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The fluctuation-dissipation relation is usually formulated for a system interacting with a heat bath
at finite temperature in the context of linear response theory, where only small deviations from the
mean are considered. We show that for an open quantum system interacting with a non-equilibrium
environment, where temperature is no longer a valid notion, a fluctuation-dissipation inequality
exists. Clearly stated, quantum fluctuations are bounded below by quantum dissipation, whereas
classically the fluctuations can be made to vanish. The lower bound of this inequality is exactly
satisfied by (zero-temperature) quantum noise and is in accord with the Heisenberg uncertainty
principle, both in its microscopic origins and its influence upon systems. Moreover, it is shown
that the non-equilibrium fluctuation-dissipation relation determines the non-equilibrium uncertainty
relation in the weak-damping limit.

I. OPEN QUANTUM SYSTEM

The fluctuation-dissipation relation (FDR) is usually
formulated for a system interacting with a heat bath
at finite temperature in the context of linear response
theory, where only small deviations from the mean are
considered. We show that for an open quantum system
interacting with a non-equilibrium environment, where
temperature is no longer a valid notion, a fluctuation-
dissipation inequality (FDI) exists. Clearly stated, quan-
tum fluctuations are bounded below by quantum dissi-
pation, whereas classically the fluctuations can be made
to vanish. The lower bound of this inequality is exactly
satisfied by (zero-temperature) quantum noise and is in
accord with the Heisenberg uncertainty principle (HUP).
FDI violating quantum noise can be viewed as arising
from HUP violating states of the environment and can
induce HUP violating states in the open system. In
fact, in the weak-damping limit the non-equilibrium FDR
(which must satisfy the FDI) precisely determines the
non-equilibrium uncertainty relation (which must satisfy
the HUP).

In the following section we present the necessary back-
ground material of quantum open systems, wherein we
formally categorize quantum noise in terms of its time
dependence, dissipation, and microscopic origin. Read-
ers familiar with this may skip to our results in the latter
sections and refer back as needed. In the penultimate
section we derive the FDI from a microscopic model and
contrast it to the usual thermal FDR. In the final section
we work from the other end and motivate the FDI phe-
nomenologically, but less generally. This result also pro-
duces the non-equilibrium uncertainty relation for quan-
tum Brownian motion, which can be contrasted to the
finite-temperature uncertainty relation [1–4].

II. NOISE AND DISSIPATION

A. Open Systems and Noise

Consider a quantum system weakly interacting with
an environment with interaction Hamiltonian:

HI =
∑
n

Ln ⊗ ln , (1)

expanded as a sum of separable operators, where Ln and
ln are system and environment operators respectively.
The environment coupling operators ln will typically be
collective observables of the environment, with depen-
dence upon very many modes. The system-environment
interaction will be treated perturbatively and so the cen-
tral ingredient is the (multivariate) correlation function
of the environment:

αnm(t, τ) = 〈ln(t) lm(τ)〉E , (2)

where ln(t) represents the time-evolving ln in the interac-
tion (Dirac) picture. In the influence functional formal-
ism [5] for the quantum Brownian model with bilinear
couplings between the system and its environment [6–
8] the correlation function appears as the kernel in the
exponent of a Gaussian influence functional, called the
influence kernel ζ in Refs. [9, 10]. Alternatively, in quan-
tum state diffusion [11] this kernel takes the explicit role
of a noise correlation for complex Gaussian noise. The
influence kernel, or equivalently, the complex correlation
function, can be written as a sum of two real parts cor-
responding to the noise and dissipation kernels [9, 10]:

α(t, τ)︸ ︷︷ ︸
complex noise

= ν(t, τ)︸ ︷︷ ︸
noise

+ ı µ(t, τ)︸ ︷︷ ︸
dissipation

. (3)

