127 is important for fast exocytosis triggering, whereas the middle stretch seems less important, because even a proline in this area does not impair secretion.

To investigate whether mutations in the domain from amino acid 120–129 changes exocytosis in the context of the full-length SNAP-25 protein, we generated the single point-mutation SNAP-25 M127Q (Figure 5). This single mutation sufficed to significantly increase the time constant of fast release and the secretory delay (Figure 9, C and D). In addition, the sustained component was reduced, even though this was not quite significant when testing with a Mann–Whitney test (Figure 9D). Thus, a mutation in the full-length SNAP-25a protein reproduces the main features of similar mutations in the context of the SNAP-23 linker.

Altogether, we conclude that the hydrophobicity of the N- and C-terminal ends of this linker domain is of critical importance for fast triggering, and the domain cannot be further subdivided without losing functionality. Therefore, the 10 amino acids in the SNAP-25 linker from position 120–129 display the features of a single protein domain acting in fast exocytosis triggering.

DISCUSSION

A linker connecting the Qb and Qc SNARE domains is a unique feature of the exocytic fusion pathway; however, no active role for the linker in exocytosis had been identified. Here, we show that the linker is intimately involved in fast Ca2+ triggering. Thus, this part of the SNARE complex warrants further attention.
We analyzed the role of the palmitoylated cysteines in a null background, by expression in Snap-25 knockout chromaffin cells. Our data confirm the function of the cysteines in targeting SNAP-25 to the plasma membrane (Hess et al., 1992; Veit et al., 1996; Lane and Liu, 1997; Gonzalo et al., 1999; Vogel and Roche, 1999; Gonelle-Gispert et al., 2000; Koticha et al., 2002; Loranger and Linder, 2002; Kammer et al., 2003), in which it acts in exocytosis by binding to the Q-SNARE partner syntaxin-1. Removing single cysteines reduced the amount of SNAP-25 on the plasma membrane to <50%, but it did not impair secretion, as previously shown in insulin-secreting cells (Gonelle-Gispert et al., 2000). A SNAP-25 without cysteines was expressed at lower levels than WT protein, but still induced significant rescue. The resulting secretion was slowed down and the duration of the fusion pore increased. Thus, the cysteines are important for the speed of exocytosis. The observed rescue agree with the finding by several groups that nonpalmitoylated SNAP-25 can support membrane fusion in in vitro assays (Scales et al., 2000b; Schuette et al., 2004) or after infusion into BoNT/E-treated PC12 cells (Scales et al., 2000b). The slow-down of secretion found here using high time-resolution methods would not have been noticeable in those intrinsically slow assays.

It has been suggested that SNAP-25 and SNAP-23 are differentially targeted to membrane rafts, due to the presence of an extra cysteine in SNAP-23 (Salaun et al., 2005a,b). Others have failed to find SNAREs in lipid rafts (Lang et al., 2001), but they identified cholesterol-dependent SNARE clusters in plasma membrane sheets. We showed that the secretory phenotype of a chimeric SNAP-25a construct where the N-terminal half of the linker—including all cysteines—was from SNAP-23 did not deviate from SNAP-25a in our assay. Thus the difference in secretory phenotype between SNAP-25 and SNAP-23, which was found after overexpression (Sorensen et al., 2003b), cannot be due to a different arrangement of cysteines. Likewise, we found that the cysteine clusters of the two SNAP-25 splice variants are functionally equivalent (Nagy et al., 2005). Nevertheless, it remains possible that at lower expression levels differential targeting of SNAP-25 and SNAP-23 could be functionally important.

Using chimeric proteins we identified a 10-amino acid stretch in the C-terminal half of the SNAP-25 linker—which is necessary for fast exocytosis triggering. This stretch begins immediately C-terminal of the minimal domain required for palmitoylation of SNAP-25 in vivo (Gonzalo et al., 1999) and did not affect expression level or membrane targeting. It consists of hydrophobic and charged amino acids, whereas the stretch in SNAP-23 is hydrophilic, but uncharged. Testing of chimera underlined the importance of the hydrophobicity for functionality. This domain is conserved in SNAP-25 from zebrafish to human (Figure 10A), whereas the stretch in SNAP-23 is hydrophilic, but uncharged. Testing of chimera underlined the importance of the hydrophobicity for functionality. This domain is conserved in SNAP-25 from zebrafish to human (Figure 10A), whereas in the fly and worm one or two of the initial hydrophobic amino acids are present together with the important methionine and one-three charges in the middle (Figure 10A). An interesting exception is formed by the sea urchin, where the critical methionine is replaced by a cysteine. Cysteines are quite hydrophobic, even when not palmitoylated. Limited structural studies performed using CD spectroscopy showed...
that both are unstructured in solution (Supplemental Figure 5), in agreement with previous data (Margittai et al., 2001). Also, our electrophysiological data indicate the lack of secondary structure, since replacing the middle part of the 10-amino acid stretch with residues from SNAP-23, which involved the insertion of a proline, did not further exacerbate the intermediate phenotype found upon replacement of the first two valines. Finally, the stretch is flanked to both sides by helix-breakers (prolines, glycines), making it unlikely that this domain would change the structure of the SNARE-domains through a cis-action.

