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I. INTRODUCTION

Studies of the fluctuations in the stress tensors of quantum fields are playing an increas-

ingly important role in investigations of quantum effects in curved spacetimes. In various

forms they have provided criteria for and tests of the validity of semiclassical gravity [1–12].

They are relevant for the generation of cosmological perturbations during inflation [13–16]

as well as the fluctuation and back-reaction problem in black hole dynamics [17, 18]. They

also allow one to go beyond semiclassical gravity [19]. One important theory in which this

is done systematically from first principles is stochastic semiclassical gravity [20–22], which

takes into account fluctuations of the gravitational field that are induced by the quantum

matter fields.

The centerpiece of stochastic semiclassical gravity is the noise kernel. The noise kernel is

the symmetrized connected 2-point function of the stress tensor operator for a quantum field

in curved spacetime. It plays a role in stochastic gravity [22, 23] similar to the expectation

value of the stress tensor in semiclassical gravity [11, 24, 25]. The noise kernel characterizes

the fluctuations of the stress tensor (4-point function for free fields) which are accounted for

by the stochastic source of the Einstein-Langevin equation [26] and is thus an upgrade of

semiclassical gravity, which includes only the expectation value of the stress tensor (2-point

function for free fields). The construction of stochastic gravity was motivated by finding ways

to include the fluctuations of the quantum fields [1, 2] and the dissipation of the gravitational

field [27] as well as the induced metric fluctuations, properly [21, 26] in a covariant manner.

For both black hole and early universe physics as well as in the viscosity-entropy bound

via the fluid/gravity duality [28, 29] there is a clear need for a better understanding of the

properties of the stress tensor correlators of quantum fields in curved spacetime.

Need for higher-order correlation functions of quantum fields

As pointed out by Hu and Roura [17] using the black-hole quantum back-reaction and

fluctuation problems as examples, a consistent study of the horizon fluctuations requires a

detailed knowledge of the stress tensor 2-point function. That is because, in contrast with

the averaged energy flux, the existence of a direct correlation assumed in earlier studies

between the fluctuations of the energy flux crossing the horizon and those far from it, is sim-
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ply invalid. For cosmological structure formation problems, stochastic gravity gives at tree

level a result equivalent [14] to the standard treatment of linear cosmological perturbations

[30], but it is for one-loop corrections that the calculation via the noise kernel can provide

particularly useful insight [15, 31]. In fact, the correlation functions in stochastic gravity,

calculated as averages over stochastic distributions, have been shown [10, 32] to be equiva-

lent, to leading order in the number of matter fields, to the quantum correlation functions

for the metric perturbations around the semiclassical background that would follow from

a purely quantum field theoretical treatment. Of current interest is the non-Gaussianity

in the CMB anisotropies [33], where checking the trispectrum measurements requires high-

precision information on the 4-point function of the inflaton field, which receives a dominant

contribution already at tree level due to nonlinear interactions [34]. Compared to the last

decade, progress of observational cosmology alone has advanced the need for the calculations

of higher-order correlation functions such as the noise kernel beyond academic interest. (For

a recent emphasis on the inadequacy of semiclassical gravity see, e.g., [35].) Beyond grav-

itational issues proper, one topic which has generated much recent interest is the proposal

of a universal bound on the viscosity-to-entropy density ratio for strongly interacting gauge

fluids [28]. The viscosity function is also directly connected with the 2-point function of the

stress tensor of the quantum matter field (albeit in the fluid/gravity duality it is for strongly

coupled fields). More precisely, it is linked to the dissipation kernel, which corresponds to the

expectation value of the commutator of the stress tensor and in thermal equilibrium is teth-

ered with the noise kernel through the fluctuation-dissipation relation (see, e.g., [21, 36–39]).

For example, the calculation of the polarization tensor for a finite-temperature quantum field

far away from a black hole (so the background metric is approximated by the Minkowski

metric) and the derivation of the linear response theory from the Einstein-Langevin equation

were carried out by Campos and Hu [40] (see also Ref. [41]).

Physical meaning of metric fluctuations from integrating the noise kernel with

smearing fields

Fluctuations, which play a central role in the above discussion, like noise a decade or

two ago, are often used but little understood. The situation with metric fluctuations, even

disregarding their linkage to spacetime foam at the Planck scale, is even worse. This is



4

partly due to the highly nontrivial task of constructing appropriate fully gauge-invariant

(diffeomorphism-invariant) observables in quantum gravity even when focusing on its in-

frared regime (by treating it as a low-energy effective field theory [42]). One needs to

envisage suitable ways of probing metric fluctuations and extracting physically meaningful

information from formal objects like the noise kernel and related mathematical construc-

tions. This entails developing satisfactory operational definitions [43] of phenomena like

quantum light-cone [44] and horizon fluctuations [4, 45]. An inquiry of what metric fluctua-

tions mean beyond the classical notion where spacetime is a sharply defined entity was made

in Ref. [17] in the context of black-hole horizon fluctuations. Their analysis shows that when

trying to localize the horizon as a three-dimensional hypersurface, as in the classical case,

the amplitude for the fluctuations can become infinite. The quantum event horizon should

possess a finite effective width due to its quantum fluctuations (intrinsic or induced by the

fluctuations of the matter fields). Such a picture is borne out by integrating the noise kernel

with smearing functions over different kinds of spacetime regions around the horizon. In or-

der to characterize its width one must find a sensible way of probing the metric fluctuations

near the horizon and extracting physically well-defined and unambiguous information, such

as their effect on the Hawking radiation emitted by the black hole. One way to probe the

metric fluctuations is to analyze their effects on the 2-point quantum correlation functions

of a test field. The 2-point functions characterize the response of a particle detector for

that field and can be used to obtain the expectation value and the fluctuations of the stress

tensor of the test field.

Noise kernel with two separate points is needed for analyzing fluctuation phenomena

The noise kernel is finite for spacelike and timelike separations of the points, but it di-

verges for null separations and in all cases in the coincidence limit. Despite this fact, a

careful analysis reveals that the noise kernel can be naturally regarded as a well-defined

distribution (generalized function) which leads to finite results when integrated with appro-

priate test functions [17, 41]. In particular this means that one should obtain a finite result

when integrating the noise kernel with smooth smearing functions without the need for any

subtraction that removes the divergences in the coincidence limit. Calculations involving

such an integration of the noise kernel with suitable smearing functions have been performed,
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for instance, to study the energy density fluctuations in Minkowski and Casimir spacetimes

[7, 46]. Similarly, the computation of correlation functions for the metric perturbations

in stochastic gravity involves integrating the noise kernel with the retarded propagator as-

sociated with the Einstein-Langevin equation. (Because the retarded propagator is not a

smooth function at the initial time, one gets divergent boundary terms when specifying ini-

tial conditions at a finite initial time; these can be interpreted as a consequence of having

considered an unphysical factorized initial state [10, 47] and could be avoided by dealing

with a suitably correlated initial state for the metric perturbations and the matter fields.)

