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ters, they obey an exact or perturbed power-law expansion in conformal time. The
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the classical case. Its associated Mukhanov equation is obtained and solved. Com-

bined with the results for tensor modes, this yields the scalar and tensor indices,

their running, and the tensor-to-scalar ratio, which are all first order in the quantum

correction. The latter could be sizable in phenomenological scenarios. Contrary to

a pure minisuperspace parametrization, the lattice refinement parametrization is in

agreement with both anomaly cancellation and our results on background solutions
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in relation with a possible superluminal propagation of perturbative modes, and

conclusions for quantum spacetime structure are drawn.
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1. Introduction

Loop quantum cosmology (LQC) [1] provides the framework for implementing sev-

eral effects seen to arise for the quantum geometry of loop quantum gravity (LQG)

[2, 4, 3] in a cosmological setting. Strict formulations of loop quantum cosmology are

defined on minisuperspace, where one quantizes homogeneous spacetimes using the
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methods of loop quantum gravity. The characteristic effects of discrete spatial geom-

etry then emerge also in the reduced context, changing the dynamics of expanding

universe models. The dynamics changes in particular at high densities, giving rise

to mechanisms avoiding classical singularities.

Quantum corrections to the classical spacetime structure not only exist at high

densities but remain present, in weaker form, as the universe expands and dilutes.

In such a regime, non-linearities as well as corrections from loop quantum gravity

can be treated perturbatively in a gauge-invariant way. This has been done for

linear perturbations around spatially flat FRW models with one particular class of

corrections expected from loop quantum gravity. These corrections, related to spa-

tial discreteness, arise whenever an inverse of a certain metric component (or rather,

densitized-triad components) appears in a matter Hamiltonian or in the Hamiltonian

constraint of gravity. Such inverse components are ubiquitous, for instance in kinetic

matter terms, and thus the resulting corrections, called inverse-volume corrections,

are an unavoidable consequence of loop quantum gravity. Specifically, the correc-

tions are due to the fact that the quantized densitized triad has a discrete spectrum,

with the value zero contained in the spectrum. Such an operator does not allow the

existence of a densely-defined inverse, but an operator providing the inverse as the

classical limit can nevertheless be defined [5]. When one departs from the classical

regime, however, quantum corrections arise whose form can be computed in some

models and which can be parametrized sufficiently generally for phenomenological

investigations. In the presence of these corrections, provided they are small, con-

sistent gauge-invariant cosmological perturbation equations have been determined

[6].

Gauge invariance in general relativity and the candidates for its quantization is

intimately related with spacetime structure because gauge transformations include

changes of coordinates. Accordingly, quantum corrections to gauge-invariant pertur-

bation equations show how fundamental quantum spacetime effects such as discrete

geometry are reflected, in physical terms, by implications for cosmological observ-

ables. Cosmology then provides an intriguing link between the fundamental physics

of spacetime and phenomenology, as it will be explored in this paper.

Looking at the issue from the phenomenological side, linearization of dynamical

equations in the presence of inhomogeneous perturbations is one of the most exten-

sively studied problems in cosmology. With recent progress in LQC, the context in

which such questions can be addressed has been extended to a new class of quantum-

gravity effects with the aim of making a prediction for early-universe spectra and,

hopefully, constraining the theory. The perturbed equations contain quantum cor-

rection functions and are augmented by counterterms which guarantee cancellation

of anomalies in the effective constraint algebra [7, 8, 9]. These contributions provide

insights in the spacetime structure, modify the equations of motion and, eventually,

imply characteristic signatures for physical observables.
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The perturbed equations of motion for vector, tensor, and scalar modes have

been computed, respectively, in [7, 8, 6], while the tensor spectrum and index have

been found and explored in [10, 11]. To close the set of cosmological consistency

relations, it remains to compute the scalar spectrum and its derived observables.

Such is the first goal of this paper: We shall find the Mukhanov equation of scalar

perturbations for the first time and solve it. With exactly the same procedure, we

will rederive the solution of tensor modes with zero effort. The scalar and tensor

spectra and spectral indices will be obtained together with a consistency relation

between the tensor-to-scalar ratio and the tensor index. In doing so, we will derive a

conservation law for the curvature perturbation, extending the well-known classical

result to the quantum-corrected equations, and discuss its implications for quantum

spacetime structure.

All cosmological observables, including index running and higher-order quanti-

ties, are linearly corrected by quantum terms δPl whose magnitude we cannot predict

yet because we have no control over the details of the underlying full quantum theory.

The presence of extra parameters would seem to at best make it possible to place

upper bounds on the quantum corrections δPl for a given inflationary potential. For

instance, one can arrange to have large-enough quantum corrections so that the scalar

running be sizable. On the other hand, we can naturally envisage a situation where

δPl is much smaller than the slow-roll parameters, and therefore completely negligible.

Until better control over the theory is achieved, the phenomenological consequences

of inverse-volume (or other) corrections will remain unclear but here, as our second

goal, we highlight the following issue: Different parametrization schemes will lead to

different background solutions and predictions for the size of δPl. In particular, the

usual minisuperspace parametrization of FRW loop quantum cosmology seems to

be incompatible with anomaly cancellation in inhomogeneous LQC, as well as with

the simplest power-law solutions. Conversely, the lattice refinement parametrization

overcomes all these problems, can predict much larger quantum corrections, but it

might indicate a problem related to superluminal propagation of the perturbations.

We wish to stress all these features and the importance of further investigating the

lattice refinement parametrization, which requires input from the full theory.

Since anomaly cancellation so far has been shown to occur only in the quasi-

classical regime where inverse-volume corrections and counterterms are small, we

shall concentrate on this case. Therefore it is not possible to draw comparisons with

holonomy-correction results [10, 12, 13] or with previous works which partially fixed

the gauge, considered test fields and neglected metric back-reaction, since they were

devoted to the superinflationary regime of a near-Planckian epoch [14, 15, 16, 17, 18].

In section 3 we review the LQC background equations of motion for a flat FRW

model and a scalar field, and the parametrizations arising in minisuperspace quanti-

zation and the lattice refinement phenomenological approach. Background solutions

with de Sitter and exact or perturbed power-law expansion are found in section 4.
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Section 5 is completely devoted to scalar perturbations. After a review and some

important updates of the results of [6], we show that the comoving curvature per-

turbation is conserved at large scales, as in the classical case (section 5.3). The

Mukhanov equation for a scalar perturbation variable is then found and solved in

section 5.4, while the set of linear cosmological observables (power spectrum, index

and index running) is derived in section 5.6. The set of observables is completed

in section 6, where the same analysis of the previous section is applied verbatim to

tensor perturbations. A discussion of the main achievements of this paper and future

directions can be found in section 7.

2. Spacetime structure and phenomenology

Loop quantum gravity has provided results that show the discreteness of spatial

quantum geometry: geometrical operators such as those for area and volume have

discrete spectra [19, 20]. Taken by themselves, these features are not observable be-

cause the corresponding objects, the areas of spatial surfaces or the volumes of spatial

regions, are not gauge invariant. However, these mathematical properties, derived

from the underlying principle of background independence on which the theory is

built, indicate new features of the quantum representation with important effects for

the dynamics. The volume operator, for instance, enters matter Hamiltonians [5]

and the gravitational Hamiltonian constraint operator [21], and thus influences their

properties at the quantum level. In this way, once the dynamical equations are suffi-

ciently well understood, physical observables are affected and a potential comparison

with observations is made possible.

The dynamics of loop quantum gravity amounts to that of a coupled, interact-

ing many-body problem in which the elementary constituents are the fundamental

building blocks of space. Such equations governing the dynamics are difficult to solve

exactly, but several crucial effects visible in them are generic and characteristic; they

provide the basis for phenomenological evaluations. There are two main effects: (i)

inverse-volume corrections and (ii) holonomy corrections due to the fact that the

background-independent quantization used in LQG allows the representation only

of exponentiated curvature components, gathered as the holonomies of connection

variables. Inverse-volume corrections are currently under much better control in

cosmological perturbation equations, and so they will be our main focus here.

To see implications of those effects in the dynamics, the many-body Hamiltonians

must be analyzed. There is by now a systematic procedure to do so, based on effective

canonical equations to describe semi-classical dynamics [22, 23]. Effective equations

in this context, analogous to low-energy effective actions for expansions around the

ground state of anharmonic systems, are obtained from expectation values of the

Hamiltonian (constraint) operators in a generic class of semi-classical states. So far,

these equations have been computed and analyzed only in isotropic cosmological
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models, in which a solvable system analogous to the harmonic oscillator is available

[24]. The form of the equations, however, is more general and can be used also in

the presence of inhomogeneous cosmological perturbations. To avoid bias, one only

has to ensure that correction functions are parametrized sufficiently generally, since

the control over the theory is not yet strong enough to provide unique predictions

for them.

These equations, including parametrized quantum-gravity corrections, allow im-

portant conclusions at the fundamental and phenomenological levels by a clear line

of arguments. First, the structure of spatial geometry changes according to LQG,

affecting the form of the constraints generating gauge transformations. Secondly, in

the presence of quantum corrections the algebra under Poisson brackets (or commu-

tators when quantized) of the constraints as gauge generators is modified, amounting

to a different realization of the classical transformations of spacetime and the under-

lying gauge behaviour. This abstract feature has several consequences. For instance,

quantum-geometry corrections cannot be implemented by any higher-curvature ef-

fective action because those corrections would not change the classical constraint

algebra and the underlying notion of gauge and covariance. An effective action that

can include all effects of LQG must be of a more general form, for instance allow-

ing for non-commutative geometry. Moreover, gauge transformations belonging to

a deformed algebra no longer correspond to ordinary coordinate transformations on

a manifold. Thus, effective line elements may be questionable because the transfor-

mations of metric components and coordinate differentials collected in ds2 no longer

match to make the line element invariant. In such a context, physical information can

be gained only from gauge-invariant variables that take into account the new gauge

structure. With these additional effects, there is a chance that quantum gravity cor-

rections may be stronger than usually expected, for instance, from naive arguments

based on the size of higher-curvature corrections.

