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Abstract

In this paper we study the form factors for the half-BPS operators O
(n)
I and

the N = 4 stress tensor supermultiplet current TAB up to the second order of
perturbation theory and for the Konishi operator K at first order of perturbation
theory in the N = 4 SYM theory at weak coupling. For all the objects we observe
the exponentiation of the IR divergences with two anomalous dimensions: the cusp
anomalous dimension and the collinear anomalous dimension. For the IR finite
parts we obtain a similar situation as for the gluon scattering amplitudes, namely,
apart from the case of TAB and K the finite part has some remainder function
which we calculate up to the second order. It involves the generalized Goncharov
polylogarithms of several variables. All the answers are expressed in terms of the
integrals related to the dual conformal invariant ones which might be a signal of
integrable structure standing behind the form factors.
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1 Introduction

Much attention in the past few years has been dedicated to the study of the planar limit
for the scattering amplitudes in the N = 4 SYM theory. It is believed that the hidden
symmetries responsible for integrability properties of N = 4 SYM completely fix the
structure of the amplitudes (the S-matrix of the theory) [1, 2]. One of the possible views
on this subject is that the answers for the amplitudes are expressed in terms of the scalar
integrals which are pseudo-conformal invariant in momentum space [3] which appear in
the unitarity-based calculation of the scattering amplitudes pioneered in papers [4].

The (dual)conformal symmetry at weak coupling regime can be extended to the N =
4 supersymmetric version and can be fused with the original N = 4 superconformal
symmetry to the so-called Yangian symmetry [5] which is governed by Yangian infinite
dimensional algebra. The Yangian like symmetries are common features of the integrable
systems [1].
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At strong coupling the computation of the amplitudes in N = 4 SYM can be reduced
via AdS/CFT to the computation of the open string scattering amplitudes in AdS5, with
strings ending on D3-brane positioned at some fixed value of the radial AdS5 coordinate z,
in the quasi-classical regime [6] which in turn can be formulated as the problem of finding
the minimal surface in AdS5 with special boundary condition (see [7] for review). This
problem has recently been reduced to that of solving the set of functional equations for
the conformal invariant cross ratios as functions of the spectral parameters– the so-called
Y -system [8]. The Y -systems usually appear in integrable systems [9] which is another
hint that the N = 4 amplitudes have some underling integrable structure.

In strong coupling regime the natural generalization of the Y -system for the amplitudes
is the Y -system for the form factors [10]: the matrix elements of the form

〈0|O|pλ1

1 . . . pλn

n 〉. (1.1)

where O is some gauge invariant operator which acts on vacuum and produces some state
|pλ1

1 . . . pλn

n 〉 with momenta p1 . . . pn and helicities λ1 . . . λn. In the dual string theory this
matrix element can be described via the open string scattering amplitudes, with strings
ending on D3-brane positioned at some fixed value of the radial AdS5 coordinate z, in
the presence of some closed string state [10].

One can wonder whether these objects at weak coupling possess similar features as
the amplitudes or in other words whether form factors are influenced by the Yangian
symmetry (or some analog of it) and whether they are fixed by it. Also the general
structure of the form factors at weak coupling should be understood.

Being inspired by the two-loop calculation of the form factor associated with the
operator VX from the stress-tensor superconformal multiplet of the N = 4 SYM theory
performed long ago by van Neerven [11] we would like to study systematically some types

of form factors in planar N = 4 SYM at weak coupling for half-BPS operators O(n)
I and

the Konishi operator K. For the former type of operators there was recently an interest in
studying the correlation functions and their connection to the amplitudes and the Wilson
loops [12]. A new kind of relation has been proposed between the logarithm for such
correlation functions and the double logarithm of the MHV gluon scattering amplitudes.

The dual-conformal symmetry plays an important role in another remarkable property
of the N = 4 SYM – the Wilson loop/Amplitudes duality [13, 14]. In this duality (we re-
strict ourselves to the most studied case of the MHV amplitude1 sector) the dual-conformal
symmetry is understood as conformal symmetry of light-like Wilson loop constructed of
the segments which satisfy the following property:

xµ
i,i+1 = xµ

i − xµ
i+1 = pµi , (1.2)

1MHV (maximally helicity violating) amplitudes by definition are called the amplitudes with all par-
ticles being treated as outgoing and the net helicity λΣ being equal to n − 4 where n is the number of
particles.
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where pµi are external momenta of the dual MHV amplitude. The dual-conformal symme-
try is broken on-shell for the amplitudes due to the presence of the IR divergences (these
IR divergences correspond to the UV divergences for dual Wilson loops); however, the vi-
olation of the dual-conformal symmetry is controlled by the 1-loop exact anomaly, which
in turn can be used to make constraints for the finite part of the corresponding MHV
amplitude, i.e. one can write the anomalous Ward identities allowing one to constraint
the finite parts (see, for example, review [7] for details):

n∑

i=1

(2xν
i xi∂i − x2

i ∂
ν
i )Fin[logWn] = Γcusp

n∑

i=1

log
x2
i,i+2

x2
i−1,i+1

xν
i,i+1, (1.3)

where Γcusp is the so-called cusp anomalous dimension [15] known from a solution of
the integral equation [16]. These identities can fix the finite part for a small number of
legs/cusps (namely, one can fix it for Wilson loops with n = 4 and n = 5 cusps) [7].
In fact, the famous BDS conjecture was the simplest possible ansatz of these identities,
which is not precisely correct for a number of external legs ≥ 5.

One may wonder if there is a similar duality for the form factors/Wilson loops and one
can use similar arguments to obtain information on the finite parts of the form factors.
We hope that our calculation shades some light on the possibility of such duality.

The paper is organized as follows. In Sect. 2, we present the general considerations of
the form factors in the N = 4 SYM theory and introduce the operators to be discussed
later. In Sect. 3, we study the form factors for both protected and non-protected operators
with naive conformal dimension ∆0 = 2 and confirm the results obtained long time ago in
[11]. In Sect. 4, we study the half-BPS operators O(n)

I for arbitrary conformal dimension
∆0 = n and present the one- and two-loop calculations of the corresponding form factors
which suggest the exponentiation of the IR divergences. Also, in the same section, we
discuss the collinear limit for which the finite parts take a simple form. In Sect. 5, we
discuss in more detail the dual conformal invariance of the integrals contributing to the
calculation of the form factors. We conclude with some remarks concerning the form
factors and Wilson loop duality. In the appendices we give the details of our calculations.
Appendix. A contains the Lagrangian of the N = 4 SYM theory together with the
Feynman rules. In App. B we present the analytic expressions for the integrals entering
into our calculations with their ǫ-expansion. The results of our work have been reported
at the international conference devoted to the memory of A.N. Vasiliev held in Saint-
Petersburg on 18-21 October 2010.

2 General considerations

2.1 Form factors in N = 4 SYM

Consider the Lagrangian LN=4(W) for the N = 4 SYM theory coupled to some external
classical current J through some gauge invariant local operator O[W] (for all the details
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concerning the explicit expression for the Lagrangian together with Feynman rules we
refer to App. A)

LN=4(W) → LN=4(W) +O[W]J, (2.4)

where we collectively refer to the whole N = 4 on-shell multiplet as W which consists of
the physical gluon Aµ states with positive and negative helicities, four gauginos λN

α with
positive and negative helicities and also six real scalar states φNM , where N and M are
the SU(4)R indices, which can also be re-arranged into 3 complex φI scalars, I is an index
of SU(3) subgroup of SU(4)R. By default we assume everywhere the planar limit.

Then one can study the following processes where the operator O acts on the vacuum
and produces some state |pλ1

1 . . . pλn

n 〉 with momenta p1 . . . pn and helicities λ1 . . . λn

〈0|O|pλ1

1 . . . pλn

n 〉. (2.5)

Schematically, it is shown in Fig.1

Figure 1: Feynman diagram for the matrix element of the operator O

This is a general situation in QFT and one can keep in mind, for example, γ∗ → Jet’s
process [17] where we take into account all orders in αs but the first order in αem. In
perturbation theory the latter type of processes can be thought of as the matrix elements
of the following form:

〈0|jQCD
em |pλ1

1 . . . pλn

n 〉, (2.6)

where jQCD
em is the QCD quark electromagnetic current.

