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1. Introduction

Flux compactifications occupy a substantial portion of the landscape of current string

theory research. Whether the aims are phenomenological or fundamental, the space-time

point of view has been most prominent. This is understandable, given the difficulties in

formulating a world-sheet approach suitable for general backgrounds of the type II string.

Heterotic flux compactifications have also been receiving a share of attention. That

such backgrounds exist was already clear based on string duality arguments presented some

time ago [1]. More recently, the supergravity equations for compactifications preserving

N = 1 super-Poincaré invariance in four dimensions, originally derived in [2], were solved [3]

in the context of a specific SU(3)-structure geometry proposed in [4].

The supergravity approach is powerful and elegant, especially when formulated in the

language of G-structures. For instance, it was systematically applied in [5] to classify

the necessary local geometric conditions for the preservation of various numbers of super-

charges in both type II and heterotic contexts. The world-sheet offers a complementary

approach, which is at least in principle more general: a sufficiently powerful string theorist

would simply study the abstract superconformal two-dimensional theory, with possible

geometric interpretations and supergravity limits emerging as simple corollaries of the

SCFT results. A less hypothetical being can start with a non-linear sigma model (NLSM)

description and attempt to systematically study conditions for conformal invariance. A

starting point for such explorations must be the proper identification of various world-

sheet (super)symmetries that should be preserved by the corrections.
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In the context of pertrubative heterotic strings, the requisite symmetries were identified

some time ago [6–8]. For instance, a necessary and sufficient condition for N = 1 SUSY

in d = 4 is for the (0,1) superconformal invariance of the heterotic string to be enhanced

to (0,2), with states carrying integral charges under the R-symmetry. When the SCFT

is realized as a NLSM, it is known that to one-loop order in α′ the conditions for (0,2)

invariance are indeed closely related to those obtained via supergravity analysis [2, 9, 10].

We will review the relation below.

This note is mainly concerned with an application of this idea in the context of N = 2

heterotic backgrounds, where the world-sheet theory must possess commuting (0,4) and

(0,2) SUSY algebras. Of course a product theory with target-space K3 × T 2 obviously

possesses such a structure. What is perhaps more surprising from the world-sheet point of

view is that there is a more general solution as well.

Assuming that such a background is represented by a NLSM with a smooth geometry,

and that the requisite symmetry of the SCFT is already identifiable in the Lagrangian, we

will show that the target-space X must be a T 2 bundle π : X → B over a base B = K3

equipped with a conformally hyper-Kähler metric. Moreover, the heterotic bundle data

consists of the pull-back of a stable holomorphic bundle Ê → B and a choice of commut-

ing Wilson lines for the T 2 directions. The data must satisfy the topological constraints

encoded in the heterotic Bianchi identity. These target-spaces are special cases of the man-

ifolds studied in [3, 4, 11–14] and are consistent with the supergravity classification results

of [5]. The assumption of a smooth geometry is crucial: additional theories can be con-

structed either as orbifolds of smooth geometries [15], or truly non-geometric theories [16].

The NLSM we construct is in general strongly coupled: the target-space necessarily

has string-scale cycles for any non-trivial choice of topological data satisfying anomaly can-

cellation conditions [17]. Strictly speaking, this means that neither supergravity nor the

NLSM offers a controlled approximation. Nevertheless, we may hope that the extended

space-time and world-sheet supersymmetries may give a sufficiently rigid structure to con-

strain possible quantum corrections. To make this hope into a tangible program, the first

step would be to develop a superspace formulation for theories with (0,2)+(0,4) world-sheet

supersymmetry. We leave this as an important open problem.

The lay-out of the article is as follows: in section 2 we review the connection between

N=1 spacetime and (0,2) world-sheet supersymmetries; in section 3 we consider the re-

quirements of N=2 space-time supersymmetry and solve them in the NLSM context. We

conclude with a discussion of our results in the context of heterotic compactifications, as

well as in the general setting of supersymmetric NLSMs.
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2. Warm-up with (0,2) supersymmetry

We will begin by reviewing some well-known material, with the aim of introducing some

notation and explaining our basic strategy.

A perturbative heterotic string compactification to four-dimensional Minkowski space

requires a choice of a (0,1) super-conformal theory with central charge (c, c) = (22, 9)

and a GSO projection consistent with modular invariance. In a large radius limit of the

compactification, if such a limit exists exists, the SCFT is well-approximated by a NLSM

with (0,1) supersymmetry. The field-content of such a theory is most conveniently presented

in (0,1) superspace. The details of this construction are well-known and may be found in,

for instance, [18].