One possible new phenomenon is of particular interest. When the constraint

algebra is deformed, the Bianchi identity or the conservation equation for stress-

energy is modified. There are still analogous identities if the deformation is consistent

and anomaly-free, but they may refer to different quantities than in the classical

case. Then, the curvature perturbation is no longer guaranteed to be conserved, a

possibility which has already been raised [6, 25]. If the curvature perturbation is

no longer conserved, on the other hand, magnification effects for modes outside the

Hubble radius can be expected. Even though deviations from conservation given

by quantum gravity were small at any given (sufficiently late) time, expected to be

determined by the tiny ratio of the Planck length by the Hubble radius, the lever arm

of non-conservation during long times between horizon exit during inflation and re-

entry might magnify those tiny effects. In this way, a tight link is obtained between

fundamental spacetime structure and cosmological phenomenology.

Here we will provide results in both directions, fundamental physics as well as
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phenomenology. In particular, we will demonstrate that a subtle cancellation in

the anomaly-free correction functions of LQC does make the curvature perturbation

conserved in spite of the non-trivial deformation of the constraint algebra, a feature

which has not been noticed before. As a consequence, effective linear perturbations

of Friedmann–Robertson–Walker geometries can be meaningfully constructed even

in the presence of a deformed gauge structure. Corrections to standard perturbation

equations then follow naturally.

3. Background equations and parametrizations

To begin, we write down the LQC effective equations of motion for an FRW back-

ground ds2 = a2(τ)(−dτ 2 + dxidxi) in conformal time τ (see, e.g., the review in

[11] for a detailed derivation of these results). We shall ignore holonomy corrections,

which have not yet been considered in the perturbed dynamics. Notice, however, that

these contributions in some parametrizations dominate over inverse-volume correc-

tions as far as tensor modes are concerned [11, 13]; we will further discuss this point

in the final section. For a scalar field ϕ with potential V , the effective Friedmann

and Klein–Gordon equations read

H2 =
8πG

3
α

[

ϕ′2

2ν
+ pV (ϕ)

]

(3.1)

and

ϕ′′ + 2H
(

1− d ln ν

d ln p

)

ϕ′ + νpV,ϕ = 0 , (3.2)

where G is the gravitational constant, H ≡ a′/a is the Hubble parameter, primes

denote derivatives with respect to conformal time, and p = a2 (in comoving volume

units) is the triad variable in minisuperspace. (Triad variables can take both signs

depending on the orientation of space. Here we assume p to be positive without loss

of generality for effective equations.) From equations (3.1) and (3.2) one obtains the

Raychaudhuri equation

H′ =

(

1 +
d lnα

d ln p

)

H2 − 4πG
α

ν

(

1− 1

3

d ln ν

d ln p

)

ϕ′2 . (3.3)

In these equations,

α ≈ 1 + α0δPl, (3.4)

ν ≈ 1 + ν0δPl, (3.5)

where

δPl ≡
(

pPl
p

)
σ

2

=
(aPl

a

)σ

, (3.6)
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and σ and pPl = a2Pl are constant.
1 We will often need to switch from p to conformal

derivatives via
′ = 2H d

d ln p
(3.7)

and the formulæ

δ′Pl = −σHδPl , δ′′Pl = σH2(σ − 1 + ǫ)δPl , (3.8)

with ǫ = 1−H′/H introduced as a slow-roll parameter below.

Functional forms of α(p) and ν(p) are fully computable in general form from op-

erators in exactly isotropic models [26] and for regular lattice states in the presence

of inhomogeneities [27], with parametrizations of quantization ambiguities affecting

the values of α0, ν0 and σ [28, 29]. However, only the expanded forms (3.4) and (3.5)

are needed in the perturbative regime considered here. From these explicit calcula-

tions of inverse-volume operators and their spectra, one can derive further properties

characteristic of loop quantum gravity. In particular, correction functions imple-

menting inverse-volume corrections, when evaluated at large values of the densitized

triad or the scale factor in a nearly isotropic geometry, approach the classical value

always from above. This consequence, which is a robust feature under quantization

ambiguities and will turn out to be important later, implies that the coefficients α0

and ν0 introduced in the parametrizations used here must be positive.

3.1 Parametrizations

The above equations are derived in a minisuperspace Hamiltonian formalism where

the super-Hamiltonian (the only non-trivial constraint on homogeneous backgrounds)

is first symmetry-reduced, and then quantized with LQG techniques. The resulting

equations then constitute partial effective equations, which means that they cap-

ture the behaviour of expectation values of observables in semi-classical states, but

without taking all quantum corrections into account. In particular, quantum back-

reaction by fluctuations and the holonomy corrections of loop quantum gravity are

not included at the present stage. The LQG techniques consist in a choice of canon-

ical variables and operator ordering which make the final result quite different with

respect to the traditional minisuperspace Wheeler–DeWitt quantum cosmology. At

the semi-classical level, the main difference is the presence of correction functions

(3.4) and (3.5). The constants α0, ν0 and σ will enter the cosmological observables

and it is important to set their value range beforehand. This range strongly depends

on the physical interpretation of the model. We can identify two views on the issue,

one purely homogeneous and isotropic and the other associated with the natural

presence of inhomogeneities.

1We put a subscript ‘Pl’ in the definition (3.6) in order to avoid confusion with perturbations

such as δϕ. However, the equations below do not rely on any particular characteristic scale aPl,

which may differ from the Planck length.
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3.1.1 Minisuperspace parametrization

On an ideal FRW background, open and flat universes have infinite spatial volume

and the super-Hamiltonian constraint is formally ill defined because it entails a di-

vergent integration of a spatially constant quantity over a comoving spatial slice

Σ,
∫

Σ

d3x = +∞ .

To make the integral finite, it is customary to define the constraint on a freely chosen

finite region of size V = a3V0, where V0 is the corresponding comoving volume:

∫

Σ

d3x →
∫

Σ(V0)

d3x = V0 < +∞ .

The volume appears in the correction function (3.6) as δPl ∼ a−σ ∼ V−σ/3. To make

δPl adimensional, one can use the Planck length ℓPl to write

δPl ∼
(

ℓ3Pl
V0

)
σ

3

a−σ . (3.9)

To specify the coefficient further, one sometimes introduces the area gap ∆Pl ≡
2
√
3πγℓ2Pl, where γ is the Barbero–Immirzi parameter.2 A detailed calculation then

shows that the constant coefficients α0 and ν0 are [11]

α0 =
(3q − σ)(6q − σ)

2234

(

∆Pl

pPl

)2

, ν0 =
σ(2− l)

54

(

∆Pl

pPl

)2

. (3.10)

They depend on two sets of ambiguities, one (1/2 ≤ l < 1 and 1/3 ≤ q < 2/3)

related to different ways of quantizing the classical Hamiltonian3 and the other (σ)

depending on which geometrical minisuperspace variable has an equidistant stepsize

in the dynamics: in terms of the triad variable p, pσ/2 is equidistant if inverse-volume

corrections with exponent σ in ∆Pl appear. More physically, this parameter is related

to how the number of plaquettes of an underlying discrete state changes with respect

to the volume as the universe expands. The latter is a phenomenological prescription

for the area of holonomy plaquettes, but ideally it should be an input from the full

theory [34].

In the minisuperspace context, a natural choice of these parameters is

σ = 6 , l = 3
4
, q = 1

2
, (3.11)

2The use of twice this value according to recent findings may be better justified [30] but the

resulting change in the values of α0 and ν0 is not relevant for what follows.
3The different interval for q with respect to the one given in [11] stems from the same argument

in the full theory which constrains the range of l [31, 32]. We set the natural value of q to be 1/2

rather than 1 [33] in equation (3.11).
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so that, assuming pPl = ∆Pl [33], one has

α0 =
1
24

≈ 0.04 , ν0 =
5
36

≈ 0.14 . (3.12)

Notice that σ = 6, motivated by holonomy corrections not becoming large at small

curvature, corresponds to the so-called ‘improved quantization scheme’ [33], a name

which applies also to values of l and q different from equation (3.11). A specific

example provided in [33], for instance, is q = 1 such that α0 = 0. Note, however, that

the exact value α0 = 0 is obtained in this case only due to a spurious cancellation

in isotropic settings; it seems to suggest negligible inverse-volume corrections but

is unreliable compared with more general derivations. For phenomenology at the

current level of precision, the most significant parameter is σ, which is not as much

affected by different choices of the minisuperspace scheme.

Since δPl is V0-dependent, inverse-volume corrections cannot strictly be made

sense of in a pure minisuperspace treatment. Inverse-volume corrections, as used

here, have never been derived fully consistently in this context owing to the V-
dependence. In particular, as discussed in [35, 36], while the improved scheme does

take into account refinement for holonomies in an ad-hoc manner, it ignores these

effects for inverse-volume corrections. This failure to represent inverse-volume effects,

which are crucial for well-defined Hamiltonians in loop quantum gravity, presents

a serious limitation of pure minisuperspace models which can be overcome only by

bringing in further ingredients to take into account the behaviour of inhomogeneities,

as indicated in what follows. Precise derivations become more complicated in this

situation, but by a combination with input from phenomenology one can obtain

valuable restrictions on the possible realizations.

We wish to make a further comment on this issue. In the context of inflation,

one has a set of observables given by the anisotropy spectra and their derivatives; all

these quantities contain parameters of the inverse volume corrections. Since they are

all evaluated at horizon crossing, the comoving fiducial volume therein (implicitly

conceived as greater than the causal region ∼ H−3) can be naturally set to be the

Hubble volume. If one maintained the minisuperspace parametrization also in the

presence of perturbations, the conclusion would be that the fiducial volume problem

is less severe than expected. However, the minisuperspace setting pertains only to

exactly isotropic models, and this solution of the problem is at best incomplete. To

get a clearer picture, we should include inhomogeneities already at the fundamental

level. The following argument shows how to do so qualitatively.

3.1.2 Lattice refinement parametrization

The chosen volume V is a purely mathematical object which should not appear in

physical observables, but it does appear in equation (3.9). Since δPl will enter the

observables, we might face a problem. To make the situation better behaved, we
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introduce generic effects of inhomogeneities. One example for doing so is the lattice

parametrization discussed in [11] which, as one implication, extends the range of the

parameters. Then, one has a large range of σ,

4 < σ ≤ 6 , (3.13)

the value of the improved minisuperspace quantization scheme being included. When

pPl = ∆Pl, for instance, varying over the range of σ (equation (3.13)), l and q (as

specified below equation (3.1.1)),

0 < α0 ≤ 5
81

≈ 0.06 , (3.14)

0.07 ≈ 2
27

< ν0 < 1
6
≈ 0.17 . (3.15)

Instead of repeating the arguments leading to equation (3.13), we consider an

alternative lattice parametrization where one uses the ‘patch’ volume of an underlying

discrete state in correction functions, rather than the much larger volume V [36].