In [48, 49] attention was paid to the regularization of the noise kernel at the coincident limit

by subtracting state-dependent terms which rendered such a limit finite. Motivated by the

discussion above, we carry out here a different line of investigation and focus our attention

on the noise kernel for separate points and without performing any subtraction. (In order

to get the right prescription at the coincidence limit when integrating with test functions,

one can follow the procedure laid out in Appendices B and C of Ref. [17].)

A sobering conclusion from the work of Hu and Roura in Ref. [17] is that a detailed calcu-

lation of the noise kernel is unavoidable (it should be clear from the beginning that a mean

field cannot possibly provide information about fluctuations, except for very special theories

where this information is subsumed.). For studying the effect of Hawking radiation emitted

by a black hole on its evolution and the metric fluctuations driven by the quantum field (the

“back-reaction and fluctuation” problem [50]) the need for the noise kernel of a quantum

field near a black hole horizon has been pronounced earlier. For example, Sinha, Raval and

Hu [51] have outlined a program for such a study, which is the stochastic gravity upgrade

(Einstein-Langevin equation) of those carried out for the mean field in semiclassical gravity

(semiclassical Einstein equation) by York [52, 53] and by York and his collaborators [54].

The results of our paper will serve that purpose and more. The challenge that we face here

is to come up with an economic way of computing the noise kernel, which we describe in

the following subsection along with our findings.

Our approach and findings

An expression for the noise kernel for free fields in a general curved spacetime in terms

of the corresponding Wightman function was obtained a decade ago [21, 48]. Since then
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this general result has been employed to obtain the noise kernel in Minkowski [41], de Sit-

ter [15, 55, 56] and anti-de Sitter [56, 57] spacetimes, as well as in Schwarzschild spacetime

in the coincidence limit [49]. This paper reports on work which continues this effort. Specifi-

cally, we calculate the noise kernel for the conformally invariant scalar field in Schwarzschild

spacetime when the points are separated by a small geodesic distance and the field is in the

Hartle-Hawking state. To do so we use the same method that Page [58] used to compute the

stress tensor for this field in Schwarzschild spacetime. What he did was to work in an opti-

cal Schwarzschild spacetime, which is ultra-static and conformal to Schwarzschild. There he

used the Gaussian approximation to compute the Euclidean Green function when the field

is in a thermal state at the black hole temperature. As he points out, this approximation

corresponds to taking the first term in the DeWitt-Schwinger expansion for the Green func-

tion. In most spacetimes that would not be sufficient to generate an approximation to the

stress tensor which could be renormalized correctly. However, in the optical Schwarzschild

spacetime (and for any other ultra-static metric conformal to an Einstein metric in gen-

eral) the second and third terms in the DeWitt-Schwinger expansion vanish identically, so

that the approximation is much better than it would usually be. Page then conformally

transformed his result to Schwarzschild spacetime by finding the nontrivial conformal trans-

formation which works for the renormalized stress tensor, 〈T̂ab(x)〉ren, of the conformally

invariant scalar field.

Here we use the approximation that Page found for the Euclidean Green function to com-

pute the noise kernel in the optical Schwarzschild spacetime when the points are separated

(and non-null related). Because we do not attempt to take the limit in which the points

come together (or are null related) the result is finite without the need for any subtraction.

As we show, this makes the transformation of the noise kernel for this field to Schwarzschild

spacetime trivial.

Specifically, we find an explicit expression for the Euclidean Green function in the ultra-

static metric and then analytically continue it to the Lorentzian sector. We show that in the

ultra-static spacetime with which we are working, the Wightman function when the points

are non-null related is given to O[(x− x′)2] by the real part of the Gaussian approximation

to the Euclidean Green function when it is analytically continued to the Lorentzian sector.

In our approximation the Wightman function is made up of one part which is necessarily

coordinate dependent and one part which can be expressed in a covariant form. It is the non-



7

vanishing temperature of the state restricted to a static region of Schwarzschild spacetime

which prevents us from writing it in a completely covariant form. We describe a way in

which the partially covariant form can be used to formally compute an approximation for

the noise kernel. Then we turn to a more direct calculation of the Wightman function in the

Gaussian approximation which is completely coordinate dependent. This has the advantage

of being an easier method to use. By substituting it into the equation satisfied by the

Wightman function we show that it is valid to order O[(x− x′)2] as expected. This implies

that expression for the noise kernel obtained with it is valid through O[(x−x′)−4], while the

leading terms in the noise kernel are O[(x− x′)−8].

We have used our direct calculation of the Wightman function to compute explicitly

some of the components of the noise kernel in the optical Schwarzschild spacetime. Due to

the length of the expressions for most of the nonzero components of the noise kernel, we

explicitly display only one component in this paper.

In Sec. II we review the noise kernel for a conformally invariant scalar field in a general

spacetime and discuss its properties including the transformation of the noise kernel from

the optical spacetime to Schwarzschild spacetime. In Sec. III we review the relationship

between the Wightman and Euclidean Green functions, the relevant parts of the formalism

for the DeWitt-Schwinger expansion [59], and its use in the Gaussian approximation for the

Euclidean Green function in the optical Schwarzschild spacetime which Page derived [58].

We show that the resulting expression for the Wightman function is O[(x − x′)2]. This

expression is in a partially covariant form. In Sec. IV a method is given which allows for the

computation of the noise kernel using the expression of the Wightman function derived in

the previous section. Then a more direct method of obtaining the Wightman function in the

Gaussian approximation which is not covariant at all is given. The computation of the noise

kernel using this Wightman function is described. One component of the noise kernel in

Schwarzschild spacetime is explicitly displayed. Sec. V contains a summary and discussion

of our main results. In the Appendix two proofs are given for the way in which the noise

kernel for the conformally invariant scalar field changes under conformal transformations.

Throughout we use units such that ~ = c = G = kB = 1 and the conventions of Misner,

Thorne, and Wheeler [60].
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II. NOISE KERNEL FOR THE CONFORMALLY INVARIANT SCALAR

FIELDS

In this section we review the general properties of the noise kernel for the conformally

invariant scalar field in an arbitrary spacetime. The definition of the noise kernel for any

quantized matter field is

Nabc′d′(x, x
′) =

1

2
〈{t̂ab(x), t̂c′d′(x′)}〉 , (2.1)

with

t̂ab(x) ≡ T̂ab(x)− 〈T̂ab(x)〉 . (2.2)

Here 〈. . .〉 denotes the quantum expectation value with respect to a normalized state of the

matter field [more generally, 〈. . .〉 = Tr(ρ̂ . . .) for a mixed state] and T̂ab is the stress tensor

operator of the field.

The classical stress tensor for the conformally invariant scalar field is

Tab = ∇aφ∇bφ− 1

2
gab∇cφ∇cφ+ ξ (gab2−∇a∇b +Gab)φ

2, (2.3)

with ξ = (D − 2)/4(D − 1), which becomes ξ = 1/6 in D = 4 spacetime dimensions. Note

that since the stress tensor is symmetric, the noise kernel is also symmetric under exchange

of the indices a and b, or c ′ and d ′. To compute the noise kernel one promotes the field φ(x)

in Eq. (2.3) to an operator in the Heisenberg picture while still treating gab as a classical

background metric. The result is then substituted into Eq. (2.1).