The matrix element 〈0|O|pλ1

1 . . . pλn

n 〉 in some sense can also be viewed as the general-
ization of the scattering amplitudes, which in ”all ingoing” notation can schematically be
written as 〈0|pλ1

1 . . . pλn

n 〉.
In the language of the dual string theory, in the N = 4 SYM case this process can

be described as an insertion of some close string state (which corresponds to O local
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operator) on the worldsheet in addition to n open string states (which corresponds to
|pλ1

1 . . . pλn

n 〉 state in the dual theory).
For the construction of particular examples of the objects discussed above we choose

the following set of the gauge invariant operators (we use the component notation of the
N = 4 SYM), the lowest stress tensor supermultiplet members:

CIJ = Tr(φIφJ),

VJ
I = Tr(φ̄JφI), (2.7)

with naive mass dimension ∆0 = 2 which coincides with the conformal dimension due to
the lack of quantum corrections. These operators can be viewed as the lowest members
of the stress-tensor multiplet

TAB = Tr
(

WAWB −
1

6
δABWCWC

)

, (2.8)

where A,B, . . . = 1, . . . , 6 are the SO(6)R ≃ SU(4)R indices, I, J, . . . = 1, 2, 3 are the
indices of SU(3) subgroup of SU(4)R, and WA is some constrained chiral superfield in
N = 4 superspace containing all components of the N = 4 supermultiplet.

Other objects are the so-called half-BPS operators

O(n)
I = Tr(φn

I ), (2.9)

whose naive mass dimension coincides with conformal dimension ∆0 = n being protected
from the quantum corrections, and the lowest component of the Konishi supermultiplet

K =
3∑

I=1

Tr(φ̄IφI), (2.10)

with naive mass dimension ∆0 = 2 and has nonvanishing anomalous dimension due to the
presence of the UV divergences. The calculation of this anomalous dimension has been
intensively discussed during the last few years [18, 19].

Since the Konishi operator is not protected, the corresponding form factors a priori
do contain the UV divergences and hence must be UV renormalized. It means that one
has to consider the renormalized form factor

〈0|KR|p
λ1

1 . . . pλn

n 〉, (2.11)

where
KR = Z−1

K KB. (2.12)

Here ZK is the renormalization constant which appears due to the UV divergences and
which should be calculated to the same order of perturbation theory as the form factors.
After such UV renormalization we are left only with the IR divergences. All the statements
concerning the Konishi operator are valid for the renormalized one.
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We choose for simplicity the state |pλ1

1 . . . pλn

n 〉 produced by the operator O to consist
of scalars only and then we can write it as |p1 . . . pn〉 without helicities. We also restrict
ourselves to the states with the number of particles equal to the naive mass dimension of
the operator O, i.e. we consider the states consisting of ∆0 scalars.

2.2 Calculation strategy

For the calculation it is convenient to use the N = 1 formulation of N = 4 SYM and
perform an explicit computation in terms of the N = 1 superfields in momentum space.
Our computation is familiar, from a diagrammatic point of view, to perturbative compu-
tations of anomalous dimensions [19]. However, there is a significant difference: each of
our supergraphs is UV finite except for one. So all the divergences that appear throughout
the calculation have the IR nature.

The operators O = {CIJ ,V
J
I ,K,O(n)

I } can be considered as the lowest components of
the following N = 1 local operators:

CIJ = Tr(ΦIΦJ ), I 6= J

VJ
I = Tr(e−gV Φ̄JegVΦI), I 6= J

O(n)
I = Tr (Φn

I ) ,

K =
∑

I

Tr(e−gV Φ̄IegVΦI), (2.13)

where ΦI are chiral N = 1 superfields, and V is N = 1 real vector superfield (see App. A

for details). The operators CIJ , O
(n)
I are chiral and VJ

I , K are non-chiral from the N = 1
supersymmetric point of view.

We use the following notation for the form factor of the corresponding operator

F(p1 . . . pn) = 〈p1 . . . pn|O(q)|0〉. (2.14)

We expect the following factorization property for F to hold:

F(p1 . . . pn) = Ftree(p1 . . . pn)(1 + loops), (2.15)

where Ftree stands for the tree level contribution, and ”loops” schematically denote the
contributions of the next orders of PT. It is convenient to consider the ratio

M =
F

Ftree

= (1 + loops) =
∑

l=0

λlM(l),

where λ ≡ g2Nc is the ’t Hooft coupling which stays fixed when Nc → ∞.
Consider first the chiral case. To calculate the form factor it is convenient to consider

the generating functional for the one-particle irreducible super diagrams Γ[Φcl, J ] inN = 1
superspace. It can be obtained from the generating functional

Z[j, J ] =
∫

D(ΦI , V, . . .) exp[S
N=4 +

∫

d6zJ(z)O(z) +
∫

d6zTr(j(z)Φ(z))],
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after Legendre transformation with respect to external chiral sources j (note that the
source J is untouched). After performing the D-algebra each supergraph gives a local
contribution in θ’s, and Γ[Φcl, J ] can be written as ( we imply the mass shell condition
p2i = 0 when performing the D-algebra)

Γ[Φcl, J ] =
∑

l=0

λlΓ(l)[Φcl, J ] (2.16)

=
∑

l=0

λl
∫

d4p1 . . . d
4pn d6z J(−q, θ)Tr

(

Φcl(−p1, θ) . . .Φ
cl(−pn, θ)

)

M(l)(p1, . . . pn)+O(J2),

where d6z = d4qd2θ, M(l) is given by the sum of scalar integrals. Thus,

M(l)(p1...pn) =
δn+1Γ(l)

δΦcl...δΦclδJ

∣
∣
∣
p2
i
=0, θ=0,Φcl=0,J=0

. (2.17)

We stress that on-shell condition p2i = 0 and momenta conservation q + p1 + . . .+ pn = 0
are implemented to obtain the latter expression.

The situation is a bit more involved in the nonchiral case. All the integrals in
Γ[Φcl, Φ̄cl,J ] (J is a non-chiral source) are now in full N = 1 superspace

∫

d8z, where
d8z = d4qd4θ and the expression for Γ[Φcl, Φ̄cl,J ] contains extra terms

Γ[Φcl, Φ̄cl,J ] =
∑

l=0

λlΓ(l)[Φcl, Φ̄cl,J ] = (2.18)

=
∑

l=0

λl
∫

d4p1 . . . d
4pn d8z J (−q, θ, θ̄)

[

Tr
(

Φ̄cl(−p1, θ̄) . . .Φ
cl(−pn, θ)

)

M(l)(p1, . . . pn)

+Tr
(

D̄β̇Φ̄cl(−p1, θ̄) . . .D
αΦcl(−pn, θ)

)

M(l)

β̇α
(p1, . . . pn)

+Tr
(

D̄2Φ̄cl(−p1, θ̄) . . .D
2Φcl(−pn, θ)

)

M(l)
2 (p1, . . . pn)

]

+O(J 2).

From the point of view of N = 1 superspace the additional terms correspond to
the operators of higher dimension and one actually has a mixing of several operators.
However, from the point of view of components, one can always consider a projection on
a particular component of a superfield and we choose the scalar component insofar. Then,
the last terms of eq. (2.18) are irrelevant for our calculation and can be dropped.