In this parametrization, motivated by key aspects of discrete spacetime dynamics,

the ranges of parameters change more significantly than in (3.13), with important

consequences for phenomenology. Now, corrections refer to the patch size

v ≡ V
N , (3.16)

with N , the main input from quantum gravity, the number of discrete patches in V.
By construction, v is independent of the size of the region, since both V0 and N scale

in the same way when the size of the region is changed. Physical predictions should

not feature the region one chooses unless one is specifically asking region-dependent

questions (such as: What is the number of vertices in a given volume?).

Given the available parameters and their dimensions, the leading-order quantum

correction in α and ν is then of the form

δPl =

(

ℓ3Pl
v

)m/3

=

(

ℓ3Pl
N
V

)m/3

, (3.17)

where m > 0 is a positive integer parameter. It determines the power by which p

appears in leading corrections of an expansion of inverse-volume correction functions.

Primarily, the correction functions α and ν, and thus δPl as well, depend on flux

values, corresponding to p for the isotropic background. Since p changes sign under

orientation reversal but the operators are parity invariant, only even powers of p

can appear, giving m = 4 as the smallest value. At this stage of development of

the full theory, it is not entirely clear that general correction functions depend only

on the fluxes (rather than, e.g., also on the eigenvalues of more complicated volume

operators; for properties of their spectra see [37, 38]). Therefore we set m ≥ 4.
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A time-dependent N (t) corresponds to the dynamical ‘lattice-refinement’ be-

haviour [34]. For some stretches of time, one can choose to use the scale factor a as

the time variable and represent N (a) as a power law

N = N0a
−6x , (3.18)

where N0 is some (coordinate and V0-dependent) parameter and the power x de-

scribes different qualitative behaviours of changing lattices. Overall, we have

δPl =

(

ℓ3Pl
N0

V0

)
m

3

a−(2x+1)m . (3.19)

This equation cannot be obtained in a pure minisuperspace setting (e.g., [11]) where

only one parameter σ enters as in (3.9). The presence of an extra parameter, com-

pared to the minisuperspace parametrization, may appear as a disadvantage, but

we will see later that it is required for being able to match with phenomenology;

otherwise the theory would be ruled out.

In the lattice-refinement derivation, the parameter a plays two roles, one as a

dynamical geometric quantity and the other as internal time. While writing down

the semi-classical Hamiltonian with inverse-volume (and holonomy) corrections, one

is at a non-dynamical quantum-geometric level. Then, internal time is taken at a

fixed value but the geometry still varies on the whole phase space. In this setting,

we must keep N fixed while formulating the constraint as a composite operator. The

net result is the Hamiltonian constraint operator of the basic formulation of loop

quantum cosmology [39, 40] not taking into account any refinement, corresponding

to x = 0 and m = σ. However, when one solves the constraint or uses it for effective

equations, one has to bring in the dynamical nature of N from an underlying full

state. This is the motivation for promoting N to a time-dependent quantity, a

step which captures operator as well as state properties of the effective dynamics.

Its parametrization as a power law of the scale factor is simply a way to encode

the qualitative (yet robust, see below) phenomenology of the theory. The general

viewpoint is similar to mean-field approximations which model effects of underlying

degrees of freedom by a single, physically motivated function.

Comparing with the earlier minisuperspace parametrization, equation (3.19)

gives σ = (2x + 1)m as far as the a-dependence is concerned. The number of

vertices N must not decrease with the volume, so x ≤ 0; it is constant for x = 0.

Also, v = V/N ∼ a3(1+2x) is the elementary geometry as determined by the state;

in a discrete geometrical setting, this quantity has a lower non-zero bound which

requires −1/2 ≤ x ≤ 0. In particular, for x = −1/2 we have a constant patch

volume, corresponding to what is assumed in the improved minisuperspace quanti-

zation scheme [33]. In contrast with the minisuperspace parametrization (3.11), in

the effective parametrization of equation (3.19) we have σ = 0 in this case. Thus,
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even for x = −1/2 is the parametrization new and different from the minisuperspace

representation, overcoming the problem of representing inverse-volume effects in a

pure minisuperspace treatment.

To summarize the general lattice-refinement scheme, σ = (2x + 1)m is a time-

independent or slowly changing parameter4 given by the reduction from the full

theory and with range

σ ≥ 0 . (3.20)

Assuming this range will be of utmost importance for justifying the validity of the

cosmological perturbation spectra. In fact, we shall find that σ must be small in order

for the spectra to be almost scale invariant, a range of values that cannot occur for

either the minisuperspace parametrization or the first lattice parametrization (3.13).

Responsible for the better matching is the new parameter x, while m alone (or x = 0)

would give a range similar to the minisuperspace parametrization.

Note that, in principle, σ may be different in α and ν for an inhomogeneous

model. However, here we assume that the background equations (3.4) and (3.5) with

the same δPl are valid also in the perturbed case. Not only is this choice natural

whenever background quantities are considered, but it is also crucial for several

simplifications to follow.

Before moving on, a remark is in order. The patches of volume v find a most

natural classical analog in inhomogeneous cosmologies, in particular within the sepa-

rate universe picture [41]. For quantum corrections, the regions of size v are provided

by an underlying discrete state and thus correspond to quantum degrees of freedom

absent classically. However, the discrete nature of the state implies that inhomo-

geneities are unavoidable and no perfectly homogeneous geometry can exist. Given

these inhomogeneities and their scale provided by the state, one can reinterpret them

in a classical context, making use of the separate universe picture. There, the volume

V can be regarded as a region of the universe where inhomogeneities are non-zero

but small. This region is coarse grained into smaller regions of volume v, each cen-

tered at some point x, wherein the universe is FRW and described by a ‘local’ scale

factor a(t,x) = a
x
(t). The difference between scale factors separated by the typical

perturbation wavelength |x′ − x| ∼ λ ≪ V1/3 defines a spatial gradient interpreted

as a metric perturbation. In a perfectly homogeneous context, v ∼ V and there is

no sensible notion of cell subdivision of V; this is tantamount to stating that only

the fiducial volume will enter the quantum corrections and the observables, N = N0.

On the other hand, in an inhomogeneous universe the quantity v carries a time de-

pendence which, in turn, translates into a momentum dependence. The details of

the cell subdivision (number of cells per unit volume) are intimately related with the

4The creation or subdivision of new cells in a discrete state depends on the spatial geometry and

can thus be considered as changing more slowly than other processes in an expanding universe. On

large time scales, the parameter σ may change, distinguishing different microscopic epochs in the

history of the universe.
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structure of the small perturbations and their spectrum. Thus, lattice refinement is

better suitable in the cosmological perturbation analysis. As long as perturbations

are linear and almost scale invariant, the size of volume within which the study is

conducted is totally irrelevant.

3.1.3 Parameter estimates

Since the lattice refinement picture is phenomenological, presently we are unable to

determine the quantum correction δPl from first principles and, at this stage, the

latter is regarded as a free parameter which can be constrained by experiments.

In the minisuperspace and lattice parametrization (3.13), on the other hand, there

may be an argument which estimates the magnitude of δPl heuristically. In fact, in

those parametrizations δPl = (δ0/V)σ/3, where δ0 is some constant volume and V is

the fiducial volume; for lack of better knowledge, one often assumes δ0 ∼ ℓ3Pl. All

inflationary observables are evaluated at horizon crossing, so the volume V is very

naturally fixed by the size of the Hubble horizon at that moment (denoted with a ∗)
[11]:

V ∼ H−3
∗ , (3.21)

where H = ȧ/a = H/a. (This equation is invariant under isotropic rescalings of

the coordinates. In terms of aPl introduced via δPl = (aPl/a)
σ in the minisuperspace

parametrization, we may write aPl/a = ℓPlH∗.) The point here is that so far V
has been arbitrary, the only requirement being that it contains the Hubble region

at any given moment. Provided δ0 is fixed a priori, this equation fixes V once and

for all because one is not at the liberty of changing the numerical factor in (3.21),

which is O(1). Slightly different definitions of the Hubble horizon differ only for O(1)

coefficients, which do not affect the discussion qualitatively (on the other hand, O(10)

or O(0.1) coefficients are unacceptable because the observables here are defined at,

not before or after, horizon crossing).

To estimate δPl during inflation, we could take the grand-unification scale H∗ ∼
1014 ÷ 1017 GeV. As δPl = (ℓPlH∗)

σ and 4 < σ ≤ 6, one has the upper bound

δPl . O(10−8). Typical prefactors in observable quantities may even carry an extra

O(10−1) suppression, as we will find, so none of the inverse volume corrections with

these choices are observable, even in the scalar running, as the slow-roll parameters

are O(10−2). In comparison, the inflationary tensor index gets an extra contribution

δhol ∝ (ℓPlH∗)
2 . O(10−4) from holonomy corrections [13], which dominate over δPl.

Holonomy corrections in the perturbed scalar sector has never been computed, but

we expect a similar hierarchy of scales.