Working with a world-sheet metric of signature (−,+), the superspace coordinates are

taken to be x−, x+, θ+. The superspace covariant derivative D and supercharge Q are given

by

D = ∂θ+ + iθ+∂+, Q = ∂θ+ − iθ+∂+ (2.1)

and satisfy the (0,1) SUSY algebra:

D2 = i∂+, Q2 = −i∂+, QD +DQ = 0. (2.2)

There are two natural types of superfield: the matter superfields Φ, containing the bosons

φµ(x), µ = 1, . . . , n, which locally describe the maps from the world-sheet to the target-

space manifold X of dimension n, as well as their super-partners ψµ+; and 2r Fermi super-

fields Λ, containing left-moving fermions λ−. The component expansions are:

Φ = φ+ θ+ψ+ Λ = λ− + θ+L

DΦ = ψ+ + iθ+∂+φ DΛ = L+ iθ+∂+λ−
QΦ = ψ+ − iθ+∂+φ QΛ = L− iθ+∂+λ−

(2.3)

It will be convenient to combine the left-moving multiplets into a single vector Λ.

2.1 A (0,1) heterotic NLSM

The classically scale-invariant (0,1) supersymmetric action for this field-content is given by

S =
1

4πα′

∫
d2x dθ+

[
−iEµν(Φ)DΦµ∂−Φν −ΛTDΛ

]
, (2.4)

where

Eµν(Φ) = gµν(Φ) +Bµν(Φ),

DΛ = DΛ +DΦµAµ(Φ)Λ. (2.5)
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It will be useful to have the action in components. We write

4πα′S =

∫
d2x [Lφ + Lλ] , (2.6)

and carrying out the component expansion find

Lφ = (gµν +Bµν)∂+φ
µ∂−φ

ν + igµνψ
µ
+(∂−ψ

ν
+ + ∂−φ

λ(Γνλρ + 1
2H

ν
λρ)ψ

ρ
+),

Lλ = iλT (∂+λ+ ∂+φ
µAµλ) + 1

2ψ
µψνλTFµνλ, (2.7)

with Γ being the usual Christoffel connection and

Hνρλ = Bνρ,λ +Bλν,ρ +Bρλ,ν ,

Fµν = Aν,µ −Aµ,ν + AµAν −AνAµ. (2.8)

Note that we work with anti-Hermititan generators for the gauge fields. The geometric

interpretation is now clear: the φµ describe the map from the world-sheet to the target-

space X, equipped with a metric g and a B-field B; the right-moving fermions are sections

of TX , coupled to the Christoffel connection twisted by H = dB; and the left-moving

fermions are sections of a vector bundle E → X equipped with a connection A with

curvature F . By construction, the theory has a (0,1) SUSY algebra with supercharge Q1

and right-moving momentum P ≡ −i∂+. The action on the component fields is simply1

Q1 · φµ = −iψµ, Q1 · ψµ = ∂+φ
µ, Q1 · λ = iψµAµλ. (2.9)

The algebra closes to Q2
1 = P when we impose the λ equations of motion in Q2

1 · λ.

This classical result receives important quantum corrections. The most basic of these

is the anomaly due to the presence of chiral fermions [9,10,19]: the path integral measure is

not well-defined unless the Pontryagin classes of TX and E are equal. When this topological

condition is obeyed, the anomalous transformation of the fermion measure may be cancelled

by a gauge transformation of the B-field. This is, of course, the world-sheet version of the

Green-Schwarz mechanism. For what follows, an important feature of this cancellation is

that in order to maintain supersymmetry at the one-loop level, the H-field appearing above

must be replaced by the gauge-invariant three-form2

H = dB +
α′

4
(ω3(A)− ω3(Γspin)) , (2.10)

where ω3(A) denotes the Chern-Simons form for the connection A, and Γspin is the spin

1We use the condensed notation Q1 · φ ≡ [Q1, φ], Q1 · ψ ≡ {Q1, ψ}, etc.
2There is an ambiguity in the choice of local counter-terms in defining the one-loop effective action; this

ambiguity translates into choices for the connections appearing in H [10, 19]. Compatibility with space-
time supersymmetry selects out a preferred connection, which leads to important simplifications in the
supergravity analysis. See [20,21] for recent discussion and applications.
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connection for the metric. The gauge-invariant H satisfies the familiar Bianchi identity

dH =
α′

4
(trF ∧F − trR ∧R) , (2.11)

where R is the curvature of the spin-connection. The resulting NLSM is difficult to study,

and not much is known about the general conditions for which it defines a non-trivial

SCFT.