We perform all the calculations in the formalism of N = 1 superspace and at the end
take the projection to θ = θ̄ = 0. There are pluses and minuses of this approach. The big
advantage is the drastic reduction of the number of diagrams compared to the component
case together with the simplified form of the scalar integrals. Its disadvantage is that
we do not use the power of the on-shell N = 4 covariant methods used in perturbative
studies of the amplitudes [20] (see also recent [21]). The application of this method for the
calculation of the form factors when some legs are off-shell requires some modification.
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2.3 IR finite observables based on form factors

As the amplitudes, the form factors 〈0|O|pλ1

1 . . . pλn

n 〉 with on-shell momenta are, strictly
speaking, ill-defined in D = 4-dimensional space-time due to the presence of the IR
divergences, and, hence, some IR regulator must be introduced – in our case it is the
parameter µ coming from the dimensional regularization which also breaks the conformal
symmetry. In other words, one may say that 〈0|O|pλ1

1 . . . pλn

n 〉 are the intermediate objects,
and the true physical quantities are the IR safe observables constructed of 〈0|O|pλ1

1 . . . pλn

n 〉
and which are free from the IR regulator (see, for example, the discussion of the IR finite
observables for N = 4 SYM and N = 8 SUGRA in [22, 23]). Indeed, as in QCD for
γ∗ → Jet’s processes we are really interested in the total cross section σtot(γ

∗ → Jet’s)
or some differential distributions rather than in the matrix elements 〈0|jQCD

em |pλ1

1 . . . pλn

n 〉
themselves. This kind of observables are IR finite due to the Kinoshita-Lee-Nauenberg
(KLN) theorem which states that it is not sufficient to consider only the processes with
the fixed number of final particles. To get the physical result, one has to include all
the processes allowed by conservation laws in the same order of perturbation theory
with emission of extra soft quanta and integrate over their momenta. Practically, if the
dimensional regularization is used (the IR divergences manifest themselves through the
appearance of the 1/ǫ poles), part of the poles cancel between the loop integrals from the
virtual contributions and the phase space integrals from the real contributions coming
from the processes with additional particles, while others are absorbed in the functions
describing probability distributions of the initial and final states (in [22, 23] we call them
initial-collinear and final-collinear divergences which appear as a collinear configuration
of initial and final particles).

Consider, for instance, the total cross section σtot for the process

J → anything from N = 4 supermultiplet

for classical current J coupled to N = 4 through some local gauge invariant operator O.
Due to the optical theorem

σtot(s) ∼
1

s
Ims

[∫

dDx exp(−iqx)〈O(x)O(0)〉
]

, q2 = −s, (2.19)

The two-point function for the operators O apart from the canonical mass dimension ∆0

can have anomalous dimension γ = γ(λ) being a function of the coupling constant

〈O(x)O(0)〉 ∼
1

(x2)(∆0(1−ǫ)+γ)
, (2.20)

After some calculation this gives the total cross-section

σtot(s) ∼
1

Γ(∆0 + γ)Γ(∆0 + γ − 1)

1

s3−∆0−γ
, (2.21)
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and its asymptotic at weak and strong couplings can be studied (compare this with C.3
from [24]).

In N = 4 SYM, as in any conformal theory, the operator O is protected, which
means that it does not receive quantum corrections and γ = 0. Then the cross section
is independent of the coupling constant and behaves like ∼ C/s3−∆0 . From the latter
expression it might seem that we get violation of unitarity since we can get increasing
cross sections for protected operators with conformal dimension greater than 3. But it is
not the case since the statement about the unitarity holds only for the operators which
give rise to renormalizable interactions, i.e. with conformal dimension less than 3.

If one is interested not in σtot but in some differential distributions, then the optical
theorem is not very useful any more, and direct computations must be done. The form
factors discussed here can be viewed as the building blocks in the same sense as the
amplitudes for the inclusive cross sections.

3 Form factors with ∆0 = 2

In the following two sections we give explicit results for the direct diagrammatic compu-
tation of the form factors of the operators introduced above in the planar limit.2 More
concretely we present the results for non-chiral operators VJ

I , K in the leading order in

λ and for the chiral operators CIJ , O(n)
I in the next-to-leading order. The dimensional

regularization (dimensional reduction to be precise) with D = 4 − 2ǫ is used. All the
divergences except for the specially mentioned cases have the IR (both the infrared itself
and collinear) nature. The Feynman rules for the supergraphs are given in App. A. The
complete list of all the necessary scalar integrals is given in App. B.

3.1 CIJ , VJ
I and K form factors at 1-loop

The corresponding tree level and one-loop Feynman diagrams are shown in Fig.2.
For the chiral operator CIJ , after performing the D-algebra for the supergraph C1, the

resulting expression is
C1 = Tr

(

Φcl
I Φ

cl
J

)

2s12 G1(s12), (3.22)

where sij = (pi + pj)
2, so that

M(1) = 2s12 G1(s12), (3.23)

where the scalar integral G1(s12) is given in App. B Hereafter we will suppress index cl
in Φ and Φ̄.

2g → 0 and Nc → ∞ so that λ = g2Nc =fixed.
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B1C1 B2C0

Figure 2: The relevant supergraphs. The internal black lines correspond to chiral propa-
gators 〈Φ̄a

IΦ
b
J〉, wavy lines correspond to vector 〈V aV b〉 propagator (see App. A). C0 is

the tree level diagram, and the rest are one-loop ones. External lines are Φ or Φ̄, and the
lower bold line represents the insertion of the corresponding operator in modern notation.
For the chiral operator CIJ only the diagrams C0 and C1 contribute, while for non-chiral
operators VJ

I and K the other two (B1 and B2) are also relevant.

For the non-chiral operator VJ
I after performing the D-algebra one has

C1 = 2
(

(−G0(p
2
1)−G0(p

2
2) +G0(s12) + (s12 − p21 − p22)G1(s12)) Tr

(

Φ̄JΦI

)

−Gαβ̇
1 (s12) Tr

(

D̄β̇Φ̄JDαΦI

)

+G1(s12) Tr
(

D̄2Φ̄JD2ΦI

))

,

B1 = 2G0(p
2
i ) Tr

(

Φ̄JΦI

)

, (3.24)

B2 = 2
(

−G0(s12)Tr
(

Φ̄JΦI

)

+Gαβ̇
1 (s12)Tr

(

D̄β̇Φ̄JDαΦI

)

+G1(s12)Tr
(

D̄2Φ̄JD2ΦI

))

,

where all the scalar integrals are also given in App.B. So keeping only the terms that are
relevant for our discussion, which are proportional to Tr

(

Φ̄JΦI

)

, one gets

M(1) = C1(s12, p
2
1, p

2
2) +B1(p21) +B1(p22) +B2(s12) = 2(s12 − p21 − p22)G1(s12), (3.25)

The integral G1 is UV finite which reflects the fact that VJ
I is a protected operator.

For the non-chiral Konishi operator K, after performing the D-algebra one has

C1 = 6

(

(−G0(p
2
1)−G0(p

2
2) +G0(s12) + (s12 − p21 − p22)G1(s12))

3∑

I

Tr
(

Φ̄IΦI

)

−Gαβ̇
1 (s12)

3∑

I

Tr
(

D̄β̇Φ̄IDαΦI

)

+G1(s12)
3∑

I

Tr
(

D̄2Φ̄ID2ΦI

)
)

,

B1 = 6G0(p
2
i )

3∑

I

Tr
(

Φ̄IΦI

)

, (3.26)

B2 = 6

(

−G0(s12)
3∑

I

Tr
(

Φ̄IΦI

)

+Gαβ̇
1 (s12)

3∑

I

Tr
(

D̄β̇Φ̄IDαΦI

)

11



+G1(s12)
3∑

I

Tr
(

D̄2Φ̄ID2ΦI

)
)

,

and again selecting the proper structures, prior to the application of the on-shell condi-
tions, gives

M(1) = C1(s12, p
2
1, p

2
2)+B1(p21)+B1(p22)+2B2(s12) = 6(s12−p21−p22)G1(s12)−6G0(s12),

(3.27)
The UV divergent part of the answer is given by 6G0 and extracting the coefficient of

the 1/ǫ pole, which is the first coefficient in the anomalous dimension expansion γK(λ) =

γ
(1)
K λ+ . . . , we obtain the well-known result

γ
(1)
K =

3

8π2
. (3.28)

We see that up to one loop all the form factors for the operators CIJ ,VJ
I ,K,O(n)

I are
proportional to G1, the scalar triangle function (see App. B).