Unfortunately, these estimates rely on a particular choice for δ0 and the argu-

ment cannot be regarded as robust. The size of this dimensionful constant strongly

depends on the underlying theory, and a change in magnitude of δ0 would modify the

above results. Moreover, we will see that the minisuperspace parametrizations are
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not compatible with requirements on background solutions combined with anomaly

freedom. The estimate of δPl could thus at best be used as an external input for the

lattice-refinement parametrization. Then, once the scale of inverse-volume correc-

tions is fixed, a further consistency condition must be satisfied because inverse-triad

corrections and holonomy corrections are determined by the same parameter that

specifies the underlying discreteness scale [36]. To evaluate this condition, we use

the alternative form of δPl = (ℓ3Pl/v)
m/3 = ℓ4Pl/v

4/3 for m = 4. The underlying dis-

creteness scale, as a distance parameter, is then the linear dimension of patches,

L = v1/3 = ℓPl/δ
1/4
Pl = ℓPl/(ℓPlH∗)

σ/4. On the other hand, the strength of holonomy

corrections can be expressed in terms of the critical density ρcrit = 3/(8πGγ2L2);5

holonomy corrections are weak when the matter density satisfies ρ ≪ ρcrit. With L

as assumed here,

ρcrit =
3H2

∗ (ℓ
2
PlH

2
∗ )

σ/4−1

8πGγ2
∼ ρ∗

(

ρ∗
ρPl

)σ/4−1

, (3.22)

with the matter density ρ∗ at the time of horizon crossing. Thus, for ρcrit ≫ ρ∗ to

ensure that holonomy corrections do not significantly alter the classical behaviour at

horizon crossing, we must require σ < 4. Then, δPl becomes larger than estimated

above. For a critical density of Planckian size, which is often desired so as to have

strong quantum-gravity corrections only in the Planckian regime, σ must be close to

zero. For such values, δPl ∼ O(1) with the above estimate of δ0, clearly dominating

holonomy corrections at horizon crossing. (For σ = 2, the critical density is the

geometric mean ρcrit ∼ √
ρPlρ∗ and we have δPl ∼ δhol.)

3.2 Slow-roll parameters

For later convenience, we define the first three slow-roll parameters as

ǫ ≡ 1− H′

H2
, (3.23)

η ≡ 1− ϕ′′

Hϕ′
, (3.24)

ξ2 ≡ 1

H2

(

ϕ′′

ϕ′

)′

+ ǫ+ η − 1 , (3.25)

which coincide with the standard definitions in synchronous time

ǫ ≡ − Ḣ

H2
, η ≡ − ϕ̈

Hϕ̇
, ξ2 ≡ 1

H2

(

ϕ̈

ϕ̇

).

.

5As an explicit calculation shows, the true critical density is actually αρcrit [11]. Setting q = 1

and σ = 6 in the lattice parametrization one gets α = 1, as in [33]. In general α does appear, but

the arguments in this discussion are qualitative and we can ignore this issue.
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The parameter ǫ will be especially important later on and we can rewrite it as

ǫ = 4πG
α

ν

ϕ′2

H2

(

1− 1

3

d ln ν

d ln p

)

− d lnα

d ln p

= 4πG
ϕ′2

H2

{

1 +
[

α0 + ν0

(σ

6
− 1

)]

δPl

}

+
σα0

2
δPl , (3.26)

using the Raychaudhuri equation (3.3) in the first step. Notice that the symbol =

in the last line of equation (3.26) implicitly hides the O(δPl) truncation. This note

of caution applies to any of the equations below, where O(δ2Pl) terms are dropped

as required for self-consistency of perturbed equations. In contrast, the slow-roll

approximation will always be invoked explicitly and indicated with the symbol ≈.

The derivatives of ǫ and η are

ǫ′ = 2H
(

ǫ+
d lnα

d ln p

)

[

ǫ− η +
d lnα

d ln p
− d ln ν

d ln p
− 1

3

d2 ln ν

d ln p2

(

1− 1

3

d ln ν

d ln p

)−1
]

−2Hd2 lnα

d ln p2

= 2Hǫ(ǫ− η)− σHǫ̃δPl , (3.27)

η′ = H(ǫη − ξ2) , (3.28)

where

ǫ̃ ≡ α0

(σ

2
+ 2ǫ− η

)

+ ν0

(σ

6
− 1

)

ǫ . (3.29)

While in standard inflation ǫ is almost constant whenever it is small (since the

classical part of ǫ′ is quadratic in the parameters), depending on the size of the

quantum correction σǫ̃δPl the quantity ǫ′ could be of the same order as ǫ. However,

we expect δPl to be small in the typical setting.

For a given background a(τ) and ϕ(τ), the slow-roll parameters are functionally

identical to the classical case. Clearly, the potential required to give rise to such an

evolution is different, as one can see also from the (later useful) relations

V,ϕ =
Hϕ′

νp

(

η − 3 + 2
d ln ν

d ln p

)

=
Hϕ′

νp
(η − 3− σν0δPl) , (3.30)

V,ϕϕ =
H2

νp

[

3(ǫ+ η)− η2 − ξ2 + 2(3− ǫ− 2η)
d ln ν

d ln p
+ 4

d2 ln ν

d ln p2
− 4

(

d ln ν

d ln p

)2
]

=
1

νp

(

−m2
ϕ +H2σµϕδPl

)

, (3.31)

where

m2
ϕ ≡ H2[η2 + ξ2 − 3(ǫ+ η)] , (3.32)

µϕ ≡ ν0 (σ − 3 + ǫ+ 2η) . (3.33)
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4. Background solutions

Let φ be a set of generic scalar variables and let us write the background equations of

motion, as well as the soon-to-be-found Mukhanov equation for the scalar perturba-

tion, as O[φ] = 0, where O is a (possibly non-linear) differential operator. One can

drop quantum terms of order higher than δPl and split each variable into a classical

part φc and a quantum correction φqδPl [11],

φ = φc + φqδPl , (4.1)

so that each equation becomes

Oc[φc] + {Oc[φq] +Oq[φc]} δPl = 0 . (4.2)

Requiring that the classical and quantum part vanish separately (a condition which

defines what is meant by φc) yields two equations:

Oc[φc] = 0 , Oc[φq] +Oq[φc] = 0 . (4.3)

This splitting strongly resembles the one into coarse- and fine-grained perturbations

in stochastic inflation [42, 43, 44, 45]; in fact, for a Klein–Gordon scalar the sec-

ond equation (4.3) is nothing but a ‘complementary’ Langevin-type equation for a

quantum variable with a noise term sourced by the classical part.

For example, consider the scalar field and scale factor profiles

ϕ = ϕc + ϕqδPl , a = ac + aqδPl . (4.4)

The Hubble parameter can be written as

H = Hc +HqδPl , Hq =
aq
ac

[

a′q
aq

− (1 + σ)Hc

]

. (4.5)

Also, the scalar potential V is expanded in a Taylor series around ϕc,

V (ϕ) = V (ϕc) + V,ϕ(ϕc)ϕqδPl ≡ Vc + VqδPl , (4.6)

V,ϕ(ϕ) = V,ϕ(ϕc) + V,ϕϕ(ϕc)ϕqδPl ≡ V,ϕ c + V,ϕqδPl . (4.7)

Plugging these expressions into the Friedmann and Klein–Gordon equations (3.1)

and (3.2), we obtain a pair of classical equations,

H2
c =

8πG

3

(

ϕ′
c
2

2
+ a2cVc

)

, (4.8)

ϕ′′
c + 2Hcϕ

′
c + a2cV,ϕ c = 0 , (4.9)
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plus another pair of relations involving the correction functions ϕq and aq:

HcHq =
4πG

3

[

ϕ′
c(ϕ

′
q − σHcϕq) +

α0 − ν0
2

ϕ′
c
2
+ a2c(α0Vc + Vq) + 2aqVc

]

,(4.10)

0 = ϕ′′
q + 2Hc(1− σ)ϕ′

q + σH2
c(σ + ǫc − 3)ϕq + a2c(ν0V,ϕ c + V,ϕ q)

+2aqV,ϕ c + ϕ′
c(2Hq + σν0Hc) . (4.11)

At this point we look for special background solutions with exactly constant

slow-roll parameter ǫ, i.e., with a scale factor expanding as a power-law:

a = ac = |τ |n , n ≤ −1 , (4.12)

where τ < 0 and the limit n ∼ −1 corresponds to de Sitter spacetime. By this

definition, the quantum corrections aq and Hq vanish identically. At the classical

level, one gets the power-law solution [46]

ϕc = ϕ0 ln |τ | = ±
√

n(n+ 1)

4πG
ln |τ | , (4.13)

V = V0 e
−2(n+1)ϕ/ϕ0 =

n(2n− 1)

8πG
e−2(n+1)ϕ/ϕ0 , (4.14)

for which Vc = V (ϕc) = V0|τ |−2n−2 and

ǫ = ηc = ξc = 1 +
1

n
. (4.15)

Let us see if there exist solutions of the form ϕq = ϕq0|τ |b, distinguishing two cases:

• If n 6= −1,

Vq = −2(n+ 1)V0
ϕq0

ϕ0
|τ |b−2n−2 , (4.16)

for Vq as defined in (4.6). Equations (4.10) and (4.11) become

0 = ϕ0ϕq0

[

(b− σn)− 2(n+ 1)
V0

ϕ2
0

]

|τ |b−2 + ϕ2
0

[

α0 − ν0
2

+ α0
V0

ϕ2
0

]

|τ |−2 ,

(4.17)

0 = ϕq0

[

b(b− 1) + 2bn(1− σ) + σn(σn+ 1− 2n) + 4(n+ 1)2
V0

ϕ2
0

]

|τ |b−2

+ν0ϕ0

[

σn− 2(n+ 1)
V0

ϕ2
0

]

|τ |−2 . (4.18)

It turns out that, if ϕq0 6= 0, the solution requires b = 0 and the equalities

ϕq0

ϕ0
=

(

3n

1 + n
α0 − ν0

)

1

2(σn+ 2n− 1)
=

(

ν0 −
3

ǫ
α0

)

1− ǫ

2(3 + σ − ǫ)
,

(4.19)

0 = ν0 [6(3− ǫ)− σ(3 + σ − ǫ)]− 3α0

[

2(3− ǫ)− σ

ǫ
(3− σ − ǫ)

]

. (4.20)
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The potential then reads

V =

[

1− 2(n + 1)
ϕq0

ϕ0

δPl

]

Vc , (4.21)

while the second and first slow-roll parameters are

η = ηc − σ2n
ϕq0

ϕ0
δPl , (4.22)

ξ2 = ξ2c − σ2(σn+ 1 + n)
ϕq0

ϕ0
δPl . (4.23)

An exact solution is

σ = 0 , α0 = ν0 , V = (1− α0δPl)Vc , (4.24)

while for σ & O(1) and small ǫ the expression (4.20) is satisfied if α0 and ν0
obey

ν0 [18− σ(3 + σ)]− 3α0

[

6− σ

ǫ
(3− σ)

]

≈ 0 . (4.25)

For 0 < σ < 3, the solution has α0, ν0 > 0 if ǫ > σ(3 − σ)/6 (e.g., ǫ > 1/3 if

σ = 1 or σ = 2). Because of the lower bound on ǫ, this solution prefers the

limiting values σ ∼ 0, σ ∼ 3 if extreme slow roll is to be realized.