Given a Gaussian state of the quantum matter field, one can express the noise kernel in

terms of products of two Wightman functions by applying Wick’s theorem. (Gaussian states

include for instance the usual vacua, thermal and coherent states. In general most states

will not be Gaussian and Wick’s theorem will not apply: it will not be possible to write the

4-point function of the field in terms of 2-point functions and expectation values of the field.

That is for example the case for all eigenstates of the particle number operators other than

the corresponding vacuum.) The Wightman function is defined as

G+(x, x′) = 〈φ(x)φ(x′)〉 . (2.4)

The result for a scalar field with arbitrary mass and curvature coupling in a general spacetime

has been obtained in Refs. [21, 48]. For the conformally invariant scalar field in a general
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spacetime the noise kernel is [48]

Nabc′d′ = N̄abc′d′ + gabN̄c′d′ + gc′d′N̄
′
ab + gabgc′d′N̄ (2.5)

with1

72N̄abc′d′ = 4 (G;c′b G;d′a +G;c′aG;d′b) +G;c′d′ G;ab +GG;abc′d′

−2 (G;b G;c′ad′ +G;a G;c′bd′ +G;d′ G;abc′ +G;c′ G;abd′)

+2 (G;aG;b Rc′d′ +G;c′ G;d′ Rab)

− (G;ab Rc′d′ +G;c′d′ Rab)G+
1

2
Rc′d′ RabG

2 (2.6a)

288N̄ ′
ab = 8

(

−G;p′b G;
p′
a +G;b G;p′a

p′ +G;aG;p′b
p′
)

4
(

G;
p′ G;abp′ −G;p′

p′ G;ab −GG;abp′
p′
)

−2R′ (2G;aG;b −GG;ab)

−2
(

G;p′ G;
p′ − 2GG;p′

p′
)

Rab −R′ RabG
2 (2.6b)

288N̄ = 2G;p′q G;
p′q + 4

(

G;p′
p′ G;q

q +GG;p
p
q′
q′
)

−4
(

G;pG;q′
pq′ +G;

p′ G;q
q
p′

)

+RG;p′ G;
p′ +R′ G;pG

;p

−2
(

RG;p′
p′ +R′ G;p

p
)

G+
1

2
RR′G2 . (2.6c)

Note that the superscript + on G+ has been omitted in the above equations for notational

simplicity. Primes on indices denote tensor indices at the point x′ and unprimed ones denote

indices at the point x. Also Rab is the Ricci tensor evaluated at the point x, Rc′ d′ is the

Ricci tensor evaluated at the point x′, R is the scalar curvature evaluated at the point x,

and R′ is the scalar curvature evaluated at the point x′.

The definition (2.5) of the noise kernel immediately implies that it is symmetric under

interchange of the two spacetime points and the corresponding pairs of indices so that

Nabc′d′(x, x
′) = Nc′d′ab(x

′, x) . (2.7)

There are other important properties which the noise kernel has as well. These have been

proven in Refs. [20, 21], so we just state them here. The first property, which is clear

1 Notice that these equations have two slight but crucial differences with the equations of Ref. [48]. The

sign of the last term of the equation for Nabc′d′ and also the sign of the term GG
p′

;abp′ have been corrected.
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from (2.5), is that the following conservation laws must hold:

∇aNabc′d′ = ∇bNabc′d′ = ∇c′Nabc′d′ = ∇d′Nabc′d′ = 0 . (2.8)

The second property which must be satisfied because the field is conformally invariant is

that the partial traces must vanish, that is

Na
ac′d′ = N c′

ab c′ = 0 . (2.9)

A third important property is that the noise kernel is positive semidefinite, namely

∫

d4x
√

−g(x)

∫

d4x′
√

−g(x′) fab(x)Nabc′d′(x, x
′)f c′d′(x′) ≥ 0, (2.10)

for any real tensor field fab(x).

Finally the noise kernel for the conformally invariant field when the points are separated

has a simple scaling behavior under conformal transformations. In the Appendix two proofs

are given which show that under a conformal transformation between two conformally re-

lated D-dimensional spacetimes with metrics of the form g̃ab = Ω2(x) gab, the noise kernel

transforms as:

Ñabc′d′(x, x
′) = Ω2−D(x) Ω2−D(x′)Nabc′d′(x, x

′) . (2.11)

III. GAUSSIAN APPROXIMATION IN THE OPTICAL SCHWARZSCHILD

SPACETIME

As discussed in the introduction we want to compute the noise kernel in a background

Schwarzschild spacetime for the conformally invariant scalar field when the points are sep-

arated. For an arbitrary separation it would be necessary to do this numerically. However,

if the separation is small then it is possible to use approximation methods to compute the

Wightman function analytically and from that the noise kernel. For a conformally invariant

field a significant simplification is possible because the Green function and the resulting

noise kernel can be computed in the optical Schwarzschild spacetime, which is conformal to

Schwarzschild spacetime, and then conformally transformed to Schwarzschild spacetime. A

similar calculation was done by Page [58] for the stress tensor for the conformally invariant

scalar field. In his calculation first the Euclidean Green function for the field in a thermal

state was computed using a Gaussian approximation. Then the stress tensor was computed
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and conformally transformed to Schwarzschild spacetime. We shall use Page’s approxima-

tion for the Euclidean Green function to obtain an approximation for the Wightman Green

function and then compute the noise kernel using that approximation.

A. Gaussian approximation for the Wightman Green function

In order to use Page’s approximation we must relate the Euclidean Green function in a

static spacetime to the Wightman function. To do so we begin by noting that the Wightman

function can be written in terms of two other Green functions [61], the Hadamard function

G(1)(x, x′) and the Pauli-Jordan function G(x, x′) such that

G+(x, x′) =
1

2

[

G(1)(x, x′) + iG(x, x′)
]

(3.1a)

G(1)(x, x′) ≡ 〈{φ(x), φ(x′)}〉 (3.1b)

i G(x, x′) ≡ 〈[φ(x), φ(x′)]〉 . (3.1c)

As discussed in the Introduction, we restrict our attention in this paper to spacelike and

timelike separations of the points. In general G(x, x′) = 0 for spacelike separations of

the points. In the optical Schwarzschild spacetime, G(x, x′) = O[(x − x′)4] for timelike

separations of the points. To see this consider the general form of the Hadamard expansion

for G(x, x′) which is [62]

G(x, x′) = −u(x, x′)

4π
δ(−σ) +

v(x, x′)

8π
θ(−σ) , (3.2)

with σ(x, x′) defined to be one-half the square of the proper distance along the shortest

geodesic connecting the two points. In [63] it was shown that in Schwarzschild spacetime

v(x, x′) = O[(x− x′)4]. Since the Green function in the optical spacetime can be obtained

from that in Schwarzschild spacetime by a simple conformal transformation, the same must

be true of the quantity v(x, x′). Thus so long as we work only to O[(x − x′)2] and restrict

our attention to points which are either spacelike or timelike separated, then in the optical

Schwarzschild spacetime

G+(x, x′) =
1

2
G(1)(x, x′) +O[(x− x′)4] . (3.3)

The Hadamard Green function can be computed using the Euclidean Green function in

the following way. First define the Euclidean time as

τ ≡ it . (3.4)
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Then the metric in a static spacetime takes the form

ds2 = gττ (~x)dτ
2 + gij(~x)dx

idxj . (3.5)