3.2 CIJ form factors at 2-loops

We see that the form factors associated with CIJ and VJ
I are equal to each other at the one-

loop level. This is because CIJ and VJ
I are different components of the N = 4 conserved

stress tensor. In what follows we compute the λ2 contribution to M for CIJ since for
the chiral operator the D-algebra is essentially simpler. The corresponding diagrams are
shown in Fig.3.

Their contribution to the form factor are summarized in Table 1. All the relevant
integrals are given in App.B

N CIJ O(n)
I

C1 2s12G1(s12) sii+1G1(sii+1)
C2 4s212G2(s12) s2ii+1G2(sii+1)
C3 2s12G3(s12) + 2s12G4(s12) sii+1G3(sii+1) + sii+1G4(sii+1)
C4 −6s12G3(s12) −2sii+1G3(sii+1)
C5 2Ga

5(s12) 0
C6 2Gb

5(s12) 0
C7 0 (sii+1 + si+1i+2 + sii+2)G6(sii+1, si+1i+2, sii+2)
C8 0 si+1i+2G7(sii+1, si+1i+2, sii+2)

Table 1: The contributions to the form factors from the individual diagrams

Adding all together and combining with the leading order one gets

M(2) = C2 + C3 + C4 + C5 + C6 = 2Ga
5 + 2Gb

5 − 4s12G3 + 2s12G4 + 4s212G2. (3.29)

12



C5 C6 C7 C8

C4C3C2C1

Figure 3: The relevant supergraphs in the chiral case. C1 is the one-loop diagram, and
the rest are two-loop ones. For the chiral operator CIJ with two legs the last two diagrams
C7 and C8 do not exist, they are only relevant for the operator On with n ≥ 3. A grey
circle is the one-loop effective vertex.

Using the identity

Ga
5 +Gb

5 = 2s12G3 − s12G4 +
s212
2
G5

one can reduce it to 4s212 G2 + s212 G5 and finally get

M = 1 + λ(2s12 G1) + λ2(4s212 G2 + s212 G5),+O(λ3). (3.30)

The general structure of form factors M ”with two external legs” in the gauge theory
with zero beta-function has the following form3:

log(M) =
1

2

2∑

i=1

(

M̂(si,i+1/µ
2)
)

+O(ǫ). (3.31)

Here we introduced

M̂(si,i+1/µ
2) = −

1

2

∑

l

(

λ

16π2

)l (Γ(l)
cusp

(lǫ)2
+

G(l)

lǫ
+ C(l)

)(

si,i+1

µ2

)lǫ

, (3.32)

where Γ(l)
cusp are the coefficients of perturbative expansion of the cusp anomalous dimen-

sion Γcusp(λ) =
∑

l Γ
(l)
cuspλ

l which is a universal quantity that governs the IR behavior of

3 The IR exponentiation for two-leg form factors in QCD was established earlier in [25].
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gauge theory amplitudes and the UV behavior of the Wilson loops, and some local gauge
invariant operators. G(l) are the coefficients of perturbative expansion of the so-called
collinear anomalous dimension G(λ) =

∑

l G
(l)λl and C(l) are some constants. The quan-

tities G(l) and C(l) are regularization and scheme dependent. Performing the expansion
of the integrals G1, G2, G5 in ǫ (see App. B) and introducing the notation

a =
λ

16π2
e−ǫγE , (3.33)

where γE is the Euler–Mascheroni constant, one gets

log(M) = a

(

s12
µ2

)−ǫ (
−2

ǫ2
+ ζ2

)

+ a2
(

s12
µ2

)−2ǫ (
ζ2
ǫ2

+
ζ3
ǫ

)

+ O(a3) (3.34)

where ζn are the Riemannian zeta functions

ζn =
∞∑

k=1

1

kn
.

From this answer and comparing with eq.(3.32) we can extract the first two terms of
perturbative expansion over a for the cusp and the collinear anomalous dimensions and
the finite terms

Γ(1)
cusp = 4, Γ(2)

cusp = −8ζ2, (3.35)

G(1) = 0, G(2) = −ζ3, (3.36)

C(1) = −ζ2, C(2) = 0. (3.37)

Note that the maximal transcendentality principle holds which in our case means
that if we attach to each logarithm and π the level of transcendentality equal to 1 and
to polylogarithms Lin(x) and ζn the level of transcendentality equal to n, then at the
given order of perturbation theory the coefficient for the n-th pole 1/ǫn has the overall
transcendentality equal to 2l−n, where l is the number of loops. For a product of several
factors it is given by the sum of transcendentalities of each factor.

The leading IR behavior of M in this case can also be captured by considering the
Wilson line with one cusp [26] . So in this sense the dual description in terms of Wilson
loops for such form factors is well known.

One can see that the finite part for the form factor is given only in one loop and
vanishes at two loops. However, this is a scheme dependent result, and, for example, if we
choose a different scheme and replace exp(lǫγE) for the l-th loop by Γ(1 − ǫ)l, we obtain
in this scheme:

C̃(1) = 0, C̃(2) = −ζ22 , (3.38)

while the first two coefficients in the perturbation theory for the cusp anomalous dimension
Γ(1)
cusp and Γ(2)

cusp remain the same, which reflects the fact that they are scheme independent.
The same result is true [11] for the finite part for the form factor of a slightly different

operator VX but belonging to the same stress-tensor superconformal multiplet.
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4 Form factors with ∆0 = n, n > 2

Figure 4: The tree contribution to O(n)
I .

Here we present the results of calculation of the form factors of the chiral half-BPS
operators O(n)

I introduced earlier. The tree-level contribution for the form factor is pre-
sented on Fig. 4. In the first order of perturbation theory, similar to the form factors
of operators with conformal dimension 2, the contribution is given by the triangle type
diagram and the corresponding form factor, after performing the D-algebra and the color
algebra, is

M(1) =
n∑

i=1

si,i+1 G1, (4.39)

where we assume hereafter sn+i,n+i+1 = si,i+1.

4.1 O
(n)
I , n = 3 form factors at 2-loops

At the second order of perturbation theory the corresponding diagrams are shown in Fig.3
and their contributions are summarized in Table 1.

M(2) =
n∑

i=1

(

s2ii+1G2(sii+1)− sii+1G3(sii+1) + sii+1G4(sii+1)
)

+
n∑

i=1

(si+1i+2G7(sii+1, si+1i+2, sii+2) + sii+1G7(si+1i+2, sii+1, sii+2))

+
n∑

i=1

(sii+1 + si+1i+2 + sii+2)G6(sii+1, si+1i+2, sii+2) (4.40)

The next step is to establish the factorization property (3.31,3.32). Expanding the
relevant scalar integrals in ǫ (see App. B), we obtain for log(M):

log(M) =
3∑

i=1

a

(

sii+1

µ2

)−ǫ (

−
1

ǫ2
+

ζ2
2

)

+
3∑

i=1

a2
(

sii+1

µ2

)−2ǫ (
ζ2
2ǫ2

+
7ζ3
2ǫ

)

+fin.part. (4.41)

15



As in the case of the form factors of the operators with conformal dimension 2, we can
extract the first two terms for the cusp and collinear anomalous dimensions. This gives

Γ(1)
cusp = 4,Γ(2)

cusp = −8ζ2, (4.42)

G(1) = 0, G(2) = −7ζ3. (4.43)

Notice that the values of the cusp anomalous dimension Γ(l) are universal and coincide
with (3.35), while those of the collinear anomalous dimension depend on the form factor
at hand.

We would like to emphasize the highly nontrivial cancelations between the polylog-
arithms that occurred for log(M) for the whole set of scalar integrals (the individual
contributions to the poles from the scalar integrals are usually complicated polynomials
of logarithms and polylogarithms of different weight, see, for example, the expansions in
ǫ of G6 and G7 in App. B).

We see that the IR factorization property holds for the form factors like for the am-
plitudes.