When σ ≥ 3, α0 and ν0 have opposite sign and |ν0| ≫ |α0|. This case is excluded
by the above considerations on inverse-volume operators, which require α0 and

ν0 to be both positive.

If ϕq0 = 0, equations (4.17) and (4.18) are solved for

α0 =
ǫ

3
ν0 , σ = 3− ǫ , V = Vc . (4.26)

This solution has ν0 ≫ α0 and 2 < σ < 3. For a given background, ǫ is constant

per (4.15); a relation to the constant α0, ν0 and σ may thus be acceptable.

However, the required tuning of general quantization parameters to background

parameters makes this solution very special.

By construction and consistently, all these power-law solutions obey equation

(3.26). Their qualitative features are summarized in table 1.

• The last exact power-law case we consider is de Sitter, n = −1, whose classical

solution is ϕc = const. There we cannot use equation (4.16) because the

potential (4.16) was derived using (4.13) which is ill-defined for n = −1. From

equation (4.10) we simply obtain Vq = −α0Vc. Since Vq = V,ϕ(ϕc)ϕq, this

implies that ϕq is constant. But δPl(a) is not constant, so that ϕ is not constant

and V (ϕ) can be reconstructed from the evolution. Combining (4.1) and (4.6),

we find

V (ϕ) = Vc(1− α0δPl) = Vc + V,ϕ c(ϕ− ϕc) . (4.27)
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ϕ σ α0, ν0
σ = 0 α0 = ν0

ϕc(t) + ϕq0δPl 0 < σ < 3 α0, ν0 > 0 if ǫ > σ(3−σ)
6

σ ≥ 3 sgn(α0) = −sgn(ν0), |ν0| ≫ |α0|
ϕc(t) 2 < σ . 3 α0 =

ǫ
3
ν0 ≪ ν0

Table 1: Inflationary power-law solutions a = |τ |n with 0 < ǫ = 1 + 1/n < 1 and

exponential potential. ϕc(t) and ϕq0 are given by equations (4.13) and (4.19), respectively.

Equation (4.11) becomes σ(σ−3)τ−2ϕq0+a2m2ϕq0 = 0, where m2 ≡ V,ϕϕ(ϕc).

The reconstructed potential above is linear in ϕ, so m2 = 0. If ϕq0 6= 0, this

implies that either σ = 0 or σ = 3.

In the next section we will find that not all of these solutions will be compatible

with a certain consistency relation on quantum counterterms. We have not shown

that the above solutions are attractors in configuration space, a necessary condition

for adopting them as valid backgrounds. In the next section we will assume this

is the case, since in the quasi-classical regime the dynamics is very close to general

relativity. Anyway, the structure of perturbation equations and observables does not

change qualitatively if one expands about a more general quasi-de Sitter solution.

Also, setting a = ac as in equation (4.12) will not result in any loss of generality

in solving the Mukhanov equation. Since the coefficients in the second equation (4.3)

will depend only on Hc, the structure of the quantum corrections in the solution will

be always the same, regardless of Hq. However, here we see a possible drawback of

assuming an exact power-law expansion, equation (4.12): these background solutions

constrain the range of σ, α0, and ν0, and from this analysis it is not obvious whether

more general, quasi-power-law backgrounds will admit a different parameter space.

We will leave also this question to future investigations. For the time being, we show

that there exist quasi-power-law expansions as exact solutions and we briefly sketch

a profile corresponding to a perturbed de Sitter background, ac = −1/τ = Hc and

aq 6= 0. Assuming that ϕq = ϕq0, Vq = const, equation (4.11) yields, as before, either

ϕq0 = 0 or m2 = σ(3− σ), while equation (4.10) becomes

a′q +

(

1 + σ

τ
− 8πG

3
Vc

)

aq −
4πG

3

α0Vc + Vq

τ 2
≡ a′q +

(

1 + σ

τ
− b1

)

aq −
b2
τ 2

= 0 .

(4.28)

The solution is

aq(t) =
eb1τ

τ

[a0
τσ

− b2E1−σ(b1τ)
]

, (4.29)

where E is the exponential integral function. For b1 > 0 and integer σ > 0,

aq =
a0e

b1τ + Pol[O(τσ−1)]

τσ+1
.
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The last term, a polynomial of degree σ − 1, dominates at early times (τ → −∞)

and aq ∼ |τ |−2, while at late times (τ → 0) one has aq ∼ |τ |−1−σ.

When σ = 0, at early times E1(b2τ) ∼ e−b2τ/(b2τ) and aq ∼ |τ |−2, while at late

times E1(b2τ) ∼ − ln |τ | and aq ∼ ln |τ |/|τ |.

5. Scalar perturbations

5.1 Counterterms

As mentioned in the introduction, the corrected perturbed equations feature coun-

terterms proportional to δPl in addition to the primary correction functions α and ν,

which guarantee consistency of the constraint algebra at O(δPl) order. Consistency

in a given scheme then uniquely relates the counterterms, which all vanish classically,

to the primary correction functions, but also restricts the range of parameters in α

and ν. Before using the counterterms in perturbation equations, we evaluate these

consistency conditions in relation with table 1. In the following, we shall rewrite

the counterterms and equations of motion of [6] according to the δPl-expansion. To

keep notation light, background quantities will not be denoted with bars as in [6].

Also, contrary to this reference we shall expand all intermediate expressions to linear

order in counterterms (for instance, (1 + f)(1 + h) = 1+ f + h+O(δ2Pl), and so on).

Explicitly, the counterterms are

f =
1

σ

d lnα

d ln p

= −α0

2
δPl , (5.1)

f1 = f − 1

3

d ln ν

d ln p

=
1

2

(σν0
3

− α0

)

δPl, (5.2)

h = 2
d lnα

d ln p
− f

= α0

(

1

2
− σ

)

δPl , (5.3)

and

g1 =
1

3

d lnα

d ln p
− d ln ν

d ln p
+

2

9

d2 ln ν

d ln p2
(5.4)

=
σ

2

(σν0
9

+ ν0 −
α0

3

)

δPl,

f3 = f1 − g1 (5.5)

=
1

2

[

α0

(σ

3
− 1

)

− 2σν0
3

(σ

6
+ 1

)

]

δPl .
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There is also the extra consistency condition

2
df3
d ln p

+ 3(f3 − f) = 0 ,

which makes some of the parameters dependent:

α0

(σ

6
− 1

)

− ν0

(σ

6
+ 1

)(σ

3
− 1

)

= 0 , (5.6)

so that

g1 =
[

ν0

(σ

3
+ 1

)

− α0

]

δPl , (5.7)

f3 =
[α0

2
− ν0

(σ

6
+ 1

)]

δPl (5.8)

=
1

2

3α0

σ − 3
δPl , (5.9)

the last expression being valid only if σ 6= 3.

It is interesting to notice that, for the second but not last time, the minisuper-

space and first lattice parametrization (3.13)–(3.15) show an incompatibility with

independent results: in these parametrizations, equation (5.6) is never respected.

However, with the new range (3.20) for σ, the equation can easily be satisfied by the

solutions of table 1. Let us compare case by case with equation (5.6). The solution

in the first line of the table (equation (4.24)) is also an exact solution of (5.6). This is

the limiting case of the solution in the second line (equation (4.25)) for σ ≪ 1, giving

α0 ≈ ν0; for general values σ < 3 (e.g., x = 0 with m < 3 or x = −1/4 with m < 6)

solutions exist in this class for positive α0 and ν0, while α0 = 0 when σ = 3. The

solutions in the third line of table 1 are already excluded by the general constraint

α0, ν0 > 0.6 Finally, the last solution in the table, equation (4.26) combined with

(5.6), is non-trivial and inflationary only if σ = 3, but this collapses to de Sitter,

ǫ = 0. To summarize, our solutions will span the range

0 ≤ σ ≤ 3 , (5.10)

with preference to the extremum values if α0 and ν0 are positive. In fact, ǫ & 1/3

is not very small for 1 . σ . 2, which should lead to unviable deviations from scale

invariance.

6Even ignoring the constraint on the sign, these solutions would be inconsistent or trivial. For

3 < σ < 6, both (4.25) and (5.6) require α0 and ν0 to have opposite sign, but while |ν0| ≫ |α0| for
(4.25), equation (5.6) asks them to be of about the same magnitude. When σ = 6, a0 = 0 = ν0. If

σ > 6, equation (5.6) requires α0 and ν0 to have the same sign, in contrast with (4.25); so again

a0 = 0 = ν0.
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5.2 Scalar perturbation equations

An inhomogeneous perturbation δϕ in the scalar field induces two gauge-invariant

scalar modes Φ and Ψ in the metric, which are proportional to each other [6]:

Φ = (1 + h)Ψ . (5.11)

After solving the equations for Ψ, the expression for Φ will be readily obtained via

equation (5.11). The scalar-field perturbation and Ψ are related by the diffeomor-

phism constraint (equation (90) of [6])

4πG
α

ν
ϕ′δϕ = Ψ′ + (1 + f + h)HΨ . (5.12)

Using this equation, one can show that the perturbed equation for Ψ is7

Ψ′′ +HFΨ′ −
(

s2∆2 +m2
Ψ

)

Ψ = 0. (5.14)

The friction term is

F = 2

(

1− d lnα

d ln p

)

+ (1 + f + h) + 3(1 + f − f3)− 2

(

3− 2
d ln ν

d ln p

)

+ 2η

= 2η + σF0δPl, (5.15)

where

F0 ≡ ν0

(σ

6
− 1

)

− α0

2
. (5.16)

The (squared) propagation speed of the perturbation is

s2 = α2(1− f3) = 1 + χδPl , (5.17)

where

χ ≡ σν0
3

(σ

6
+ 1

)

+
α0

2

(

5− σ

3

)

. (5.18)

Finally, the effective mass term is

m2
Ψ = H2

[

2(ǫ− η)− 2
df

d ln p
+ 3

d lnα

d ln p
− 3(f − f3)− 4

d ln ν

d ln p

+ǫ

(

1

3

d ln ν

d ln p
+ f1 + f + 2h

)