2.2 Space-time and world-sheet supersymmetries

A heterotic NLSM is under much better control when it describes a background with

N = 1 space-time supersymmetry. The reason for this is that a heterotic SCFT describes

a (string) perturbative vacuum with N = 1 super-Poincaré invariance in d = 4 if and only

if the SCFT posseses (0,2) world-sheet superconformal symmetry, with the R-charges of all

states obeying certain integrality conditions [6] which ensure the existence of a well-defined

spectral flow operator.

While this result holds for an arbitrary SCFT, we will apply it in the case that the

CFT is realized as a heterotic NLSM. The simplest way that the CFT can acquire a (0,2)

supersymmetry is if the NLSM Lagrangian already realizes this symmetry. We will now

review how the requirement of (0,2) supersymmetry restricts the NLSM.

We seek a theory that realizes the (0,2) algebra given in terms of two supercharges

Q1, Q2, the R-symmetry charge R, and the right-moving translation generator P . The

non-trivial commutation relations are

[R,QA] = iεABQB, {QA,QB} = 2δABP . (2.12)

The (0,1) NLSM described above already provides us with a candidate Q1 and P . The

R-symmetry must be realized as a chiral action on the fermions ψ:

R · ψµ = −iJ µν (φ)ψν . (2.13)

Clearly R satisfies [R,P ] = 0. A short calculation [9, 10] shows that R-invariance of the

matter action requires the tensor J to be compatible with the metric and covariantly

constant with respect to the twisted connection ∇−:

0 = J νµ gνλ + J νλ gνµ,
0 = ∇−ν J

µ
λ = J µλ,ν + (Γµνρ − 1

2H
µ
ν ρ)J

ρ
λ − (Γρνλ −

1
2H

ρ
ν λ)J µρ . (2.14)

The Fermi action Lλ will be invariant under this R-symmetry if

J νµFνλ + FµνJ νλ = 0. (2.15)

When the target-space admits such a choice of background fields, we can use the commu-
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tation relations to obtain the second supersymmetry:

Q2 · φµ = i[Q1,R] · φµ = iJ µν ψν

Q2 · ψµ = i[Q1,R] · ψµ = J µν ∂+φ
ν + iJ µν,ρψνψρ,

Q2 · λ = i[Q1,R] · λ = −iψνJ µν Aµλ. (2.16)

We now want to determine whether the defined generators close to the (0,2) algebra. In

general, the algebra need only close up to the equations of motion; indeed, we already

observed this to be the case for the (0,1) algebra, where the λ equations needed to be

used. In the case of (0, q) supersymmetry the algebra must close on φ and ψ fields without

equations of motion. This is an important simplification.

Repeated use of the Jacobi identity shows that the generators will satisfy the (0, 2)

algebra if and only if Q1 = i[R,Q2]. Evaluating this on the fields, we find two conditions:

Q1 · φµ = i[R,Q2] · φµ =⇒ J 2 = −1,
Q1 · ψµ = i[R,Q2] · ψµ =⇒ N µ

λρ = 0, (2.17)

where

N µ
λρ = J µν,[ρJ

ν
λ] − 2J ν[λJ

µ
ρ],ν − J

µ
ν J ν[λ,ρ]. (2.18)

The first condition means that J is an almost complex structure on X; using this in N
allows us to express it in a more familiar form:

N µ
λρ = J νλ (J µρ,ν − J µν,ρ)− J νρ (J µλ,ν − J

µ
ν,λ). (2.19)

This is the Nijenhuis tensor for J , and its vanishing implies that J defines a complex

structure on X.

Evidently, (0,2) SUSY requires X to be a complex manifold equipped with a Hermitian

form ωµν = J λµ gλν . Moreover (2.15) implies that E must be a holomorphic bundle equipped

with a Hermitian connection with a (1, 1) field-strength F . The vanishing of ∇−J implies

just one additional condition on the background [2]:

−Hµνρ = J λµ∇λωνρ + J λρ ∇λωµν + J λν ∇λωρµ. (2.20)

This may be written in terms of the Dolbeault operators ∂, ∂̄ as H = i(∂ − ∂̄)ω.3

These classical considerations receive important quantum corrections at one loop in

α′. First, as discussed above, the H appearing in the one-loop effective action is naturally

the gauge-invariant field-strength. Combining this with form of H in terms of ω, we find

the condition

i∂∂̄ω =
α′

8
(trR ∧R− trF ∧F) . (2.21)

In addition, the chiral R-symmetry suffers from an anomaly proportional to c1(TX) [9].