4.2 O
(n)
I form factors for n > 3 at 2-loops

The corresponding contribution to the form factor up to λ2 is similar to the case of n = 3
but has an additional term coming from the factorized diagrams

M(2) =
n∑

i=1

(

s2ii+1G2(sii+1)− sii+1G3(sii+1) + sii+1G4(sii+1)
)

+
n∑

i=1

(si+1i+2G7(sii+1, si+1i+2, sii+2) + sii+1G7(si+1i+2, sii+1, sii+2))

+
n∑

i=1

(sii+1 + si+1i+2 + sii+2)G6(sii+1, si+1i+2, sii+2)

+
n∑

i=1

n∑

j=1

sii+1G1(sii+1)sjj+1G1(sjj+1) (4.44)

Performing the expansion over ǫ we obtain the logarithm of the form factor up to the
second order of perturbation theory log(M)

log(M) =
n∑

i=1

a

(

sii+1

µ2

)−ǫ (

−
1

ǫ2
+

ζ2
2

)

+
n∑

i=1

a2
(

sii+1

µ2

)−2ǫ (
ζ2
2ǫ2

+
7ζ3
2ǫ

)

+ Fin.part.

(4.45)
The first two coefficients for the cusp and collinear anomalous dimension which we

can extract from the above expression coincide with the coefficients obtained earlier for
n = 3, (4.42) and (4.43), respectively. As for the finite part

Fin.part. = λF (1)(s12, . . . , sn1) + λ2F (2)(s12, . . . , sn1) +O(λ3), (4.46)
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at one loop it is trivial F (1) = 0, and the two loop expression F (2), contrary to the previous
case, is a complicated function containing logarithms, polylogarithms and generalized
Goncharov polylogarithms [30] of several variables. All the relevant expressions can be
found in App. B.

Note, the result is still much simpler than in the non-supersymmetric case [29] and
the maximal transcendentality principle still holds.

4.3 Collinear Limit

Here we restrict ourselves to the three-leg form factors for which we can study the simpli-
fied kinematics and express the finite part in terms of logarithms only without polyloga-
rithms or Goncharov generalized polylogarithms. The most difficult part which appears in
our calculation comes from the diagram involving the interaction of three external fields.
It reduces to the integral G7 which is expressed in terms of the Appell function of two
variables

F1(1; 2ǫ, 1; 2 + ǫ|x, y)

and after the ǫ-expansion one obtains the generalized Goncharov polylogarithms [30]. One
can see from integral representation of the Appell function

F1(a; b1, b2; c|x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ua−1(1− u)c−a−1

(1− ux)b1(1− uy)b2
du,Rea,Re(c− a) > 0 (4.47)

that the only way to achieve the desired simplification is to have one of the arguments
equal to 0 or to 1. In the first case one gets

F1(a; b1, b2; c|x, 0) = 2F1(a, b1; c|x), (4.48)

and similarly in the second case

F1(a; b1, b2; c|x, 1) =
Γ(c)Γ(c− a− b2)

Γ(c− a)Γ(c− b2)
2F1(a, b1; c− b2|x). (4.49)

Such a simplification can occur in two-dimensional kinematics when one of the kine-
matical variables s12, s13 or s23 equals 0. The other motivation for this kinematics is the
recent strong coupling calculations which have been performed for the AdS3 sub-manifold
of AdS5 which corresponds to the degenerate 1 + 1 kinematics in a dual theory [10].

The 1 + 1 dimensional kinematics necessarily contains a collinear configuration of the
space components ~pi of momenta pi. For massless gauge theory it is known that in such
collinear limit the factorization of the IR divergencies fails. For the partial color ordered
amplitudes in collinear limit when two momentums pi and pi+1 are replaced by zp and
(1−z)p the deviation from the factorized form is governed by the so-called ”loop splitting
functions” r(l)s (ǫ, z, p2), l being the number of loops. In the N = 4 SYM theory r(l)s (ǫ, z, p2)
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have an iterative structure, so one can write the following relation valid in collinear limit
(see, for example, the discussion in [46])

log(Mn) →
1

2
M̂n−1 +

∑

l

λlΓ(l)
cuspr

(l)
s (lǫ, z, p2) +

∑

l

λlF
(l), coll
n−1 +O(ǫ)

r(l)s (lǫ, z, p2) ∼
1

ǫ2

(

p2

µ2

)ǫ (

−
πǫ

sin(πǫ)

(
1− z

z

)ǫ

+ 2
∑

k=0

ǫ2k+1Li2k+1(
−z

1− z
)

)

We expect that similar violation of the IR factorization happens in the case of the
form factors. Indeed, in the s23 → 0 limit we have, up to λ2

log(M) =
2∑

i=1

a

(

sii+1

µ2

)−ǫ (

−
1

ǫ2
+

ζ2
2

)

+
2∑

i=1

a2
(

sii+1

µ2

)−2ǫ (
ζ2
2ǫ2

+
ζ3
2ǫ

)

(4.50)

+
2∑

i=1

a2
(

sii+1

µ2

)−2ǫ



−6ζ2 + 3 log2 s12

s13

96ǫ2
+

19ζ3
8ǫ



−
a2

2880

(

75 log4
s12
s13

+120π2 log2
s12
s13

−317π4
)

.

5 Dual conformal invariance

Here we would like to discuss the property of dual conformal invariance of the integrals
appearing in our calculation. It is believed that all the integrals entering into the calcula-
tion of the amplitudes should be dual conformal invariant when external legs are off-shell
[3]. This means that the answers should be expressed in terms of the conformally invari-
ant cross-ratios, which restricts the form of the result. On mass-shell this dual conformal
symmetry has an anomaly but still remains a very important ingredient in understanding
the properties of the on-shell amplitudes and the Wilson loops (see, for example [2, 7]).

When calculating the form factors one has similar integrals though they do not possess
explicit dual conformal invariance. However, it is remarkable that all the integrals that
appear in our calculation can be obtained from those contributing to the amplitudes by
some reduction which we describe below. Because of this connection they also bear some
conformal properties.

Consider several examples. At one loop there is a single triangle diagram contributing
to all the form factors. The one-loop triangle is the first in a chain of the ladder type
diagrams [31] and has the property of dual conformal invariance [31, 32]. This diagram
is to be connected to the box diagram, which is dual conformal[32], in the following way.
Consider the one-loop off-shell box diagram in momentum space which is given by the
integral

D1−loop(p1, p2, p3, p4) =
∫

dDk

(2π)D
1

k2(k − p1)2(k + p2)2(k + p2 + p3)2
. (5.51)
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Introducing the dual coordinates xi as

p1 = x12, p2 = x23, p3 = x34, p4 = x41, k = x5,

we can rewrite the initial integral in the following form

D1−loop(x1, x2, x3, x4) =
∫

dDx5

x2
15x

2
25x

2
35x

2
45

=
1

x2
13x

2
24

Φ(X, Y ), (5.52)

where we introduced the notation xij = xi − xj and Φ(X, Y ) is the function given in [31],
X and Y are the conformal cross-ratios

X =
x2
12x

2
34

x2
13x

2
24

, Y =
x2
14x

2
23

x2
13x

2
24

.

If we now multiply (5.52) by x2
12 and take the limit x2 → ∞, we obtain the one-loop

triangle diagram [32]

C1−loop = lim
x2→∞

x2
12

∫
dDx5

x2
15x

2
25x

2
35x

2
45

=
∫

d4x5

x2
15x

2
35x

2
45

=
1

x2
34

Φ(x, y), (5.53)

with

x =
x2
34

x2
13

, y =
x2
14

x2
13

.

Schematically, the described procedure of obtaining the one-loop triangle diagram
from the one-loop box diagram is represented in Fig. 5. On the left hand side one

Figure 5: The one-loop triangle diagram from the one-loop box diagram. The red dot
should be taken to infinity, and the blue line (propagator in momentum space) should be
contracted to a point.

has the one-loop box diagram together with the dual grid, the black lines represent the
denominator terms appearing in the integral in x–space. Taking the limit x2 → ∞ in
(5.53) is equivalent to removing the grid line x25 from the dual graph and shrinking the
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crossed line to a point in the initial graph. The resulting initial graph corresponds to the
triangle diagram, as is shown on the right hand side. This way the triangle diagram can
be obtained from the box one and inherit its property of dual conformal invariance.

In the same manner one can show how the other diagrams which appear in our cal-
culation can be obtained from the corresponding diagrams entering into the amplitude
calculations. Schematically, we present this procedure in Fig.6.