− 2(f + h)η − h′

H

]

= H2 [2(ǫ− η)− σµΨδPl] , (5.19)

7This is obtained by combining our equations (5.11) and (5.12) with equation (82) of [6]. In

equation (82) one should correct the typographical error ᾱ2∆Φ → ᾱ2∆Ψ [47]:

α2∆Ψ− 3H(1 + f)[Ψ′ + (1 + f + h)HΨ] = 4πG
α

ν
(1 + f3)

[

ϕ′δϕ′ − ϕ′2(1 + f1 + h)Ψ + νpV,ϕδϕ
]

,

(5.13)

where ∆ is the Laplacian in comoving spatial coordinates. Also, in equation (91) of [6] one must re-

place ᾱ2(1+h)∆Ψ with ᾱ2∆Ψ. Unfortunately, this typo propagated in some of the other equations,

so our results supersede those of [6] when in disagreement.
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where

µΨ ≡ [2(ǫ− η) + (1 + σ)]α0 + ν0

(σ

6
− 1

)

. (5.20)

Taking equation (84) of [6], expanding it to leading order in quantum corrections,

and making use of equations (3.30), (3.31), and (5.11), one obtains the perturbed

Klein–Gordon equation for the gauge-invariant perturbation δϕ:

δϕ′′ + 2HB1δϕ
′ − (s2∆2 − νpV,ϕϕ)δϕ− B2ϕ

′Ψ′ + 2B3Hϕ′Ψ = 0 , (5.21)

where

B1 = 1− d ln ν

d ln p
− dg1

d ln p

= 1 +B10δPl, (5.22a)

B2 = 4 + f1 + h+ 3g1

= 4 +B20δPl, (5.22b)

B3 = (1 + f1 + h)
νpV,ϕ

Hϕ′
− dh

d ln p
− df3

d ln p

= η − 3 +B30δPl, (5.22c)

and

B10 ≡ σ
[

ν0

(σ

6
+ 1

)

− α0

2

]

, (5.22d)

B20 ≡ σ

2

(

σν0
3

+
10ν0
3

− 3α0

)

, (5.22e)

B30 ≡ σ
[(ν0

6
− α0

)

η − ν0

( σ

12
+ 2

)

+
α0

2
(7− σ)

]

. (5.22f)

Before proceeding, we notice a potentially serious problem. In order to avoid

superluminal propagation of signals, one should impose

s2 < α2 , (5.23)

where we used the fact that photons propagate with speed α greater than the classical

one [8]. Then, it should be f3 > 0. For this to happen, we can have:

• 0 ≤ σ < 3: equation (5.9) imposes α0 < 0.

• σ = 3: equations (5.5) and (5.6) impose, respectively, ν0 < 0 and α0 = 0.

• 3 < σ < 6: equation (5.6) imposes α0 and ν0 to have opposite sign.

• σ = 6: equations (5.9) and (5.6) impose, respectively, α0 > 0 and ν0 = 0; this

case is allowed.

• σ > 6: this case, too, is allowed, with both α0 and ν0 strictly positive.
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Unfortunately, for non-negative and α0 and ν0, f3 is negative unless σ be large

enough, and this condition is hardly compatible with inflation; see table 1. (In [47],

the values of parameters given for subluminal evolution correspond to the case σ > 6

here.)

To check whether superluminal propagation is an artifact of linear perturbation

theory or of the expansion in δPl, one should go beyond linear order in both expan-

sions. The covariant formalism of non-linear perturbation theory could be a useful

tool for analyzing the consistency of the effective constraint algebra. A possibility

is that holonomy corrections, which we have ignored, would play an important role

in this issue, which we shall put aside in this paper. However, even if this were the

case in some regimes, one can always find initial conditions so as to have dominant

inverse-volume corrections; thus, superluminal velocities might constitute a concep-

tual problem with implications for the stability of the theory as a whole. On the

other hand, we note that inflationary models based on superluminally propagating

fields have been consistently formulated [48]. The case of superluminal motion found

here therefore does not necessarily mean a severe problem.

We reemphasize the importance of equation (5.6) and of the counterterms it

comes from. It rules out the minisuperspace-related parametrizations and severely

restricts the lattice one. In this way, consistency alone already subjects the theory

to strict tests even before evaluating the phenomenology, to which we turn now.

5.3 Conservation of curvature perturbation

The gauge-invariant linear comoving curvature perturbation is [6]

R = Ψ+
H
ϕ′
(1 + f − f1) δϕ (5.24)

= Ψ +
H
ϕ′

(

1− σν0
6

δPl

)

δϕ . (5.25)

In the absence of counterterms, conservation of the energy-momentum tensor implies

that R is constant at large scales [41]. One may ask if this result, which is not

obvious in Hamiltonian formalism and for equation (5.24), holds also in semi-classical

LQC. To check it, we invert equation (5.13) with respect to δϕ′ and employ (5.12).

Differentiating R with respect to conformal time, we obtain

R′ = (αν + f − f1 − f3)
H

4πGϕ′2
∆Ψ+ Cδϕ ,

where

C = 4πG
α

ν
ϕ′ +

H2

ϕ′

[

f ′ − f ′
1

H − (1 + f − f1)

(

ǫ+ 2
d ln ν

d ln p
+ 3f − 3f3

)]

=
H2

ϕ′

[

f ′ − f ′
1

H +
d lnα

d ln p
+

(

1

3

d ln ν

d ln p
− f + f1

)

ǫ− 2
d ln ν

d ln p
− 3(f − f3)

]

= 0 . (5.26)
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Here, after using (3.26), the prefactor of the parameter ǫ (which we are not assuming

to be small) vanishes by virtue of equation (5.2), which also implies (f ′ − f ′
1)/H =

(2/3)d2 ln ν/d ln p2. Together with f −f3 = −(2/3)d ln ν/d ln p+(1/3)d lnα/d ln p+

(2/9)d2 ln ν/d ln p2 from (5.5) and (5.4), all terms are zero. The resulting conserva-

tion of power is consistent with the picture of an effective perturbed FRW geometry

that models the dynamics of a nearly isotropic universe in the presence of correc-

tions from loop quantum gravity. Quantum-geometry corrections from this theory,

with the perturbation equations used here, have been shown to deform not just the

dynamics but also the underlying spacetime structure, inferred by an analysis of

the algebra of constraints. The gauge transformations they generate no longer cor-

respond to pure coordinate transformations because they do not obey strictly the

classical algebra of spacetime deformations. As a consequence, classical results about

the conservation of power may no longer apply. As seen here, the linear curvature

perturbation is nevertheless conserved on large scales. This observation demonstrates

that perturbations in the presence of quantum corrections can still be seen as those

of an effective line element: The large-scale curvature perturbation of an FRW line

element in conformal time amounts simply to a spatially constant rescaling of the

scale factor, which should not be subject to non-trivial dynamics. By being con-

served also in the presence of quantum corrections, the interpretation of the effective

geometry as a line element is still meaningful.

The result (5.26) is due to the delicate cancellations between counterterms.

Therefore,

R′ =
[

1 +
(α0

2
+ 2ν0

)

δPl

] H
4πGϕ′2

∆Ψ , (5.27)

and the curvature perturbation is conserved at large scales.

5.4 Mukhanov equation

Conservation of R strongly suggests that one can write a simple Mukhanov equation

in the variable

u = zR , (5.28)

where z is some background function. We can anticipate the main result with a

very efficient trick, and then confirm it via a standard but tedious calculation. The

trick is to notice that, at super-horizon scales, the comoving curvature perturbation

is approximately constant, so that u′′ ≈ z′′R and

u′′ − z′′

z
u ≈ 0 .

The objective now is to find this friction-free Mukhanov equation from the perturbed

equations of motion. Start from equation (5.21) and choose for simplicity a spatially
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flat slice where Ψ ≈ 0. In order to remove the friction term, we need to define a field

u = a(1− βδPl)δϕ, where β = B10/σ. Then,

u′′

1− βδPl
= δϕ′′ + 2H(1 +B10δPl)δϕ

′ + . . . .

Comparing with the Mukhanov variable (5.28) and equation (5.25), one finds

z ≡ aϕ′

H
[

1 +
(σν0

6
− β

)

δPl

]

=
aϕ′

H
[

1 +
(α0

2
− ν0

)

δPl

]

. (5.29)

The only missing term in the Mukhanov equation is the Laplacian, with coefficient

s2 as an inspection of equation (5.21) immediately shows. Thus we obtain

u′′ −
(

s2∆+
z′′

z

)

u = 0 , (5.30)

a result valid exactly at all scales and at the linear perturbative level. The rigor-

ous calculation begins with the Mukhanov variable (5.28) and equation (5.29) with

unknown β. Differentiating u twice, using equations (5.14) and (5.21), and using

equation (5.12) to develop the Ψ′ term, we obtain equation (5.30) plus just one extra

term:

u′′ =

(

s2∆+
z′′

z

)

u+2σHδPl

[

ν0

(σ

6
+ 1

)

− α0

2
− β

]

(HzΨ− ηHaδϕ− aδϕ′)+O(δ2Pl) .

The extra term vanishes if β is chosen as above.

It may seem that equation (5.30) is not covariant since only the spatial-derivative

term is corrected. However, despite appearance this is not the case: The quantum-

corrected equations of motion correspond to a deformed algebra of constraints as

found in [9], and the constraints determine what form gauge transformations take.

In general relativity, the gauge transformations are spacetime diffeomorphisms or

changes of coordinates whose classical form implements the usual notion of covari-

ance. With corrected constraints obeying a deformed algebra, the gauge transforma-

tions are not of the classical form, and they do not correspond to the usual notion

of coordinate changes. Even though the underlying structure of a ‘quantum man-

ifold’ (perhaps non-commutative) on which the modified transformations could be

interpreted as simple coordinate changes is unknown, the (generalized) covariance of

(5.30) under these deformed transformations is guaranteed by the derivation of the

equations of motion used here from an anomaly-free set of constraints.