The noise kernel ν appears in the influence kernel as the
correlation of an ordinary real stochastic source, whereas
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the dissipation kernel µ alone would produce a purely ho-
mogeneous (though not positivity preserving in general)
evolution. These same roles can also be inferred from the
Heisenberg equations of motion for the system operators
after integrating the environment dynamics, producing
the so-called quantum Langevin equation [12]. Gener-
alized to nonlinear systems and environments (yet still
Gaussian in the influence functional), the environment-
integrated Heisenberg equations of motion can be ex-
pressed

Ṡ(t) = +ı[H,S(t)] + ı
∑
n

[Ln(t),S(t)] ln(t) , (4)

ln(t) ≡ ξn(t)− 2
∑
m

∫ t

0

dτ µnm(t, τ) Lm(τ) , (5)

for the equation of motion of any system operator S(t),
where ξn(t) is an operator-valued stochastic process with
symmetrized two-time correlation νnm(t, τ) and commu-
tator 2ıµnm(t, τ). The commutator is typically determin-
istic for quantum Brownian motion.

Using the notation of Ref. [13], the second-order master
equation [14–16] of the reduced density matrix ρ can be
represented in terms of the noise correlation as

ρ̇ = [−ıH,ρ] + L2{ρ} , (6)

with the second-order contribution given by the opera-
tion

L2{ρ} ≡
∑
nm

[
Ln,ρ (Anm� Lm)† − (Anm� Lm)ρ

]
,

(7)
where the A operators and � product define the second-
order operators

(Anm�Lm)(t) ≡
∫ t

0

dτ αnm(t, τ) {G0(t, τ) Lm(τ)} , (8)

given the free system propagator G0(t, τ) : ρ(τ)→ ρ(t).
One context in which the influence functional, Langevin
equation, and master equation all work together seam-
lessly is in the quantum Brownian motion of linear sys-
tems [17, 18]. In addition to a a quantum Langevin equa-
tion for non-commuting operators, linearity makes it pos-
sible in that case to have a Langevin equation for real
classical stochastic processes from which general quan-
tum correlation functions and the master equation can
be exactly derived [18].

B. The Quantum Noise Correlation

From its microscopic definition, Eq. (2), the environ-
mental correlation function is Hermitian in the sense of

α(t, τ) = α†(τ, t) , (9)

and also positive definite in the sense of∫ t

0

dτ1

∫ t

0

dτ2 f†(τ1)α(τ1, τ2) f(τ2) ≥ 0 , (10)

for all vector functions f(t) indexed by the noise. Positiv-
ity and the noise decomposition (3) are the key properties
from which the FDI arises. In next section we proceed to
categorize the relevant time-dependence and correspond-
ing microscopic origins of the environmental correlations.
Then we will relate these features to the categorization
of environments into resistive, amplifying, and indefinite.

C. Categorization of Noise

Stationary correlations are defined by their invariance
under time translations,

α(t, τ) = α(t− τ) , (11)

and can produce asymptotically stationary (time-
constant) master equations. Such correlations are pro-
duced when the environment is in an initially stationary
state and its coupling operators in the Schrödinger pic-
ture are constant in time.

ρE(0) =
∑
i

pE(εi) |εi〉〈εi| , (12)

yielding the correlation function

αnm(t, τ) =
∑
ij

pE(εi) 〈εi| ln |εij〉 〈εi| lm |εij〉 e+ıεj(t−τ) ,

(13)
where εij ≡ εi − εj , |ε〉 denotes the energy basis of the
environment and pE(ε) are its stationary probabilities at
the initial time. The accompanying characteristic func-
tion can be obtained quite directly from the mode sum

α(t) =
1

2π

∫ +∞

−∞
dω e+ıωt α̃(ω) , (14)

yielding the Fourier transform

α̃nm(ω)∝ 2π
∑
i

pE(εi) 〈εi| ln |εi − ω〉 〈εi| lm |εi − ω〉 ,

(15)
where the underscored proportionality here is strictly in
reference to the continuum limit of the reservoir which
relates environmental mode sums to integrals given the
infinitesimal strength of individual environmental mode
couplings. This can be more rigorously defined through
the use of a finite spectral density function in place of
the infinitesimal environment couplings.