Figure 6: The two-loop ladder type triangle diagrams from the two-loop box diagrams.
Green arc corresponds to the presence of a numerator

For the vertical box diagram one has to take the limit x3 → ∞. As in the previous case
this corresponds to removing the grid line x36 (and shrinking the corresponding crossed
line) which results in the diagram shown on the right hand side. This is exactly the ladder
integral that appears in two-loop calculation of the form factor with n ≥ 2 legs.
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For the horizontal box diagram one should take the combined limit x2, x3 → ∞ which
is schematically shown on the right hand side. This is the new type of integrals which
appears only in the case when n > 2.

The same procedure is expected to work at higher levels of perturbation theory. Our
conjecture is that the integrals appearing at any order of perturbation theory are obtained
from dual conformal invariant diagrams by contraction of n propagators at the n-th loop
order.

6 Discussion

In this paper we continue the perturbative study of the form factors at weak coupling
for the N = 4 SYM theory which was initiated in [11] where the author considered the
form factor for the operator VX of conformal dimension 2 which in N = 1 superspace
notations takes the form 2TrΦ1Φ1 −TrΦ2Φ2 −TrΦ3Φ3. The original calculation has been
performed in components and the form factor was computed up to the second order of
perturbation theory. In our paper, we started with the operators belonging to the stress-
tensor superconformal multiplet, namely, with VJ

I = Tr
(

φ̄JφI

)

and CIJ = Tr (φIφJ) and
calculated them up to the first and second order of perturbation theory, respectively. We
obtained the same results as in [11] as it was expected.

Then we considered the Konishi operator K =
∑

I Tr
(

φ̄IφI

)

with classical conformal
dimension 2 in the one loop approximation. Not being protected by supersymmetry this
operator has the UV divergences which have to be renormalized.

The main result of our paper is the calculation of the two-loop form factors for the
half-BPS operators O(n)

I = Tr (φn
I ) , n > 2. At the one loop level the answer for the form

factor is very simple given by triangle diagram while at two-loops it is essentially more
complicated. The analytical expressions for the two-loop results are given in terms of the
Gauss hypergeometric functions and the Appell function of two variables. Their expansion
over ǫ up to O(ǫ) leads to logarithms, polylogarithms and, because of the Appell function,
generalized Goncharov polylogarithms of several variables. However, all of them have the
same transcendentality [16, 33].

In the simplified kinematics the answers become much more simple. Thus, in two-
dimensional (or 1 + 1-dimensional) kinematics for the form factors of the half-BPS oper-

ators O(3)
I it is possible to get rid of the Appell functions and after expanding over ǫ to

get the result in terms of the ordinary logarithms.
For all the considered form factors we observe the factorization of the IR divergences up

to the second order of perturbation theory. This allows us to derive the first two terms of
expansion for the cusp anomalous dimension in coincidence with the other calculations and
for the collinear anomalous dimension, where we obtained the first nontrivial coefficient
at two loops G(2) = −7ζ3. It differs from the collinear anomalous dimension coming
from the amplitude calculation but coincides with collinear anomalous dimension for the
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light-like Wilson loop [7, 26].
The remarkable part of our calculation besides factorization is the fact that the one-

and two-loop integrals contributing to the form factors of the operators O(n)
I , n > 2

are related to the dual conformal invariant integrals appearing in the calculation of the
amplitudes. One has to look at the ”parent” integral which appears while considering
the amplitudes and shrink n propagators at the n-th order of perturbation theory. This
dual conformal invariance together with the original conformal invariance might lead to a
wider algebra eventually constraining the form of the answer and reveal the integrability
property of a theory. It is important whether the powerful N = 4 covariant on-shell
methods such as recurrent relations (see recent [21] for example) can be generalized for
the form-factors studied in our paper.

Note added: while finishing writing the paper we became aware of the paper which is
closely connected to the subject studied here [47].
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A Feynman rules in N = 1 superspace

We want to present here the essential elements of N = 1 superspace technique relevant
to our computations.

In terms of N = 1 superfields the N = 4 SYM action can be rewritten as (hereafter
we use the notation of [34], see recent examples of application of the same technique in
[35, 36, 37])

SN=4 =
∫

d8zTr
(

e−gV Φ̄IegVΦI

)

+
1

2g2

∫

d6zTr(W αWα) + ig
∫

d6zTr (Φ1[Φ2,Φ3]) + c.c.,

(A.54)
where the superfield strength tensor Wα = D̄2(e−gVDαe

gV ), V = V aTa is the real N = 1
vector superfield and ΦI = Φa

ITa with I = 1, 2, 3 are the three chiral superfields (I is
the index of the SU(3) subgroup of SU(4)R), Ta are the generators of the gauge group
SU(Nc) in adjoint representation. For performing SU(Nc) T -matrix manipulations we
used FeynCalc package for Mathematica [38]. The following normalization for T a is used
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in which the quadratic Casimir operator

Tr(T aT b) = k2δ
ab, k2 = 1/2. (A.55)

The relevant Feynman rules for the propagators and vertices are

〈V aV b〉 = −
1

k2
δab

δ12
p2

,

〈Φ̄a
IΦ

b
J〉 =

1

k2
δabδIJ

δ12
p2

,

V (Φ̄V Φ) = igk2fabcδ
IJΦ̄a

IV
bΦc

J , (A.56)

V (ΦΦΦ) =
−g

3!
ǫIJKfabcΦ

a
IΦ

b
JΦ

c
K ,

V (Φ̄Φ̄Φ̄) =
−g

3!
ǫIJKfabcΦ̄

a
I Φ̄

b
JΦ̄

c
K ,

V (Φ̄V V Φ) =
g2

2
k2δ

IJfadmfbcmV
aΦd

IV
bΦ̄c

J .

where δ12 = δ4(θ1 − θ2) is the Grassmannian delta function.
The effective one-loop triple vertex is given by

V (Φ̄V Φ)1−loop = ig
λ

4
k2fabcΦ̄

a
I (−q)Φb

J(−p)D̂V c(p+ q)
∫

dDk

(2π)D
1

k2(k − q)2(k + p)2
,

(A.57)
where

D̂ = 4DαD̄2Dα + (p− q)αα̇[Dα, D̄α̇]. (A.58)

As usual, the vertex with n chiral (anti-chiral) lines requires additional n − 1 D̄2 (for
anti-chiral D2) acting on chiral (anti-chiral) lines (or n− 1 −m D̄2 (for anti-chiral D2)
if m lines are external). We used SusyMath package for Mathematica [39] for performing
D-algebra for supergraphs.

Traces in this case are taken over σ matrices and are evaluated in D = 4 because
dimensional reduction is used. The following set of identities is useful:

σm = (σm)αβ̇ σ̄m = (σ̄m)αβ̇

pαβ̇ = pm(σ
m)αβ̇ p̄αβ̇ = pm(σ̄

m)αβ̇

1 = δαβ , 1̄ = δα̇
β̇

Tr[1] = Tr[1̄] =
D

2
, (A.59)

where D/2 = 2 in dimensional reduction and also we have

σmσ̄n + σnσ̄m = −ηmn1,

σ̄mσn + σ̄nσm = −ηmn1̄. (A.60)
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B Scalar integrals and their ǫ expansion

Here we present the list of scalar integrals which we encountered in our computation
shown in Fig. 7. All the integrals are evaluated in D = 4− 2ǫ dimensions. For each loop
the factor eǫγE is added in the integration measure, we also do not write 4π which always
appear with µ2.

G
1

G
2 G

3 G
4

G
5 G

6
G

7

Figure 7: The set of scalar integrals. The arc line in G7 corresponds to the presence of
the numerator (k − p)2. Thick black line corresponds to off-shell leg with momentum q.
All the other legs are on-shell.