It is quite remarkable that scalar perturbations are ultimately governed by such a

simple equation as (5.30). However, the existence of one Mukhanov variable obeying

one equation in closed form is not unexpected, as it could have been inferred by us-

ing the Hamilton–Jacobi method for constrained Hamiltonian systems developed in

[49, 50]. In particular, the reduced phase space obtained after solving the constraints
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and factoring out their gauge flows has one local degree of freedom, parametrized by

the curvature perturbation and its conjugate momentum. There must be a closed

form for the dynamics on this reduced phase space, such that Hamiltonian first-order

equations of motion exist involving only R and its momentum, and they are linear

thanks to the linear perturbation scheme used. As always, first-order Hamiltonian

equations of motion can be expressed as one second-order equation for the config-

uration variable, here R. The second-order equation in general may have terms

involving R′′, R′, as well as R, which on large scales is an ordinary differential equa-

tion with gradient-free coefficients (in momentum space, they are independent of the

wave number k defined below). Thus, one may eliminate the last term involving R
by substituting yR for R for a suitable background function y, and a constant mode

for yR results. As a consequence, there must be a conserved quantity yR whose ex-

istence can be seen without any detailed calculations. Details are required to derive

the form of y, and the non-trivial result found here is that y = 1.

From now on we expand linear perturbations in momentum space, a subscript

k indicating modes with comoving wavelength 2π/k. The Laplacian becomes ∆ →
−k2, and the Mukhanov equation

u′′
k +

(

s2k2 − z′′

z

)

uk = 0 . (5.31)

The effective mass term is a combination of slow-roll parameters and quantum cor-

rections. In fact,

z′

z
= H(1 + ǫ− η) + σ

(

ν0 −
α0

2

)

HδPl , (5.32)

z′′

z
= H2

(

2 + 2ǫ− 3η − 4ǫη + 2ǫ2 + η2 + ξ2 − σµuδPl
)

, (5.33)

µu ≡ 3α0

2
+ ν0(σ − 3) +

(

5α0

2
+

σν0
6

− 2ν0

)

ǫ+ 2(ν0 − α0)η . (5.34)

When the slow-roll parameters are constant classically, as in any of the solutions of

section 4, one has

z′′

z
=

4µ2
1 − 1 + 4µ2δPl

4τ 2
, (5.35)

where

µ1 =
1

2
− n , µ2 = σn2

[

σ(4n− σn+ 1)
ϕq0

ϕ0
− µu

]

. (5.36)

An exact solution of the Mukhanov equation does exist but it is too complicated and

not very instructive. We proceed to solve this equation asymptotically.
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5.5 Asymptotic solutions

The moment of horizon crossing is, as usual, defined when the effective mass term

equals the Laplacian term. Up to numerical factors, this happens when

k|τ | = 1 , (5.37)

as in standard inflation. Super-horizon modes are characterized by k|τ | ≪ 1, while

modes well inside the horizon have k|τ | ≫ 1. At large scales, we can ignore the k2

term in equation (5.31), so that

uk
k|τ |≪1∼ C(k)z , (5.38)

where C(k) is a normalization constant. To determine it, we must find the asymptotic

behaviour of u at small scales. There, one can ignore the mass term and consider

the equation

u′′
k + (1 + χδPl)k

2uk ≈ 0 . (5.39)

Since all the analysis is valid only at first order in the quantum corrections, it is

consistent to look for short-wavelength solutions of the form

uk≫H(τ) = uc(k, τ)[1 + y(k, τ)δPl] , (5.40)

where uc is the solution of the classical Mukhanov equation and y is some function. In

particular, the only choice compatible with the Bunch–Davies vacuum in the infinite

past is an incoming plane wave,

uc =
e−ikτ

√
2k

. (5.41)

The normalization here is the classical one, which one might have to change for a

vacuum matter state in a quantum geometry. In particular, the correction function

ν multiplies the kinetic term of the scalar Hamiltonian, and thus affects the value of

vacuum fluctuations. By the ansatz (5.40), all these effects will be included once the

equation of motion for y is solved.

Plugging the ansatz (5.40) into (5.39) we obtain an inhomogeneous equation for

the function y:

y′′ − 2(σH + ik)y′ + 2ikσHy + χk2 = 0 , (5.42)

where, for consistency, we have dropped the mass term σH2(σ + ǫ − 1)y. At this

point we expand y in a power series,

y =

+∞
∑

m=0

ymτ
m , (5.43)
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and we pick a power-law background, H = n/τ . Then, equation (5.42) is

0 = 2σn(iky0 − y1)
1

τ
+ [2ik(σn− 1)y1 + 2(1− 2σn)y2 + χk2]

+

+∞
∑

m=2

[2ik(σn−m)ym − (m+ 1)(2σn−m)ym+1]τ
m−1 . (5.44)

These terms must vanish order by order separately. If σ = 0, then y0 is unconstrained,

while y1 = −i(y2/k + kχ/2) and ym = 2(2ik)m−2y2/m! for all m ≥ 2. Summing the

series, one obtains

y = y0 − i

(

y2
k

+
kχ

2

)

τ +
y2
2k2

(

1 + 2ikτ − e2ikτ
)

=
(

y0 +
y2
2k2

)

− ikχ

2
τ − y2

2k2
e2ikτ .

We can argue that y2 = 0 because otherwise u in equation (5.40) would contain also

an outgoing mode e+ikτ . If σ 6= 0, one obtains the following conditions:

y1 = iky0 , (5.45)

y2 =
k2

2(2σn− 1)
[χ− 2(σn− 1)y0] , (5.46)

ym+1 =
2ik(σn−m)

(m+ 1)(2σn−m)
ym . (5.47)

The recursive relation would determine the sum of the series (5.43), but analytic

continuation to the case σ = 0 requires ym = 0 for m ≥ 2. This fixes both y0 and y1
and the result is

y =
χ

2(σn− 1)
(1 + ikτ) . (5.48)

The normalization of equation (5.38) is thus obtained by imposing the junction con-

dition |uk≫H| = |uk≪H| at horizon crossing. Then,

|uk≪H|2 =
1

2k

[

1 +
χ

σn− 1
δPl(k)

] [

z

z(k)

]2

, (5.49)

where z(k) = z(τ = −1/k) and δPl(k) = δPl(τ = −1/k) ∝ knσ.

5.6 Scalar spectrum, spectral index and running

The scalar spectrum is defined as the two-point correlation function of the curvature

perturbation R over a momentum ensemble at large scales, evaluated at horizon

crossing:

Ps ≡
k3

2π2z2
〈

|uk≪H|2
〉

∣

∣

∣

k|τ |=1
. (5.50)
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The scalar spectral index is defined as

ns − 1 ≡ d lnPs

d ln k
. (5.51)

For a power-law background, we have

Ps(k) =
G

π
k2(1+n)

[

1 +

(

χ

σn− 1
− α0 + 2ν0 + 2σn

ϕq0

ϕ0

)

δPl

]

, (5.52)

ns − 1 = 2(1 + n) + σn

(

χ

σn− 1
− α0 + 2ν0 + 2σn

ϕq0

ϕ0

)

δPl . (5.53)

We can obtain more portable expressions by writing the spectrum on a general quasi-

de Sitter background. Since, using (3.26),

z2 =
a2

4πG

{

ǫ−
[

ν0

(σ

6
+ 1

)

ǫ+
σα0

2

]

δPl

}

,

we get

Ps =
G

π

H2

a2ǫ
(1 + γsδPl) , (5.54)

where we used k = H and

γs ≡ ν0

(σ

6
+ 1

)

+
σα0

2ǫ
− χ

σ + 1
. (5.55)

Notice that if σ = 0, the quantum correction is constant and the only change with

respect to the classical case is the normalization of the spectrum. In that case,

γs = ν0 − 5α0/2 could be of either sign. If γs 6= 0, there is a large-scale enhancement

of power because δPl ∼ a−σ ∼ (1/|τ |)−σ ∼ k−σ at horizon crossing. The magnitude of

the effect depends on the value of γs but we notice that, if σ 6= 0, γs ∼ 3α0/(2ǫ) unless

ν0 ∼ α0/ǫ ≫ α0. Therefore, one could obtain a sizable enhancement unless α0 .

O(ǫ) (which is the case, typically). Since this enhancement is of potential interest

for comparisons with observations, we trace back where the inverse of the slow-roll

parameter in the expression for γs came from. It arises due to the ǫ-independent

term in z2 above, which in turn is a direct consequence of the presence of gravity

corrections in the Raychaudhuri equation (3.3), as opposed to just stress-energy

modifications. As with several other key phenomena pointed out here, this feature

is a consequence of corrections to the structure of spacetime geometry: corrections

in the terms H′, H2 of the Raychaudhuri equation (or the isotropic Einstein tensor)

can be obtained only by changing the geometrical form of gravity.

Momentum derivatives are converted into conformal time derivatives via

d

d ln k
≈ 1

H
d

dτ
,
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so that the scalar index is

ns − 1 = 2η − 4ǫ+ σγns
δPl , (5.56)

where

γns
≡ ǫ̃

ǫ
− α0

(

1− η

ǫ

)

− γs = α0 − 2ν0 +
χ

σ + 1
. (5.57)

Since the quantum correction is small, the scalar index does not deviate too much

from scale invariance. If σ = 0, there are no corrections at all. If σ 6= 0, the sign of

the correction depends on the choice of the parameters in the parameter space. We

have seen that power-law/quasi de Sitter solutions have σ . 3, so it is immediate

to associate scale invariance with small values of σ. The naturalness of this range is

further stressed in the concluding section by an independent argument.

Interestingly, the running of the spectral index is dominated by the quantum

correction (unless σ = 0):

αs ≡
dns

d ln k
(5.58)

= 2(5ǫη − 4ǫ2 − ξ2) + σ(4ǫ̃− σγns
)δPl ∼ δPl . (5.59)

This result signals a qualitative departure from classical inflation, since the quan-

tum correction may be larger than O(ǫ2). The details will depend on the chosen

background, as the slow-roll parameter themselves can contain quantum corrections.

6. Tensor perturbations

The linearized equation of motion for tensor modes has been computed in [8] and

solved in [11] for quasi-classical inverse volume corrections. In this section we re-

view and improve these results, eventually obtaining the cosmological consistency

relations.