Also of note are quasi-stationary correlations of the
form

α(t, τ) = αS(t− τ) + δα(t+ τ) , (16)

where αS(t−τ) denotes a stationary correlation function,
or, more specifically, the stationary projection of α(t, τ),
while δα(t+ τ) is an additional non-stationary contribu-
tion. Such correlations will result from (constant) linear
coupling to an environment with non-stationary initial
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state, such as a squeezed thermal state. In these cases
the stationary projection of the correlation function does
correspond to the stationary projection of the initial state
of the environment. As for the non-stationary contri-
butions, due to their highly oscillatory behavior in the
late-time limit they typically lose effect asymptotically.
Therefore, quasi-stationary correlations can produce an
asymptotically stationary master equation with equiv-
alent asymptotics as generated by their corresponding
stationary correlation.

Finally one can also consider cyclo-stationary and
quasi-cyclo-stationary correlations, which exhibit a peri-
odic time-translation invariance and can produce asymp-
totically cyclo-stationary master equations. Much of this
work can be easily generalized to these cases, with the ex-
ception of detailed balance which cannot be maintained.

D. Noise Decomposition

Motivated by the influence functional formalism and
Heisenberg equations of motion, correlation functions of
second order can always be decomposed into a real noise
kernel and dissipation kernel as in Eq. (3): The Hermitic-
ity stated in Eq. (9) leads to the relations

ν(t, τ) ≡ 1

2

[
α(t, τ) + αT(τ, t)

]
, (17)

µ(t, τ) ≡ 1

2ı

[
α(t, τ)−αT(τ, t)

]
. (18)

The two kernels naturally decompose the second-order
operators of Eq. (8) into their Hermitian and anti-
Hermitian parts, in the ordinary sense of Hilbert space
operators:

Anm = Nnm︸ ︷︷ ︸
diffusion

+ı Mnm︸ ︷︷ ︸
dissipation

, (19)

(Nnm � Lm) ≡
∫ t

0

dτ νnm(t, τ) {G0(t, τ) Lm(τ)} ,(20)

(Mnm � Lm) ≡
∫ t

0

dτ µnm(t, τ) {G0(t, τ) Lm(τ)} ,(21)

The second-order master equation L2{ρ} can then be
expressed entirely in terms of Hermitian operators as

−
∑
nm

[Ln, ı {(Mnm � Lm),ρ}+ [(Nnm � Lm),ρ]] . (22)

Here the noise coefficients describe diffusion while the
dissipation coefficients describe dissipation (or amplifica-
tion), renormalization and other homogeneous dynamics.

The correlation function α(t, τ) is positive definite and,
therefore, the noise kernel ν(t, τ) must also be positive
definite. The dissipation kernel µ(t, τ) is not positive
definite, but it is related to the damping kernel γ(t, τ),
which is given by

µ(t, τ) = − ∂

∂τ
γ(t, τ) , (23)

and can be positive definite, negative definite, or indefi-
nite. The dissipation kernel coefficients can then be ex-
pressed in terms of damping kernel coefficients

(Mnm � Lm)︸ ︷︷ ︸
dissipation

= (Γnm � L̇m)(t)︸ ︷︷ ︸
damping

− γnm(t, t) Lm(t)︸ ︷︷ ︸
renormalization

+ γnm(t, 0) {G0(t) Lm(0)}︸ ︷︷ ︸
slip

(24)

(Γnm � L̇m) ≡
∫ t

0

dτ γnm(t, τ)
{

G0(t, τ) L̇m(τ)
}
,(25)

L̇m(t) ≡ +ı [H(t),Lm(t)] +
∂

∂t
Lm(t) , (26)

which can be used to place Eq. (22) into a form much
like the QBM master equation [7, 18, 19]. The slip is a
transient effect as a result of dealing with a factorized
initial state, which is modified if one considers correlated
initial states. The renormalization is a permanent shift
of the system Hamiltonian which would diverge in the
limit of local damping and is typically canceled with a
counterterm introduced with the bare system action or
the system-environment interaction.