The Euclidean Green function obeys the equation

(2− 1

6
R)GE(x, x

′) = −δ(x− x′)
√

g(x)
. (3.6)

Because the spacetime is static GE will be a function of (∆τ)2 = (τ − τ ′)2. It is possible to

obtain the Feynman Green function GF (x, x
′) by making the transformation [64]

(∆τ)2 → −(∆t)2 + iǫ . (3.7)

under which

GE(x, x
′) → iGF (x, x

′) . (3.8)

Using [61]

GF (x, x
′) = −1

2
i G(1)(x, x′) +

1

2
[θ(t− t′)− θ(t′ − t)]G(x, x′) . (3.9)

One then finds that Eq. (3.3) becomes

G+(x, x′) = −ImGF (x, x
′) +O[(x− x′)4] . (3.10)

As mentioned above, Page made use of the DeWitt-Schwinger expansion to obtain his

approximation for the Euclidean Green function. Before displaying his approximation it

is useful to discuss two quantities which appear in that expansion. For a more complete

discussion see Ref. [59]. The fundamental quantity out of which everything is built is Synge’s

world function σ(x, x′) which is defined to be one-half the square of the proper distance

between the two points x and x′ along the shortest geodesic connecting them. It satisfies

the relationship

σ(x, x′) =
1

2
gab(x) σ

;a(x, x′) σ;b(x, x′) . (3.11)

It is traditional to use the notation

σa ≡ σ;a . (3.12)

As shown in [59] it is possible to expand biscalars, bivectors, and bitensors in powers of

σa in an arbitrary spacetime. One chooses one of the points, usually x, and evaluates the

coefficients in the expansion at that point. For example

σ;ab(x, x
′) = gab(x)−

1

3
Racbd(x) σ

c(x, x′)σd(x, x′) + · · · . (3.13)
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Examination of this expansion shows that to zeroth order in σa

σ;abc = 0 . (3.14)

The second quantity we shall need is

U(x, x′) ≡ ∆1/2(x, x′) (3.15a)

∆(x, x′) ≡ − 1
√

−g(x)
√

−g(x′)
det (−σ; a b ′) . (3.15b)

Note that covariant derivatives at the point x′ commute with covariant derivatives at the

point x. Two important properties of U(x, x′) are

U(x, x) = 1 (3.16a)

(lnU);a σ
a = 2− 1

2
2σ . (3.16b)

One can also expand U in powers of σa with the result that [59]

U(x, x′) = 1 +
1

12
Rab σ

aσb − 1

24
Rab;c σ

aσbσc,

+
1

1440
(18Rab;cd + 5Rab Rcd + 4Rpaqb Rc

q
d
p) σaσbσcσd. (3.17)

The above definitions, properties, and expansions apply to arbitrary spacetimes. Given

any static metric, one can always transform it to an ultra-static one, called the optical

metric, by a conformal transformation. This kind of metric is of the form

ds2 = −dt2 + gij(~x) dx
idxj (3.18)

with the metric functions gij independent of the time t. In this case Synge’s world function

is

σ(x, x′) =
1

2

(

−(t− t′)2 + r2
)

(3.19)

with

r ≡
√
2 (3)σ . (3.20)

The quantity (3)σ is the world function for the three dimensional spatial part of the metric

and thus depends only on the spatial coordinates. Note that we use r (with bold roman
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font) to denote the quantity in Eq.(3.20) while r (with normal italic font) denotes the radial

coordinate. Some useful properties of r are

∇ir =
3σi

r
(3.21a)

∇2r =
3σi

i − 1

r
(3.21b)

∇ir ∇ir =
3σi

3σi

2 3σ
= 1 (3.21c)

2
(

∆1/2
)

,i
∇ir =

(

3

r
−∇2r

)

∆1/2 (3.21d)

where ∇2 = ∇i∇i. Note that from Eqs. (3.15b) and (3.19) one can easily see that for an

ultra-static spacetime the Van-Vleck determinant (3)∆ for the spatial metric gij coincides

with the Van-Vleck determinant ∆ for the full spacetime. (The advantage of using (3)∆

rather than ∆ is that, although noncovariant, it is valid for arbitrary time separations, and

one only needs to expand in powers of r.)

The optical Schwarzschild metric

ds2 = −dt2 +
1

(

1− 2M
r

)2dr
2 +

r2

1− 2M
r

(

dθ2 + sin2 θdφ2
)

, (3.22)

is of the form (3.18) and is conformally related to normal Schwarzschild metric with confor-

mal factor

Ω2 =

(

1− 2M

r

)

. (3.23)

For this metric Page [58] used a Gaussian approximation to obtain an expression for the

Euclidean Green function in a thermal state at the temperature

T =
κ

2π
. (3.24)

The expression is valid for any temperature but if

κ =
1

4M
, (3.25)

then the temperature is that of the black hole in the Schwarzschild spacetime which is

conformal to the optical metric (3.22). In this case the field is in the Hartle-Hawking state,

which is regular on the horizon. For an arbitrary temperature Page found that [58]

GE(∆τ, ~x, ~x ′) =
κ sinh(κr)

8π2r [cosh(κr)− cos(κ∆τ)]
U(∆τ, ~x, ~x ′) . (3.26)
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Analytically continuing to the Lorentzian sector using the prescriptions (3.7) and (3.8), and

substituting the result into Eq. (3.10) gives

G+(∆t, ~x, ~x ′) =
κ sinh κr

8π2r[cosh(κr)− cosh(κ∆t)])
U(∆t, ~x, ~x ′) . (3.27)

To determine the accuracy of this approximation we can substitute the above expression

into the equation satisfied by G+ which is

2G+(x, x′)− R

6
G+(x, x′) = 0 . (3.28)

The accuracy of the Gaussian approximation in the optical Schwarzschild metric will be

determined by the lowest order in (x− x′) at which Eq. (3.28) is not satisfied.

Applying the differential operator for the metric (3.22) and using (3.21c) and (3.21d) one

finds after some calculation that

(

2− 1

6
R

)

G+(x, x′) =
κ sinh(κ r)

r [cosh(κ r)− cosh(κ∆t)]

(

2− 1

6
R

)

U(x, x′) (3.29)

If Eq. (3.17) is substituted into Eq. (3.29) and Eqs. (3.13) and (3.14) are used then one finds

(

2− R

6

)

U(x, x′) = Q0 +Qpσ
p +Qpqσ

pσq + · · · (3.30)

with

Q0 = 0 (3.31a)

Qaσ
a = σa Ga

b
;b = 0 (3.31b)

Qab σ
a σb =

1

360

(

9R;ab + 9Rab;c
c − 24Rac;

c
b − 12RacRb

c

+6RcdRcadb + 4RacdeRb
edc + 4RacdeRb

cde
)

σaσb . (3.31c)

Here Gab is the Einstein tensor. For the optical Schwarzschild metric (3.22), Qab σ
aσb = 0.