G0 =
∫

dDk

(2π)D
1

k2(k + p)2
=




e−ǫγE

16π2

(

p2

µ2

)−ǫ




(
1

ǫ
+ 2 +O(ǫ)

)

, (B.61)

G1 =
∫

dDk

(2π)D
1

k2(k + p1)2(k + p2)2
(B.62)

= −




e−ǫγE

16π2

(

s12
µ2

)−ǫ



1

s12

(

1

ǫ2
−

ζ2
2
−

7ζ3
3
ǫ−

47π4

1440
ǫ2 +O(ǫ3)

)

,

G2 =
∫ dDk

(2π)D
dDl

(2π)D
1

k2l2(k − p1)2(k + p2)2(k + l − p2)2(k + l − p1)2
, (B.63)

=




e−ǫγE

16π2

(

s12
µ2

)−ǫ




2
1

s212

(

−
1

4ǫ4
−

5π2

24ǫ2
−

29ζ3
6ǫ

−
3π4

32
+O(ǫ)

)

,
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G3 =
∫

dDk

(2π)D
dDl

(2π)D
1

k2l2(k − l)2(k + l − p1)2(k + l + p2)2(p2 + l)2
, (B.64)

=




e−ǫγE

16π2

(

s12
µ2

)−ǫ




2
1

s12

(

−
1

2ǫ4
+

29ζ3
6ǫ

+
49π4

720
+O(ǫ)

)

,

G4 =
∫

dDk

(2π)D
dDl

(2π)D
1

k2l2(l + p1)2(k + p2)2(k − l + p2)2(l − p2)2
(B.65)

=




e−ǫγE

16π2

(

s12
µ2

)−ǫ




2
1

s12

(

1

4ǫ4
−

π2

24ǫ2
−

8ζ3
3ǫ

−
19π4

480
+O(ǫ)

)

,

G5 =
∫

dDk

(2π)D
dDl

(2π)D
1

k2l2(k − l)2(k − p2)2(k − l − p1)2(l − p2 − p1)2
(B.66)

=




e−ǫγE

16π2

(

s12
µ2

)−ǫ




2
1

s212

(

−
1

ǫ4
+

π2

ǫ2
+

83ζ3
3ǫ

+
59π4

120
+O(ǫ)

)

.

The other integrals entering into the calculations are

Ga
5 =

∫ dDk

(2π)D
dDl

(2π)D
s12k

2 − Tr(p̄1p2 l̄k) + Tr(p̄1kl̄p2)

k2l2(k − l)2(k − p2)2(k − l − p1)2(l − p2 − p1)2
, (B.67)

Gb
5 =

∫
dDk

(2π)D
dDl

(2π)D
s12k

2 − Tr(p̄1p2k̄l)

k2l2(k − l)2(k − p2)2(k − l − p1)2(l − p2 − p1)2
, (B.68)

Gαβ̇
1 =

∫
dDk

(2π)D
kαβ̇

k2(k + p1)2(k + p2)2
. (B.69)

G0 is the scalar bubble integral, G1 is the scalar triangle integral. G2, G3 G4 can
be computed by means of the MB representation as series in ǫ or to all orders in ǫ by
means of the differential equation technique4. G5 can be computed by means of the MB
representation as series in ǫ, the answer to all orders in ǫ is given in [41]. G6 and G7 can be
computed by direct evaluation of integrals over the Feynman parameters in terms of the
hypergeometric function 2F1 and the Appell function F1. The formulas from [42] and [43]
were useful in verification of our computation. G6 can also be evaluated by means of the
differential equation technique [40], the result coincides with ours after the rearrangement
of hypergeometric functions. Using the notation s12 = s, s14 = t, s13 = u the answers for
G6 can be written as:

cΓ =
Γ3(1− ǫ)Γ(1 + 2ǫ)

Γ(1− 3ǫ)

G6 =
∫

dDk

(2π)D
dDl

(2π)D
1

l2(l − k)2(l − p1)2(k + p2)2 (k + p2 + p3)2

4This integrals can be reduced to the set of master topologies presented in [40].
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=
e−2ǫγEcΓ
(16π2)2

1

2ǫ3
1

(1− 2ǫ)






(

µ2

t

)2ǫ
1

s
2F1(1, 1− 2ǫ, 2− 2ǫ,−

u

s
) +

(

µ2

s

)2ǫ
1

t
2F1(1, 1− 2ǫ, 2− 2ǫ,−

u

t
)

−

(

µ2

s+ t+ u

)2ǫ
s+ t + u

ts
2F1(1, 1− 2ǫ, 2− 2ǫ,−

u(s+ t+ u)

st
)






. (B.70)

where the hypergeometric function is given by the following expansion:(we used the Nested
Sums computational tool [44] and HypExp package for Mathematica [45])

2F1 (1− 2ǫ, 1− 2ǫ; 2− 2ǫ; x) =
3∑

n=0

ǫn an(x) +O(ǫ4) (B.71)

a0(x) = −
log(1− x)

x

a1(x) = +
(2Li2(x)− (log(1− x)− 2) log(1− x))

x

a2(x) = −
2

3x

(

log3(1− x)− 3 log(x) log2(1− x)− 3 log2(1− x) + π2 log(1− x)

− 6(log(1− x)− 1)Li2(x)− 6Li3(1− x)− 6Li3(x) + 6ζ(3))

a3(x) = −
2

3x

(

log4(1−x)− 6 log(x) log3(1−x)− 2 log3(1− x) + 6 log(x) log2(1−x)

+ 2π2 log2(1−x)− 6(log(1−x)− 2)Li2(x) log(1−x)− 12Li3(x) log(1−x)

+ 12ζ(3) log(1− x)− 2π2 log(1−x)−12(log(1−x)−1)Li3(1−x) + 12Li3(x)

+ 12Li4

(
x

x− 1

)

− 12ζ(3)
)

The finite part of G6 is then given by the following expression:

(G6)fin =
1

(16π2)2
1

2

{

t

s
a3(−

u

s
) + a3(−

u

t
)−

s+ t + u

s
a3(−

u(s+ t + u)

st
)

}

.

In the case of ”1+1” dimensional kinematics the following limiting expressions for G6

are used:

G6|t=0 = 0,

G6|s=0 =
e−2ǫγEcΓ
(16π2)2

1

4ǫ4

{

1

(t+ u)2ǫ
−

1

t2ǫ

}

G6|u=0 =
e−2ǫγEcΓ
(16π2)2

−1

2ǫ3
1

1− 2ǫ

{

t+ s

s

1

(t+ s)2ǫ
−

t

s

1

t2ǫ
−

1

s2ǫ

}
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For G7 one has

G7 =
∫

dDk

(2π)D
dDl

(2π)D
(k − p1)

2

k2l2(l − k)2(l − p1)2(k + p2)2 (k + p2 + p3)2
= G6 +

+
e−2ǫγEcΓ
(16π2)2

1

2ǫ4
1

t







(

µ2

s

)2ǫ

F21(1,−ǫ, 1−ǫ,−
u

t
)+

(

µ2

t

)2ǫ(

−1+F21(ǫ, 2ǫ, 1+ǫ,−
s+u

t
)
)

−

(

µ2

s+ t+ u

)2ǫ
ǫ

1 + ǫ

u

t + u
F1(1, 2ǫ, 1, 2 + ǫ,

s+ u

s+ t+ u
,

u

t + u
)






(B.72)

2F1(1,−ǫ, 1− ǫ, x) =
4∑

n=0

ǫn bn(x) +O(ǫ5), (B.73)

where
b0(x) = 1

b1(x) = log(1− x)

b2(x) = −Li2(x)

b3(x) = −Li3(x)

b4(x) = −Li4(x).

and

2F1(ǫ, 2ǫ, 1 + ǫ, x) =
4∑

n=0

ǫn cn(x) +O(ǫ5), (B.74)

where
c0(x) = 1

c1(x) = 0

c2(x) = +2Li2(x)

c3(x) = (
2π2

3
log(1−x)−2 log2(1−x) log(x)−4 log(1−x)Li2(x)−4Li3(1−x)−2Li3(x)+4ζ3),

c4(x) =
1

90
(4π4−90π2 log(1−x)2−15 log(1−x)4+300 log3(1−x) log(x)+360 log2(1−x)Li2(x)

+ log(1−x)(−360ζ3+720Li3(1−x)+360Li3(x))−360Li4(1−x)−180Li4(x)−360Li4(
x

x− 1
)).