For stationary correlations α(t−τ) with characteristic

function (Fourier transform) α̃(ω) =
∫ +∞
−∞ dτ e−ıωτα(τ),

the noise and damping kernels are then Hermitian in both
noise index and frequency argument

γ̃(ω) = γ̃†(ω) = γ̃∗(−ω) , (27)

ν̃(ω) = ν̃†(ω) = ν̃∗(−ω) , (28)

and by Bochner’s theorem both α̃(ω) and ν̃(ω) are
positive-definite for all frequencies. Again the damping
kernel γ̃(ω) may be positive definite, negative definite, or
indefinite.

E. Classification of Damping Kernels

Environments with positive-definite damping kernels
are damping or resistive environments, while those with
negative-definite damping kernels are amplifying. If the
system coupling operators Ln are position operators, the
damping terms correspond to forces linear in momentum.
Stationary correlations are the easiest to dissect and the
most well behaved. Their dissipation and damping ker-
nels are related by

µ̃(ε) = ıε γ̃(ε) , (29)

and from the definition of the dissipation kernel in
Eq. (18) and the double Hermiticity in Eq. (27)-(28), the
damping kernel will be most-generally positive or nega-
tive definite if we have a strict inequality between positive
and negative energy argumented environmental correla-
tions.

α̃(−|ω|) > α̃∗(+|ω|) (Damping) , (30)

α̃(−|ω|) < α̃∗(+|ω|) (Amplifying) . (31)
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From Eq. (15), one can show that damping environments
result when the initial stationary probability of the en-
vironment pE(ε) is a monotonically decreasing function
of the environment energy. Amplifying environments re-
sult from monotonically increasing functions or popula-
tion inversion. The most common example of each being
positive and negative temperature reservoirs.

Given our damping representation of the master equa-
tion coefficients, one can determine the dynamics of the
system energy from the super-adjoint of the master equa-
tion [20]:

L†H = −
{

L̇n,
(
Γnm � L̇m

)}
+ı
[
L̇n, (Nnm � Lm)

]
+· · · ,
(32)

where we have neglected any power generated by the slip
and time-dependence intrinsic to the coupling. Using
the zeroth-order solution ρ(t) = G0(t)ρ(0) and symme-
tries of the damping kernel, the second-order expectation
value for the cumulative energy lost through damping is
given by

−
∫ t

0

dτ1

∫ t

0

dτ2
∑
nm

γnm(τ1, τ2) Tr
[
L̇n(τ1)ρ(0) L̇m(τ2)

]
,

(33)
which will be strictly dissipative for a positive-definite
damping kernel. This expression also contrasts nonlo-
cal damping to local damping. Delta correlated damping
kernels are strictly dissipative at every instant of time
whereas nonlocal damping kernels are only assured to be
net dissipative in the full time accumulation.

III. NON-EQUILIBRIUM RELATIONS

A. Non-Equilibrium Fluctuation-Dissipation
Relation & Inequality

From the definitions of the multivariate noise kernel
ν̃(ω) and damping kernel γ̃(ω), Eqs. (3)-(18), one can
prove the fluctuation-dissipation inequality :

ν̃(ω) ≥ ±ω γ̃(ω) , (34)

here for stationary correlations, and in the Fourier do-
main where the ω would denote energy level transitions
of the system. To prove this one simply notes that the
noise kernel is the sum of two positive-definite kernels
whereas the dissipation kernel is given by their differ-
ence. The essential point is that if there is any damp-
ing, or amplification, there will be quantum noise and
Eq. (34) determines its lower bound. This is quite a de-
parture from classical physics where noise can be made to
vanish in the zero-temperature limit, although the lower
bound of this inequality is satisfied by zero-temperature
quantum noise since α̃(|ω|) = 0 in that case.