Thus Eq. (3.30) is zero to O[(x − x′)2]. Since 2 is a second order derivative operator,

this means that the Gaussian approximation for G+(x, x′) is accurate up to and including

O[(x− x′)2]. Note that to leading order G+(x, x′) ∼ (x− x′)−2.

It is important to emphasize that the order of accuracy obtained here is for the

Schwarzschild optical metric (3.22). Because the Gaussian approximation is equivalent to the

lowest order term in the DeWitt-Schwinger expansion, it is only guaranteed to be accurate

to leading order in x− x′ in a general spacetime.
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B. Order of validity of the noise kernel

In Sec. II an expression for the noise kernel is given in terms of covariant derivatives

of the Wightman function. In each term there is a product of Wightman functions and

varying numbers of covariant derivatives. The accuracy of the Gaussian approximation for

the Wightman function can be used to estimate the order of accuracy of the noise kernel.

First recall that the leading order of the Wightman function goes like (x−x′)−2. Since there

is a maximum of four derivatives acting on a product of Wightman functions one therefore

expects that at leading order the noise kernel will go like (x − x′)−8. Since the Gaussian

approximation to the Wightman function in the optical Schwarzschild spacetime is accurate

through terms of order (x− x′)2, it is clear from Eq. (2.6) that our expression for the noise

kernel should be accurate up to and including terms of order (x− x′)−4.

IV. COMPUTATION OF THE NOISE KERNEL

In this section we give two methods which can be used to compute the Noise Kernel for

the conformally invariant scalar field in Schwarzschild spacetime using a Gaussian approxi-

mation. Using the second method, we have computed several components of the noise kernel

and one of them is displayed below.

A. Partially Covariant Expansion

To calculate the noise kernel we begin with the Gaussian approximation for the Wight-

man function (3.27). This expression is actually valid in any spacetime with metric of the

form (3.18), although it will not in general be as accurate as it is in the optical Schwarzschild

spacetime with metric (3.22). Examination shows that this expression is of the form

G+(x, x′) = P (r,∆t)U(x, x′) . (4.1)

The first factor is of course noncovariant, but a covariant expansion for U(x, x′) has been

given in Eq. (3.17). Thus it is possible to compute a partially covariant expansion for the

noise kernel that is valid in any spacetime with metric of the form (3.18). One simply

substitutes Eq. (3.17) into Eq. (3.27) and then substitutes the result into Eqs. (2.6).
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To go further one must choose a specific metric, expand σ and its derivatives in powers

of x − x′ and thus obtain an expansion for the noise kernel in powers of x − x′. Such an

expansion can be obtained using the method outlined in Ref. [65] and also in Appendix B

of Ref. [66].

B. Direct Calculation

The method outlined in the previous subsection would work for any spacetime with a

metric of the form (3.18). However, for a spacetime such as the optical Schwarzschild

spacetime which is also spherically symmetric there is an alternative approach which allows

one to compute expansions for σ(x, x′) and U(x, x′) more directly. This is the method which

we have used to compute explicitly some components of the noise kernel.

Consider first the quantity σ(x, x′) which is one-half the square of the proper distance

between x and x′ along the shortest geodesic that connects them. Here we assume that

the two points are very close together. It has already been shown in Eq. (3.19) that in a

spacetime with metric (3.18) σ can be written as a sum of one term proportional to (t− t′)2

and another with no time dependence. Further since the metric (3.22) is also spherically

symmetric, σ can only depend on the angular quantity

cos(γ) ≡ cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) , (4.2)

where γ is the angle between ~x and ~x ′. It turns out to be convenient to write σ in terms of

the quantity

η ≡ cos γ − 1 . (4.3)

Then for points that are sufficiently close together one can use the expansion

σ(x, x′) =
∑

i,j,k

sijk(r)(t− t′)2i ηj (r − r′)k , (4.4)

with the sum over i being from 0 to 1 and the other sums starting at j = 0 and k = 0

respectively.

For the metric (3.22), Eq. (3.11) has the explicit form

σ =
1

2

[

−
(

∂σ

∂t

)2

+

(

1− 2M

r

)2(
∂σ

∂r

)2

− 1

r2

(

1− 2M

r

)(

∂σ

∂η

)2

(2η + η2)

]

. (4.5)
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Substituting the expansion (4.4) into Eq. (4.5) and equating powers of (xa − xa′) one finds

that

σ(x, x′) = −(∆t)2

2
+

(∆r)2

2f 2
− r2η

f
+ (∆r)3

(

1

2rf 3
− 1

2rf 2

)

+η∆r

(

3r

2f
− r

2f 2

)

+O[(x− x′)4] . (4.6)

Similarly one can write

lnU(x, x′) =
∑

j,k

ujk(r) η
j (r − r′)k . (4.7)

It can be seen from Eqs. (3.19) and (3.15) that there is no time dependence in U in a

spacetime with metric (3.22). If Eq. (4.7) is substituted into Eq. (3.16b), Eqs. (3.16a)

and (4.4) are used, and the result is expanded in powers of x− x′ then one finds that

U(x, x′) = 1 +
(∆r)2

8r2

(

1− 2

3f
− 1

3f 2

)

+ η

(

f

4
− 1

3
+

1

12f

)

+O[(x− x′)3] . (4.8)

To compute the noise kernel we need an expansion for the Wightman function. The

general expression (3.26) for G+(x, x′) in the Gaussian approximation can be expanded

as [49]

G+(x, x′) =
1

8 π2

[

1

σ
+

κ2

6
− κ4

180

(

2 (∆t)2 + σ
)

+O
[

(x− x′)4
]

]

U(x, x′) (4.9)

with ∆r = r − r′ and

f ≡ 1− 2M

r
. (4.10)

Since to lowest order U(x, x′) = 1, terms in the above expansion have been kept through

O[(x − x′)2] which is consistent with the order to which the Gaussian approximation was

shown to be valid in Sec. III. Next one must substitute the expansions (4.6) for σ and (4.8)

for U into Eq. (4.9). To obtain a final expression that is accurate up to and including

O[(x− x′)2], it is necessary to have the expansion for U contain terms through O[(x− x′)4].

To obtain these it is in turn necessary to have the expansion for σ contain terms through

O[(x − x′)6]. The result for G+ can be substituted into the expressions (2.6) for the noise

kernel and the derivatives can be computed. As discussed in Sec. III B one should keep terms

through O[(x− x′)−4] since this is the highest order for which the Gaussian approximation

for the noise kernel is valid.
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We have computed several components of the noise kernel through O[(x − x′)−4]. The

resulting expressions are too long to display in full here for an arbitrary separation of the

points. Because the Gaussian approximation for G+(x, x′) has terms proportional to κ0,

κ2, and κ4, the noise kernel in the Gaussian approximation will have terms proportional to

these factors of κ as well. To give the reader some sense as to what the noise kernel looks

like when the points are separated in an arbitrary direction we give the leading order terms

in (x− x′) which are proportional to each factor of κ for one component of the noise kernel.