In the integral G7 there is the Appell function of the first kind defined by the following
integral representation:

F1(α, β, β
′, γ; x, y) =

Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0
duuα−1(1−u)γ−α−1(1−ux)−β(1−uy)−β′

, (B.75)
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which in our case gives us the one-parametric integral

F1(1, 2ǫ, 1, 2 + ǫ; x, y) = (1 + ǫ)
∫ 1

0
du(1− u)ǫ(1− ux)−2ǫ(1− uy)−1. (B.76)

Expanding the integrand over ǫ and then performing the integration one gets

F1(1, 2ǫ, 1, 2 + ǫ; x, y) = (1 + ǫ)
∫ 1

0
du (1 + (log(1− u)− 2 log(1− ux))ǫ

+
(
1

2
log2(1− u)− 2 log(1− ux) log(1− u) + 2 log2(1− ux)

)

ǫ2
)

+
1

6

(

log3(1− u)− 6 log(1− ux) log2(1− u) + 12 log2(1− ux) log(1− u)

− 8 log3(1− ux)ǫ3
)

+O(ǫ4).

Up to the second order in ǫ it is possible to evaluate the integrals in terms of logarithms
and polylogarithms; however, in higher orders new functions appear.

Consider, for example, the integral

I1 =
∫ 1

0
du

log2(1− u) log(1− ux)

1− uy
, (B.77)

where the parameters satisfy the condition 0 < x < y < 1 . To evaluate this integral we
use the integral representation for one of the logarithms and get

∫ 1

0
du
∫ 1

0
da

−ux log2(1− u)

(1− uy)(1− uxa)
. (B.78)

Now taking the integral over u one has

I1 = −
2

y
log

y − x

y
Li3

−y

1− y
+ 2

∫ 1

0

Li3
ax

ax−1

a(ax− y)
da. (B.79)

To find the integral
∫ 1

0

Li3
ax

ax−1

a(ax− y)
da (B.80)

it is useful to introduce a new variable

b =
ax

ax− 1

then
∫ 1

0

Li3
ax

ax−1

a(ax− y)
da = −

1

y

∫ x

x−1

0

Li3b

b(1 + 1−y
y
b)
db (B.81)
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and using the identity
1

b(1 + 1−y

y
b)

=
1

b
−

1− y

y(1 + 1−y

y
b)

one comes to the integral

−
1

y





∫ − x

1−x

0

Li3b

b
db−

1− y

y

∫ − x

1−x

0

Li3b

1 + 1−y
y
b
db



 . (B.82)

The first integral is straightforward and for the second integral one can expand the poly-
logarithm in power series and get the answer in terms of the function

Lim,n(x, y) =
∑

j>i>0

yj

jn
xi

im
. (B.83)

As a result one gets

∫ 1

0

Li3
ax

ax−1

a(ax− y)
da = −

1

y

(

Li4

(

−
x

1− x

)

+ Li3,1

(

−
y

1− y
,
x(1 − y)

y(1− x)

))

. (B.84)

Finally putting everything together we obtain

I1 = −
2

y
log

y−x

y
Li3

−y

1−y
−
2

y

(

Li4

(

−
x

1−x

)

+Li3,1

(

−
y

1−y
,
x(1−y)

y(1−x)

))

. (B.85)

Another possibility to expand the Appell function is to use the Nested Sums computa-
tional tool [44] which represents the Appell function as some combination of generalized
polylogarithms. The ǫ expansion for the Appell function then takes the form

F1(1, 2ǫ, 1, 2 + ǫ; x, y) = −
log(1−y)

y
+

1

y

(

− log2(1−x) + 2 log(1−y) log(1−x) (B.86)

−
1

2
log2(1− y)− log(1− y)− 2Li2(x)− 2Li2

(
x− y

x− 1

)

+ Li2(y)
)

ǫ

+
1

y

(

−
1

6
log3(1− y) +

1

2
(− log(y) + 2 log(y − x)− 1) log2(1− y)−

1

6
π2 log(1− y)

+ log2(1− x)(log(x)− log(y) + log(y − x)− 1)− 2Li2(x)− 2Li2

(
x− y

x− 1

)

+ log(1− x)

(

log(1− y)(2− 2 log(y − x)) +
1

3

(

6Li2(x) + 6Li2

(

1−
x

y

)

+ 6Li2

(
x− y

x− 1

)

− 6Li2(y) + π2
))

+ Li2(y)+2Li3(x)−2Li3

(

1−
x

y

)

−Li3(1−y)

+2Li3

(
x−y

x−1

)

+2Li3

(
y−1

x−1

)

+2Li3

(

x− y

(x−1)y

)

−Li3(y)−ζ(3)

)

ǫ2+Fin ǫ3+O(ǫ4),
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where

Fin =
1

y

(

−2Li1,1,1,1(1,
x

y
, 1, y) + 2Li1,2,1(

x

y
, 1, y)− 2Li1,2(

x

y
, y) + 2Li3,1(

x

y
, y) (B.87)

+S0,3(y)+Li3(y)−S0,4(y)−H2,2(y)−2Li2,1,1(1,
x

y
, y)−H1,3(y)+2Li1,1,1,1(

x

y
, 1, 1, y)

−H1,2,1(y)− S2,2(y)− 2Li1,1,2(1,
x

y
, y) + 2Li1,1,2(

x

y
, 1, y) + 2Li2,2(

x

y
, y) +H1,2(y)

+2Li1,3(
x

y
, y)− S1,3(y) + 2Li1,1,1,(

x

y
, y) + 2Li2,1,1(

x

y
, 1, y)− Li4(y)− 2Li2,1(

x

y
, y)

+S1,2(y)−2Li1,1,1(
x

y
, 1, y)+2Li1,1,1,1(1, 1,

x

y
, y)−H1,1,2(y)−2Li1,2,1(1,

x

y
, y)

)

.

Here we use the following definition of the generalized Goncharov polylogarithms [30]

Lim1,...,mk
(x1, . . . , xk) =

∑

i1>i2>...>ik>0

xi1
1

im1

1

. . .
xik
k

imk

k

. (B.88)

Apart from these functions we have in expansion the so-called Nielsen generalized poly-
logarithms

Sn,p = Lin+1,1,...,1(x, 1, . . . , 1
︸ ︷︷ ︸

p−1

) (B.89)

and also the harmonic polylogarithms

Hm1,...,mk
(x) = Lim1,...,mk

(x, 1, . . . , 1
︸ ︷︷ ︸

k−1

). (B.90)

In the case of ”1 + 1” dimensional kinematics the expression for the integral G7 is
simplified and the following limiting cases can be used:

G7 = G”1+1”
6 +

e−2ǫγEcΓ
(16π2)2

1

2ǫ4

{

−2ǫ2J −
1

t2ǫ

}

, (B.91)

where J is the integral

J =
∫ 1

0
dxdy

tyǫ−1

(tx+ sy + uxy)1+2ǫ
(B.92)

J |t=0 = 0, (B.93)

J |s=0 = −
1

2ǫ

∫ 1

0
dy

tyǫ−1

(t+ uy)1+2ǫ
= −

1

2ǫ2
1

t2ǫ
2F1(ǫ, 1 + 2ǫ, 1 + ǫ,−

u

t
) (B.94)

J |u=0 = −
1

2ǫ

{
∫ 1

0
dy

yǫ−1

(t+ sy)2ǫ
−
∫ 1

0
dy

yǫ−1

(sy)2ǫ

}

= −
1

2ǫ2
1

s2ǫ
−

1

2ǫ2
1

t2ǫ
2F1(ǫ, 2ǫ, 1 + ǫ,−

s

t
) (B.95)
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The finite part of G7 is given by the following expression:

(G7)fin = (G6)fin+
1

(16π2)2
1

2t

{

−1 + b4(−
u

t
) + c4(−

s+ u

t
)−

u

t + u
Fin(

s+ u

s+ t+ u
,

u

t + u
)
}

.

(B.96)
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