6.1 Mukhanov equation

When only inverse-volume corrections are taken into account and in the absence of

anisotropic stress, the equation of motion for the individual tensor mode hk is [8]

h′′
k + 2H

(

1− d lnα

d ln p

)

h′
k + α2k2hk = 0 . (6.1)

Defining

wk ≡ ãhk , ã ≡ a
(

1− α0

2
δPl

)

, (6.2)
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we get the Mukhanov equation

w′′
k +

(

α2k2 − ã′′

ã

)

wk = 0 , (6.3)

where

ã′

ã
= H

(

1 +
σα0

2
δPl

)

, (6.4)

ã′′

ã
= H2

[

2− ǫ+ (3− σ − ǫ)
σα0

2
δPl

]

. (6.5)

Equation (6.3) is formally identical to the scalar Mukhanov equation and the analysis

is exactly the same up to the substitutions

z → ã , χ → 2α0 .

The final result is the analogue of equation (5.49),

|wk≪H|2 =
1

2k

[

1 +
2α0

σn− 1
δPl(k)

] [

ã

ã(k)

]2

. (6.6)

6.2 Tensor spectrum, spectral index and running

The tensor spectrum is

Pt ≡
32G

π

k3

ã2
〈

|wk≪H|2
〉
∣

∣

k|τ |=1
, (6.7)

so that in de Sitter (n = −1)

Pt ≡
16G

π

H2

a2
(1 + γtδPl) , (6.8)

where

γt ≡
σ − 1

σ + 1
α0 . (6.9)

As for the scalar spectrum, barring special values of the parameters (γt = 0 when

σ = 1 or α0 = 0) there is a power enhancement at large scales because of δPl ∼
k−σ, albeit the prefactor might not be as large as in equation (5.55). This type of

enhancement has been seen in earlier numerical studies of the LQC tensor power

spectrum, but it is difficult to exploit it observationally due to limitations by cosmic

variance.

The tensor index and its running are

nt ≡
d lnPt

d ln k
, αt ≡

dnt

d ln k
, (6.10)
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so that

nt = −2ǫ− σγtδPl , (6.11)

and

αt = −4ǫ(ǫ− η) + σ(2ǫ̃+ σγt)δPl . (6.12)

6.3 Tensor-to-scalar ratio

The last piece of information we want to extract is the tensor-to-scalar ratio

r ≡ Pt

Ps

. (6.13)

From equations (5.54) and (6.8) one obtains

r = 16ǫ[1 + (γt − γs)δPl] , (6.14)

which yields the consistency relation

r = −8{nt + [nt(γt − γs) + σγt]δPl} . (6.15)

Here we implicitly assumed that γs is not too large, so that the expansion in δPl is

still meaningful. In quasi de Sitter regime ǫ ≪ 1, so that γs = O(1) if σα0 ∼ O(ǫ).

This means that either σ or α0 or both should be small.

Unless σ = 0 or σ = 1 (for which γt = 0), the tensor-to-scalar ratio is no longer

proportional to the tensor index. Detection of a non-zero r would require either

a consistent deviation from de Sitter in standard cosmology or a sufficiently large

quantum correction in de Sitter LQC.

As already explained for (5.30), equations (5.31) and (6.3) are covariant under the

deformed transformations generated by the anomaly-free set of corrected constraints.

The deformation gives rise to a new type of quantum effects which could not be

present for higher-curvature effective actions usually expected of quantum gravity; it

is possible only thanks to quantum corrections to the geometry of space or even the

manifold structure. The Mukhanov equations for scalar and tensor modes are not

only corrected, they also acquire corrections of different forms. The scalar equations

has a correction given by s2 = α2(1 − f3), while the tensor equation is corrected by

α2. The counterterm f3 cannot typically be set to zero, and so the corrections for

scalar and tensor modes differ. This difference, in turn, makes possible changes to

the tensor-to-scalar ratio which may provide a key signature of loop quantum gravity.
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7. Discussion

As long as the slow-roll approximation is valid, the structure of the cosmological

observables found above is valid for any background, although the coefficients of the

quantum corrections themselves do depend on the background. In this final section

we discuss how they can be used to restrict models of loop quantum cosmology, mak-

ing the framework falsifiable. Details will be provided in a separate publication [51].

For such an endeavor, it is crucial to obtain independent information on the main cor-

rection parameter δPl and on different versions of the parametrization. For instance,

as seen in section 3.1.3, a combination with holonomy corrections is interesting and

shows a powerful interplay between these main two types of quantum-geometry cor-

rections.

If inflation is assumed, the minisuperspace parametrization is under tight pres-

sure: neither consistent power-law background solutions nor a nearly scale-free spec-

trum can be found in that case (unless δPl be very small; see below). On the other

hand, the minisuperspace parametrization may still be viable if an alternative sce-

nario of structure formation can be found. In this context, holonomy corrections are

of particular interest not only by providing an additional consistency condition in

combination with inverse-volume corrections, but also because they can easily trig-

ger bounces at least in isotropic models whose matter energy is dominated by the

kinetic term. (In general, it has not been shown that isotropic bounces occur as a

natural consequence of holonomy corrections.) It would thus be of interest to de-

velop linear perturbation equations around those models and analyze the structure

evolution through the bounce, or perhaps new scenarios providing the generation

of structure during a phase before (not after) the big bang. However, compared to

inverse-triad corrections such ideas are currently hampered by several major diffi-

culties: (i) Holonomy corrections have so far not been implemented in consistent

deformations of linear perturbation equations. (ii) Strong quantum-geometry cor-

rections are required to evolve through the bounce; no expansion in parameters such

as δPl used here could be done. (iii) There are several indications as to the strong

sensitivity of evolution through the bounce to initial conditions of perturbations [52]

or even the quantum state [53], discussed in the context of cosmic forgetfulness.

The lattice parametrization is consistent with inflation and holonomy corrections

at the homogeneous level and could yield strong effects according to section 3.1.3

because σ can be small, but that again depends on the details of δPl. We have seen

that δPl is an eigenfunction of the operator d/d ln k with eigenvalue−σ, so observables

of higher order in the slow-roll parameters (e.g., the index running) are corrected by

a term which is always of the form O(σn)δPl: it is first-order in δPl and n-th order in

σ. If σ = O(1), this quantum correction is equally important at any slow-roll order,

if not increasing with the order. This situation does not seem natural inasmuch as it

would imply that higher-order k derivatives of the inflationary spectra are all on the
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same footing. Then, the notion that the spectra can be approximated by a power law

would have to be abandoned. On the other hand, if σ ≪ 1 the quantum correction

is suppressed by higher and higher powers of σ, so there is a sort of balancing effect

which keeps O(σn)δPl small at all orders in the slow-roll parameters. This leads to

the speculation that small values of σ are more sensible, because for large σ quantum

corrections would dominate in higher-order observables.

With σ ≪ 1 preferred, inverse-volume corrections are of the form 1 + cp−σ/2

with a small exponent σ. They affect not only the equations for an expanding uni-

verse but also the dispersion relations of waves propagating in a quantum spacetime.

Corrections for these equations are more difficult to derive because the situation is

not as symmetric as the one of perturbations of an isotropic spacetime. But if they

turned out to be of a similar form (δPl with small exponent σ) for a variable related

to the particle’s energy, severe observational pressure could be put on loop quantum

gravity by a combination of cosmological and astroparticle observations.

The first-order cosmological observables already give a wealth of information

about the early universe but it is natural to ask oneself what happens at second order,

e.g., when looking at the trispectrum and possible non-Gaussian signatures. Posed in

LQC, this question is less harmless than in classical general relativity. In fact, when

going to higher orders in perturbation theory one would get more parameters initially,

because there are more options for counterterms. The counterterms would then be

fixed by consistency conditions. This would not necessarily add extra conditions for

the parameters arising at lower orders, but something like this might happen. We

do not know yet whether loop quantum gravity as a whole is consistent, so at some

point parameters might be overconstrained. If that were the case, at least in LQC,

one would have to understand if a non-perturbative cancellation of anomalies (which

one did not see at the perturbative level) takes place. Therefore, an extension of our

results to a second-order analysis would be most welcome not only for the purpose

of finding the trispectrum, but also in order to further check the self-consistency of

the theory.

Before we conclude, we emphasize that we have considered in detail only one type

of corrections (inverse-volume) and no complete set of effective equations implement-

ing all the effects expected from loop quantum gravity. Even so, the conclusions we

draw are reliable because they point out characteristic phenomena from the correc-

tions considered. An elimination of these effects by including other phenomena (most

importantly, those due to holonomies) can be expected only under very fine-tuned

conditions. The equations provided here can thus be used to place bounds on the

free parameters of loop quantum gravity, and to rule out some parametrizations as

extensively done in this paper. In all these cases, we see the importance of sufficiently

general parametrizations for models to be able to stand up to phenomenological pres-

sure; conceptual preferences or ‘natural’ choices of parameters may not always be

the ones that survive stringent analysis. As our examples demonstrate, it is impor-
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tant to combine constraints from different sources. For instance, the minisuperspace

parametrization is ruled out by (i) the consistency condition provided by anomaly-

freedom, (ii) the interplay of inverse-volume with holonomy corrections, and (iii) the

phenomenological requirement of a nearly scale-invariant spectrum. A single incon-

sistency could always be evaded by questioning the condition violated, especially in

a situation in which no tight derivations from an underlying full theory exist. But as

inconsistencies pile up, models should eventually be dropped. In this way, models of

loop quantum gravity and loop quantum cosmology are already falsifiable not just

by internal consistency considerations but also by comparison with observations.

Our results are interesting also because they highlighted a number of issues which

are definitely worthy of further attention:

• The consistency of the slow-roll background solutions, of the anomaly cancel-

lations, and of the physical observables only with respect to the second lattice

parametrization urges us to study the latter in greater detail. Such an en-

deavor requires a better understanding of the full theory and its reduction to

perturbations around isotropic models.

• Perturbations can propagate with superluminal speed. Either this is an artifact

of linear perturbation theory, is curable with a particular choice of the param-

eters, or may give rise to non-standard inflationary scenarios as in [48]. The

minisuperspace parametrization is safe as f3 > 0 in that case (large σ > 3),

while the lattice refinement parametrization with σ ≪ 1 requires α0 ≤ 0. This

observation may be the one putting the most severe constraints on the lattice

refinement parametrization, while the minisuperspace parametrization is under

much stronger pressure from other consistency conditions.

We believe that addressing these points and the mutual tension between different

parametrizations and the physical viability of the perturbations will stimulate the

advance in the field.
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