For the case of one collective system coupling, coupled
to one or more environments, it is sufficient to define a

fluctuation-dissipation relation

ν̃(ω) = κ̃(ω) γ̃(ω) , κ̃(ω) ≡ ν̃(ω)

γ̃(ω)
, (35)

with κ̃(ω) the fluctuation-dissipation kernel [7, 8] which
relates fluctuations to dissipation. For multivariate noise
one might use the symmetrized product

ν̃(ω) =
1

2
[κ̃(ω) γ̃(ω) + γ̃(ω) κ̃(ω)] , (36)

which would ensure κ̃(ω) to be positive definite if γ̃(ω)
is, in accord with this being a (continuous) Lyapunov
equation [21]. We will use this particular definition for
quantum Brownian motion in the next section. Inequal-
ity (34) can now be restated as

κ̃(ω) ≥ |ω| , (37)

for damping environments. Typically κ̃(ω) will contain
dependence upon the precise nature of the environment
couplings ln.

B. Equilibrium Fluctuation-Dissipation Relation

Let us consider a constant system-environment interac-
tion, constant environment Hamiltonian, and initial sta-
tionary probabilities of the environment given by pE(ε).
If the FDR is to be independent of precisely how the sys-
tem and environment are coupled, then one can work out
from the microscopic theory that the FDR kernel must
be a scalar quantity, directly related to the initial state
of the environment by way of

κ̃(ω)

ω
=
pE(ε− ω) + pE(ε)

pE(ε− ω)− pE(ε)
, (38)

for all ε. To prove this one first applies relation (15) to
definitions (17)-(18), and notes that if the dissipation and
noise are related in a manner independent of the coupling
then the two kernels must be related term-by-term in a
sum over couplings.

But such an equality between the FDR kernel and
mode probabilities implies the functional relation

pE(ε− ω) =

[
κ̃(ω)
ω + 1

κ̃(ω)
ω − 1

]
pE(ε) , (39)

where the ω translations can factor out. This factoriza-
tion property is unique to exponential functions; there-
fore, only the thermal distribution pE(ε) ∝ e−βε can pro-
duce a fluctuation-dissipation relation which is generally
coupling independent. We then have that

κ̃T (ω) ≡ ω coth
( ω

2T

)
, (40)

for the thermal distribution. One should be careful to
note that the thermal FDR is not special because it ex-
ists, nor because of its simple form, but because of its
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invariance to couplings (model-independence). In a more
general context, the thermal FDR is also special because
it ensures a relaxation to detailed balance in a coupling-
invariant manner. In fact, these properties can be shown
to be equivalent [13].

As a concrete example of an elegant yet non-
equilibrium FDR, the late-time dominating stationary
correlations for linear coupling to a squeezed thermal
reservoir [22, 23] will produce the FDR kernel

κ̃ rT (ω) = cosh[2 r(ω)]ω coth
( ω

2T

)
, (41)

where r(ω) is the squeezing parameter, which may be
allowed to vary with the energy scale. One can easily see
that this FDR also obeys inequality (34) as it must.

IV. NON-EQUILIBRIUM UNCERTAINTY
PRINCIPLE

In the context of second-order perturbation theory,
quantum noise is effectively Gaussian in the influence
functional, and Gaussian noise is equivalent to that aris-
ing from linear coupling to a bath of harmonic oscillators.
Therefore any violations of Eq. (34) must correspond to
environment oscillators in a non-quantum state. In the
phase-space or Wigner function representation [24], HUP
violating states of the environment can be constructed
which violate the quantum FDI. Such is the case for
the classical vacuum, which has vanishing fluctuations
yet finite damping. Now we shall show that FDI violat-
ing noise can also relax the system into a HUP violating
state.

Let us consider weakly influencing a system of oscilla-
tors at resonance, all with mass m and frequency ω, via
position-position coupling to some phenomenological set
of noise processes with resistive correlation α̃(ω). We do
not assume the system-environment couplings to be iden-
tical, nor do we neglect the presence of cross-correlations
among the noise processes.