For an arbitrary separation of the points it is useful to write the noise kernel in terms of the

quantity

ǫ2 ≡ −(∆t)2 +
(∆r)2

f 2
− r2η

f
. (4.11)

Then we find

Nt t t′ t′ =
1

32π4(ǫ2)4
+

2fr2η − (∆r)2

6π4f 2(ǫ2)5

+
8f 2r4η2 − 10fr2(∆r)2η + 3(∆r)4

18π4f 4(ǫ2)6
+ O

[

(x− x′)−7
]

+ κ2

{

5

576π4(ǫ2)3
− 4fr2η + 5(∆r)2

144π4f 2(ǫ2)4
+

(∆r)4 − 4f 2r4η2

36π4f 4(ǫ2)5
+ O

[

(x− x′)−5
]

}

+ κ4

{

17

8640π4(ǫ2)2
+

46fr2η − 153(∆r)2

25920π4f 2(ǫ2)3
− 26f 2r4η2 + 11fr2(∆r)2η − 12(∆r)4

2160π4f 4(ǫ2)4

−8f 3r6η3 − 4f 2r4(∆r)2η2 − 2fr2(∆r)4η + (∆r)6

540π4f 6(ǫ2)5
+ O

[

(x− x′)−3
]

}

. (4.12)

If we set ∆r = η = 0 then it is possible to display the full Gaussian approximation for this

component. It is

Nt t t′ t′ =
1

32π4(∆t)8
− f 2 − 2f + 1

2304π4r2(∆t)6
+

3f 4 − 8f 3 + 8f 2 − 4f + 1

27648π4r4(∆t)4

+ κ2

[

− 5

576π4(∆t)6
− 5f 2 − 10f + 5

27648π4r2(∆t)4

]

+ κ4

[

17

8640π4(∆t)4

]

+O
[

(x− x′)−3
]

. (4.13)

If we set ∆t = η = 0 then it is also possible to display the full Gaussian approximation for
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this component. It is

Nt t t′ t′ =
f 8

32π4(∆r)8
+

f 8 − f 7

8π4r(∆r)7
+

673f 8 − 1122f 7 + 449f 6

2304π4r2(∆r)6

+
1205f 8 − 2557f 7 + 1691f 6 − 339f 5

2304π4r3(∆r)5

+
36775f 8 − 89540f 7 + 74680f 6 − 24384f 5 + 2469f 4

46080π4r4(∆r)4

+ κ2

[

f 6

576π4(∆r)6
+

f 6 − κ2f 5

192π4r(∆r)5
+

279f 6 − 430f 5 + 151f 4

27648π4r2(∆r)4

]

+ κ4

[

− κ4f 4

4320π4(∆r)4

]

+O
[

(x− x′)−3
]

. (4.14)

The above results are for the optical Schwarzschild metric (3.22). They can be transformed

to Schwarzschild spacetime trivially by using the transformation (2.11) and expanding Ω(r′)

about r′ = r.

As discussed in Sec. II, the noise kernel has two properties which can be used to check

our calculations. One of these is the vanishing of the partial traces so that

Na
a c′ d′ = Na b c′

c′ = 0 . (4.15)

The other property is that the noise kernel should be separately conserved at the points x

and x′, so that

gaeNa b c′ d′ ;e = gbeNa b c′ d′ ;e = gc
′ e′Na b c′ d′ ;e′ = gd

′ e′Na b c′ d′ ;e′ = 0 . (4.16)

V. DISCUSSION

Using Page’s approximation for the Euclidean Green function of a conformally invariant

scalar field in the optical Schwarzschild spacetime, which is conformal to the static region

of Schwarzschild spacetime, we have computed two expressions for the Wightman function

associated with the Hartle-Hawking state in Schwarzschild. One is a partially covariant

expression and the other is a completely noncovariant expression. The noncovariant expres-

sion has been used to explicitly compute some components of the noise kernel in the optical

Schwarzschild spacetime for separate points which are either spacelike or timelike related,
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and one component has been explicitly displayed. The transformation to Schwarzschild

spacetime of the noise kernel has been shown to be trivial for the conformally invariant

scalar field so long as the points are separated.

There are several more or less immediate generalizations of our work. First, although the

Hartle-Hawking state corresponds to a specific temperature, given by Eqs. (3.24)-(3.25), our

results also apply to any other temperature since we kept κ arbitrary in all our expressions.

The states for those other values of the temperature are singular on the horizon (e.g. the

expectation value of the stress tensor diverges there), but can sometimes be of interest (e. g.

the Boulware vacuum corresponds to the particular case of T = 0). Second, the noise kernel

corresponds to the expectation value of the anticommutator of the stress tensor. However,

our results are also valid for other orderings of the stress tensor operator (in fact for any

2-point function of the stress tensor). In general, that is always true for spacelike separated

points because the commutator of any local operator (such as the stress tensor) vanishes as

a consequence of the microcausality condition. Moreover, since the commutator of the field,

iG(x, x′), also vanishes for timelike separated points up to the order to which we are working,

the previous statement also holds for timelike separations in our case. (In general one would

need to use the appropriate prescription when analytically continuing the Euclidean Green

function to obtain the Wightman function for timelike separated points in the Lorentzian

case, and use expressions analogous to Eqs. (3.24)-(3.25) but without symmetrizing with

respect to the two points. One can explicitly see how this is done in Refs. [15, 56].) Third,

since the Gaussian approximation is valid for any ultra-static spacetime which is conformal

to an Einstein metric (a solution of the Einstein equation in vacuum, with or without

cosmological constant) [58], one can directly extend our calculation to all those cases by

taking the general expression for the Wightman function under the Gaussian approximation,

given by Eq. (3.27), and substituting it into the general expression for the noise kernel as

described in Sec. IVA.

As discussed in the Introduction, one of the most interesting uses of the noise kernel

is to investigate the effects of quantum fluctuations near the horizon of the black hole.

Whereas having an explicit expression for the noise kernel is an essential ingredient in this

respect, there is an important limitation to our result. In the optical spacetime, where the

original computation was made, our expression for the noise kernel is valid through order

(x− x′)−4, with the leading order terms being of order (x− x′)−8. However, this expression
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is then conformally transformed to Schwarzschild spacetime. Far from the event horizon

the accuracy is the same as in the optical spacetime. Nevertheless, the conformal factor

that relates the Schwarzschild metric to the optical metric diverges as one approaches the

event horizon. This means that in the Schwarzschild spacetime the noise kernel near the

horizon is only accurate if the points are extremely close together. The situation can be

slightly ameliorated if one takes into account the fact that Page’s approximation should

actually be valid for arbitrary time separations in the optical metric while keeping the

spatial separations small [58]. This would imply that taking Eq. (3.26), introducing the

prescription ∆τ → i (∆t − iǫ), using the Van-Vleck determinant (3)∆ for the spatial metric

gij (which for the optical metric is equivalent to the four-dimensional one, ∆), and expanding

everything in terms of powers of r, gives a Wightman function which is valid for arbitrary

time separations. Using such an expression for the Wightman function in the optical metric,

one would not be restricted to small time separations in Schwarzschild spacetime even when

considering points arbitrarily close to the horizon. This does not, however, solve completely

the problem because one is still restricted to considering very small spatial separations when

getting sufficiently close to the horizon.