The most remarkable effect of replacing the SNAP-25 linker with its SNAP-23 counterpart is a displacement of the calcium dependence of fast exocytosis triggering toward higher concentrations (Figure 3, G and H). This displacement also seems to affect vesicles fusing from the SRP (Figure 3, D and F). The ability of a SNAP-23 domain to displace the calcium-dependence toward higher values is surprising, because it was shown previously that SNAP-23 induce vesicles fusing from the SRP (Chieregatti et al., 2004). However, Chieregatti et al. (2004) also showed that synaptotagmin-7 suppresses SNAP-23–induced basal release. Synaptotagmin-7 is expressed in and modulates secretion from chromaffin cells (Schonn et al., 2008). Thus, the ability of SNAP-23 to stimulate exocytosis under resting conditions depends on the expression of auxiliary proteins and/or the cell type.

In addition, we found that the rate of sustained release at high [Ca2+]i, was slowed down by the SNAP-23 linker (Figure 3, B and F). In a sequential model of exocytosis (Figure 10B), the priming rate can be measured from the sustained component (about half of the decrease in sustained component might be explained by the decrease in fusion triggering (data not shown), whereas the other half might represent a real depression of the vesicle priming reaction.

The displacement of the intracellular calcium dependence of exocytosis triggering is a very specific phenotype. Indeed, it is striking that the only molecular manipulations that are known—or are likely based on published literature—to change the intracellular calcium-dependence of exocytosis triggering are mutations in synaptotagmins and SNAP-25 (Sorensen et al., 2003a; Wang et al., 2003; Chieregatti et al., 2004; Rhee et al., 2005; Wang et al., 2005; Nagy et al., 2006; Pang et al., 2006; Sorensen et al., 2006). In contrast, manipulations of proteins involved in exocytosis more often lead to changes in pool sizes and/or recruitment in the absence of a change in triggering: examples include tomosyn (Yizhar et al., 2004), Munc13 (Ashery et al., 2000), Munc18 (Voets et al., 2001; Gulyas-Kovacs et al., 2007), Caps1 (Speidel et al., 2005), SV2 (Xu and Bajjalieh, 2001), Snapin (Tian et al., 2005), synaptobreavin (Borisovska et al., 2005), and α-SNAP/NSF (Xu et al., 1999).

Our present work extends the limited number of molecular manipulations that change the intracellular calcium dependence of exocytosis triggering to include the SNAP-25 linker. There is ample evidence that synaptotagmin-1 binds to the SNARE complex or to individual SNAREs through interactions with one or both C2-domains (Bennett et al., 1992; Sollier et al., 1993; Chapman et al., 1995; Schiavo et al., 1997; Zhang et al., 2002; Rickman and Davletov, 2003; Shin et al., 2003; Bai et al., 2004; Bhalla et al., 2006; Pang et al., 2006; Lynch et al., 2007). It is possible that the SNAP-25 linker participates in synaptotagmin binding in situ. Another possibility, with would agree with the importance of the hydrophobic residues, is that the SNAP-25 linker affects interactions with the membrane that take place simultaneously with Ca2+ binding to synaptotagmin-1. Finally, the linker might affect stages of SNARE complex assembly, which could change both vesicle priming and fusion reactions (Sorensen et al., 2006), possibly by stabilizing an intermediate conformation of the SNARE complex (An and Almers, 2004). The picture emerging is that SNAREs, synaptotagmins, and lipids form an integrated fusion machine (Bhalla et al., 2006; Pang et al., 2006; Dai et al., 2007), whose calcium dependence is set by the properties of the entire assembly. The SNAP-25 linker must be seen as an integral part of this machine and it is tempting to speculate that the fusion of the Qb and Qc-SNARE motifs might have evolved as an adaptation toward calcium triggering of exocytosis.

ACKNOWLEDGMENTS

We thank Dirk Reuter and Ina Herfort for expert technical assistance, and Ralf B. Nehring for advice during the construction of the mutants. We are deeply indebted to Erwin Neher for ongoing discussions and support. We thank Dirk Fasshauer, Reinhard Jahn, and Josep Rizo for comments on an earlier version of the manuscript. This work was supported by Deutsche Forschungsgemeinschaft grant SFB523-B16 (to J.B.S.).

REFERENCES

Vol. 19, September 2008 3781