From the results of Ref. [18, 19] and the second-order
master equation coefficients (7), the damping kernel γ̃(ω)
will play the role of the dissipation coefficients and the
noise kernel ν̃(ω) will play the role of the normal dif-
fusion coefficients in the Fokker-Planck or master equa-
tion. Integrals over the two kernels will then provide
the system renormalization and anti-diffusion coefficients
respectively. Given sufficient dissipation and bandwidth-
limited correlations, the system will relax into a Gaussian
state which satisfies the Lyapunov equation

ν̃(ω) =
1

2

[(
2

m
σpp

)
γ̃(ω) + γ̃(ω)

(
2

m
σpp

)]
, (42)

for the momentum covariance, which has elements 〈pipj〉,
and

σxx =
1

(mω)2
σpp , (43)

σxp = 0 , (44)

for the remaining covariances in the phase-space (Wigner
function) representation [24], and to lowest order in the
system-environment interaction. Comparing Eq. (42) to
Eq. (36), we can express our covariances

σxx =
1

2mω2
κ̃(ω) , (45)

σpp =
m

2
κ̃(ω) , (46)

in terms of the FDR kernel κ̃(ω). So far our FDR ker-
nel remains phenomenological and not microscopically
derived, however it must be positive definite for this to
describe a physical state. As κ̃(ω) is positive definite, we
may transform to the basis in which it is diagonalized. If
κ̃(ω) is a scalar quantity, then this is simply the normal
basis of the free system. For each mode in this basis we
have the phase-space covariance

σn =

[
σxxn σxpn
σpxn σppn

]
=

[
1

2mω2 κ̃n(ω) 0
0 m

2 κ̃n(ω)

]
, (47)

which must then satisfy the generalized Heisenberg un-
certainty relation due to Schrödinger [25, 26]:

〈∆x2〉〈∆p2〉 − 1

2
〈{∆x,∆p}〉 ≥ 1

4
, (48)

or in terms of the phase-space covariance

det(σ) ≥ 1

4
(49)

and, therefore, it must be the case that

κ̃n(ω) ≥ ω , (50)

for all ω > 0. But this is equivalent to our previous
statement

κ̃(ω) ≥ ω , (51)

in terms of positive definiteness as ω is a scalar quantity.
So not only do FDI violating correlations arise from HUP
violating states, they can also produce HUP violating
states via dissipation and diffusion (and decoherence).

Furthermore we can say that in the weak-damping
limit, the scalar FDR kernel κ̃(ω) precisely determines
the (asymptotic) non-equilibrium uncertainty product

det(σ) =

(
1

2

κ̃(ω)

ω

)2

, (52)

for a single system mode of frequency ω. Larger FDR
kernels naturally produce larger uncertainty and mini-
mal FDR kernels (zero temperature) produce minimal
uncertainty. Non-perturbative results require evaluation
of the exact expressions found in Refs. [18, 19] for a single
system oscillator and multiple system oscillators respec-
tively.
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V. DISCUSSION

In this paper we have derived a fluctuation-dissipation
inequality (FDI) for an open quantum system inter-
acting with a non-equilibrium environment from the
microscopically-derived environment correlation function
and recovered the well-known fluctuation-dissipation re-
lation (FDR) for a thermal environment. The FDI is
a very general statement contrasting quantum noise to
classical noise, and is satisfied even for non-equilibrium
fluctuations. Simply put, quantum fluctuations are
bounded below by quantum dissipation, whereas clas-
sically the fluctuations can be made to vanish. The
lower bound of this inequality is exactly satisfied by
zero-temperature noise and is in accord with the Heisen-

berg uncertainty principle (HUP). FDI violating corre-
lations arise from HUP violating states of the environ-
ment and can relax the open system into HUP violating
states. Therefore, the FDI can be viewed as an open-
system corollary to the HUP both from microscopic and
phenomenological considerations. Analogously, the non-
equilibrium FDR also determines the non-equilibrium
uncertainty product, most directly in the limit of weak-
damping [cf. Eq. (52)], and the corresponding FDI im-
plies the HUP.
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