It is worthwhile to discuss briefly how the present paper is related to an earlier study of the

noise kernel in Schwarzschild spacetime [49], which also considered a conformal scalar field

and made use of Page’s Gaussian approximation. The main interest there was evaluating

the noise kernel in the coincidence limit. In order to get a finite result the Hadamard

elementary solution was subtracted from the Wightman function before evaluating the noise

kernel. Since the Hadamard elementary solution coincides with the κ = 0 expression for

the Gaussian approximation through order (x− x′)2, which is the order through which the

approximation is valid for the optical Schwarzschild spacetime, their subtracted Wightman

function will also be valid through that order. The fact that they found a non-vanishing trace

for their noise kernel is also compatible with our results because, as we have reasoned, the

noise kernel should only be valid through order (x−x′)−4 when the Gaussian approximation

for the Wightman function is employed. Instead, one would need an expression for the

noise kernel accurate through order (x − x′)0 or higher to get a vanishing trace in the

coincidence limit. In contrast, for the reasons given in the introduction, here we consider

the unsubtracted noise kernel, which we believe to be a more interesting object (for instance,

the subtracted one would lead to a vanishing result –and no fluctuations– for the Minkowski
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vacuum). Furthermore, in this way one can still get useful and accurate information for the

terms of order (x− x′)−8 through (x− x′)−4, which dominate at small separations.

From the noise kernel one can immediately obtain the symmetrized quantum 2-point

function for the Einstein tensor (or, equivalently, the Ricci tensor) including the one-loop

correction from the matter fields (see discussion in Sec. 8 of Ref. [15]). Strictly speaking,

however, one should not employ the Schwarzschild background, but a slightly corrected

one which takes into account the back-reaction of the quantum matter fields on the mean

geometry via the semiclassical Einstein equation [52]. Nevertheless, one can consider an

expansion in powers of m2
p/M

2 and the previous statement will still be true to zeroth order

in that expansion. (Incidentally, at that order the 2-point function of the Ricci tensor is

also gauge-invariant, as a consequence of the Ricci tensor vanishing for the background

Schwarzschild geometry.) The Ricci tensor, however, does not fully characterize the local

geometry. In order to do so, one needs to solve the Einstein-Langevin equation and obtain

the metric perturbations around the background in terms of the stochastic source. One can

then calculate the correlation function for some appropriate gauge-invariant quantity linear

in the metric perturbations.

The Einstein-Langevin equation is an integro-differential equation, which is in general

difficult to solve exactly. A simpler possibility is to solve it perturbatively in powers of the

gravitational coupling constant (or, equivalently, in powers of the Planck length squared, l2p).

To quadratic order (i.e. order l4p) the result for the 2-point stochastic correlation function

of the metric perturbations or related quantities corresponds to calculating the 2-point

quantum correlation function including the one-loop correction from the matter fields. (It is

at this order that the 2-point function of the Ricci tensor is directly related to the noise kernel

in a simple way as mentioned above.) This kind of perturbative treatment can typically give

rise to spurious secular effects for sufficiently long times, for which the perturbative expansion

breaks down. For a given static background geometry and static unperturbed quantum state

(like the Hartle-Hawking state), if one introduces the initial conditions appropriately at an

asymptotic initial time, the correlation functions will only depend on the time difference.

In that case, the breakdown of the perturbative expansion will limit this time difference

but not the absolute time values. Moreover, for macroscopic black holes one has M ≫ mp

(which is anyway a necessary condition for such a semiclassical treatment to be valid) and

one can introduce an additional perturbative expansion in powers of m2
p/M

2. This means
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that at zeroth order, the objects appearing in typical computations can be evaluated on

a Schwarzschild background rather than the semiclassically corrected one (e.g. both the

retarded propagatorGret associated with the Einstein-Langevin equation and the noise kernel

appearing in convolutions of the form Gret ·N ·GT
ret [10]).
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Appendix: Noise kernel and conformal transformations

In this appendix we derive the result for the rescaling of the noise kernel under conformal

transformations. We provide two alternative proofs based respectively on the use of quantum

operators and on functional methods.

First, we start by showing how the classical stress tensor of a conformally invariant scalar

field rescales under a conformal transformation gab → g̃ab = Ω2(x) gab. The key point is that

the classical action of the field, S[φ, g], remains invariant (up to surface terms) if one rescales

appropriately the field: φ → φ̃ = Ω(2−D)/2φ. Taking that into account, one easily gets the

result from the definition of the stress tensor as a functional derivative of the classical action:

T̃ab =
2g̃acg̃bd√−g̃

δS[φ̃, g̃]

δg̃cd
=

2g̃acg̃bd√−g̃

δS[φ, g]

δg̃cd
= Ω2−D 2gacgbd√−g

δS[φ, g]

δgcd
= Ω2−D Tab. (A.1)

1. Proof based on quantum operators

A possible way of proving Eq. (2.11) is by promoting the classical field φ in Eq. (A.1)

to an operator in the Heisenberg picture. The operator T̂ab(x) would be divergent because

it involves products of the field operator at the same point. However, in order to calculate

the noise kernel what one actually needs to consider is t̂ab(x) = T̂ab(x) − 〈T̂ab(x)〉 and

this object is UV finite, i.e., its matrix elements 〈Φ|t̂ab(x)|Ψ〉 for two arbitrary states |Ψ〉
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and |Φ〉 (not necessarily orthogonal) are UV finite because Wald’s axioms [61] guarantee

that 〈Φ|T̂ab(x)|Ψ〉 and 〈Φ|Ψ〉〈T̂ab(x)〉 have the same UV divergences and they cancel out.

Therefore, one can proceed as follows. One starts by introducing a UV regulator (it is useful

to consider dimensional regularization since it is compatible with the conformal symmetry for

scalar and fermionic fields, but this is not indispensable since we will remove the regulator at

the end without having performed any subtraction of non-invariant counterterms). One can

next apply the operator version of Eq. (A.1) to the operators t̂ab(x) appearing in Eq. (2.1)

defining the noise kernel. Since all UV divergences cancel out, as argued above, we can then

safely remove the regulator and are finally left with Eq. (2.11).

2. Proof based on functional methods

An alternative way of proving Eq. (2.11) is by analyzing how the closed-time-path (CTP)

effective action Γ[g, g′] changes under conformal transformations. This effective action results

from treating gab and g′ab as external background metrics and integrating out the quantum

scalar field within the CTP formalism [69]:

eıΓ[g,g
′] =

∫

Dϕf DϕiDϕ′
i ρ[ϕi, ϕ

′
i]

∫ ϕf

ϕi

Dφ eıSg[g]+ıS[φ,g]

∫ ϕf

ϕ′

i

Dφ′ e−ıSg[g′]−ıS[φ′,g′], (A.2)

where ρ[ϕi, ϕ
′
i] is the density matrix functional for the initial state of the field 2 (in particular

one has ρ[ϕi, ϕ
′
i] = Ψ[ϕi]Ψ

∗[ϕ′
i] for a pure initial state with wave functional Ψ[ϕi] = 〈ϕi|Ψ〉

in the Schrödinger picture), Sg[g] is the gravitational action including local counterterms,

S[φ, g] is the action for the scalar field, and the two background metrics are also taken to

coincide at the same final time at which the final configuration of the scalar field for the

two branches are identified and integrated over. The fields ϕf on the one hand and {ϕi, ϕ
′
i}

on the other, correspond to the values of the field restricted respectively to the final and

initial Cauchy surfaces, and their functional integrals are over all possible configurations of

the field on those surfaces. Integrating out the scalar field gives rise to UV divergences, but

they can be dealt with by renormalizing the cosmological constant and the gravitational

2 Under appropriate conditions it is also possible to consider asymptotic initial states. For instance, given

a static spacetime, a generalization to the CTP case of the usual ıǫ prescription involving a small Wick

rotation in time selects the ground state of the Hamiltonian associated with the time-translation invariance

as the initial state.
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coupling constant as well as introducing local counterterms quadratic in the curvature in

the bare gravitational action Sg[g], so that the total CTP effective action is finite. Func-

tionally differentiating and identifying the two background metrics after that, one gets the

renormalized expectation value of the stress tensor operator together with the contributions

from the gravitational action [21, 70]:

gacgbd
2√−g

δΓ[g, g′]

δgcd

∣

∣

∣

∣

g′=g

= − 1

8πG

(

Gab + Λgab
)

+
〈

T̂ab

〉

ren
, (A.3)

where the contribution from the counterterms quadratic in the curvature has been absorbed

in 〈T̂ab〉ren. The renormalized gravitational coupling and consmological constants, G and Λ,

depend on the renormalization scale, but the expectation value also depends on it in such a

way that the total expression is renormalization-group invariant since that is the case for the

effective action. The equation that one obtains by equating the right-hand side of Eq. (A.3)

to zero governs the dynamics of the mean field geometry in semiclassical gravity, including

the back-reaction effects of the quantum matter fields.

On the other hand, the noise kernel can be obtained by functionally differentiating twice

the imaginary part of the CTP effective action:

Nabc′d′(x, x
′) = gae(x)gbf (x)gc′g′(x

′)gd′h′(x′)
4

√

g(x)g(x′)

δ2 ImΓ[g, g′]

δge′f ′(x)δgg′h′(x′)

∣

∣

∣

∣

g′=g

. (A.4)

It is well-known that the imaginary part of the effective action does not contribute to the

equations of motion for expectation values derived within the CTP formalism, like Eq. (A.3),

which are real. Furthermore, one can easily see from Eq. (A.2) that, being real, the gravita-

tional action (whose contribution can be factored out of the path integral) only contributes

to the real part of the effective action. In particular this means that the counterterms and

the renormalization process have no effect on the noise kernel, which will be a key obser-

vation in order to prove Eq. (2.11). Indeed, let us start with Eq. (A.2) for the conformally

related metric and scalar field, g̃ab and φ̃, and assume that we use dimensional regularization:

eıΓ[g̃,g̃
′] = eıSg[g̃]−ıSg[g̃′]

∫

Dϕ̃f Dϕ̃iDϕ̃′
i ρ̃[ϕ̃i, ϕ̃

′
i]

∫ ϕ̃f

ϕ̃i

Dφ̃ eıS[φ̃,g̃]
∫ ϕ̃f

ϕ̃′

i

Dφ̃′ e−ıS[φ̃′,g̃′]

= eıSg[g̃]−ıSg[g̃′]

∫

Dϕf DϕiDϕ′
i ρ[ϕi, ϕ

′
i]

∫ ϕf

ϕi

Dφ

∣

∣

∣

∣

∣

Dφ̃

Dφ

∣

∣

∣

∣

∣

eıSg[g]+ıS[φ,g]

×
∫ ϕf

ϕ′

i

Dφ′

∣

∣

∣

∣

∣

Dφ̃′

Dφ′

∣

∣

∣

∣

∣

e−ıSg[g′]−ıS[φ′,g′], (A.5)
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where we took into account in the second equality that dimensional regularization is com-

patible with the invariance of the classical action S[φ̃, g̃] under conformal transformations

(since it is invariant in arbitrary dimensions). We also considered that the initial states of

the scalar field are related by

ρ̃
[

ϕ̃i(x), ϕ̃
′
i(x

′)
]

= Ω
(D−2)/4
i (x) Ω

(D−2)/4
i (x′) ρ[ϕi(x), ϕ

′
i(x

′)]

= Ω
(D−2)/4
i (x) Ω

(D−2)/4
i (x′) ρ

[

Ω−1
i (x)ϕ̃i(x),Ω

−1
i (x)ϕ̃′

i(x
′)
]

, (A.6)

where Ω2
i is the conformal factor restricted to the initial Cauchy surface and so are the points

{x, x′} in this equation. (This relation between the initial states is the choice compatible

with conformal invariance after one takes into account the relation between φ̃ and φ, and

the prefactor is determined by requiring that the state remains normalized.) The logarithm

of the functional Jacobian |Dφ̃/Dφ| is divergent but formally zero in dimensional regular-

ization3, so that we can take |Dφ̃/Dφ| = 1 in both path integrals on the right-hand side of

Eq. (A.5). Taking all this into account, we are left with

Γ[g̃, g̃′] = Γ[g, g′] + (Sg[g̃]− Sg[g])− (Sg[g̃
′]− Sg[g

′]), (A.7)

where the last two pairs of terms on the right-hand side correspond to the difference between

the bare gravitational actions of the two conformally related metrics in dimensional regular-

ization; note that whereas each bare action is separately divergent, the difference Sg[g̃]−Sg[g]

is finite. When working in dimensional regularization, conformally invariant fields only ex-

hibit divergences associated with counterterms quadratic in the curvature. These terms

lead to the standard result for the trace anomaly of the stress tensor when one takes the

functional derivative of Eq. (A.7) with respect to the conformal factor, which can be shown

to be equivalent to the trace of Eq. (A.3).

The key aspect for our purposes is that the extra terms on the right-hand side of Eq. (A.7)

only change the real part of the CTP effective action, as already mentioned above, so that the

imaginary part remains invariant under conformal transformations. Starting with Eq. (A.4)

3 This can be seen by taking Eq. (18) in Ref. [71] and using dimensional regularization [61] to evaluate

the trace of the heat kernel appearing there. Any possible dependence left on the conformal factor

evaluated at the initial or final Cauchy surfaces would correspond to a prefactor on the right-hand side of

Eq. (A.5), and would not contribute to the noise kernel (or the expectation value of the stress tensor) at

any intermediate time since it involves functionally differentiating the logarithm of that expression with

respect to the metric at such intermediate times.
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for the metric g̃ab and taking into account the invariance of the imaginary part of the CTP

effective action under conformal transformations, one immediately obtains

Ñabc′d′(x, x
′) = Ω2−D(x) Ω2−D(x′)Nabc′d′(x, x

′), (A.8)

in agreement with Eq. (2.11). Note that we have employed dimensional regularization in

our argument for simplicity, but one would reach the same conclusion if other regularization

schemes had been used. In those cases one would get in general a contribution to the analog

of Eq. (A.7) from the change of the functional measure, but it would only affect the real part

of the effective action (see Ref. [71], where the calculations are performed in Euclidean time,

and analytically continue the result to Lorentzian time) and one could still apply exactly

the same argument as before.
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