Thus, to maintain (0,2) SUSY X must have c1(TX) = 0, in which case the transformation

3Note that our B and H differ by a sign from conventions common in the supergravity literature [5,11].
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of the measure can be absorbed into a δB = dΛ gauge transformation. We must also re-

member that we will need the theory to have a non-anomalous left-moving Z2 symmetry in

order to perform the heterotic left-moving GSO projection. In the NLSM such a symmetry

requires c1(E) ∈ H2(X, 2Z).

In order to construct a space-time supersymmetry generator, the theory must possess

a right-moving spectral flow operator. In a non-linear sigma model, the square of the

spectral flow operator is given by Σ2 = Ωλµνψ
λψµψν [10]. To construct the “square root”

globally on X, Ω must be a nowhere-vanishing 3-form. Σ2 must have R-charge 3, which

implies that Ω is a (3, 0) form. Finally, on-shell Σ2 must be a free right-moving field, i.e.

∂−Σ2 = 0.4 Using the equations of motion for ψ we find

∂−Σ2 = 3i
2 Ωαµνg

αγλTFγλλψ
λψµψν +∇−β Ωλµν∂−φ

βψλψµψν . (2.22)

The two terms must vanish separately, leading to two constraints on the geometry. The

first term requires Ωα[λµFα
ν] = 0. Writing this in complex coordinates, it is easy to see

that F must not only be a (1, 1) form, but also satisfy the zero-slope Hermitian Yang-Mills

(HYM) equations: ω ∧ω ∧F = 0. The vanishing of the second term requires ∇−Ω = 0, so

that ∇− has SU(3) holonomy, and in particular c1(TX) = 0. It is easily seen that ||Ω||2 is

constant on X, and furthermore there exists a real closed 1-form β such that

dΩ = β ∧ Ω, dΩ = β ∧ Ω, d(ω ∧ ω) = β ∧ ω ∧ ω. (2.23)

So far, we have seen that the world-sheet conditions for N = 1 space-time SUSY

require X to be a manifold with SU(3) structure. From the supergravity point of view [2],

we know that one condition is still missing: the vanishing of the dilatino variation. This is

equivalent to the closure of ω being conformally balanced by the dilaton field ϕ [11, 22]:

d(e−2ϕω ∧ ω) = 0. (2.24)

Comparing to (2.23), we see that β = 2dϕ. Since β is closed, this does not impose any

condition on the local geometry; however, if we wish the dilaton to be single-valued on X,

then we must demand that β is exact. This is an additional topological requirement, since

in this case e−2ϕΩ is a closed, nowhere vanishing (3,0)-form. This means that X has a

holomorphically trivial canonical bundle, i.e. h(3,0)(X) = 1.

Perhaps it is useful to recall the distinction between topological and holomorphic triv-

iality of line bundles. Recall that holomorphic line bundles on X are classified by Pic(X),

a group determined by the exact sequence

0 // H1(X,O) // Pic(X)
c1 // H2(X,Z) // 0. (2.25)

Thus, we see that elements of H1(X,O) = H0,1

∂̄
(X) correspond to isomorphism classes of

holomoprhic line bundles on X with c1 = 0. While these are all trivial as C∞ bundles,

4Actually, another necessary condition is that Σ2 must be a chiral operator, i.e. it must be annihilated
by Q1 + iQ2. It is not hard to show that this condition is satisfied when Ω is a (3,0)-form.
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they may not be trivial as holomorphic bundles [23]. There are many examples of non-

Kähler complex manifolds with c1 = 0 but non-trivial canonical bundle; for instance,

even-dimensional Lie groups and the Hopf surfaces described below are simple examples.

In principle, we should be able to recover the conformal balance condition directly

from the world-sheet. Presumably it should arise from an examination of the closure of

the full (0,2) algebra, as well as the OPEs of Σ2. This is not an entirely straightforward

undertaking since the dilaton is not so easy to see on a flat world-sheet, but a careful

analysis of the superconformal algebra in conformal gauge should be feasible.

To summarize, (0,2) SUSY at one-loop in α′ requires E → X to be a holomorphic

bundle over a complex manifold X with c1(TX) = 0, equipped with a Hermitian form ω

and connection A constrained by the Bianchi identity of (2.21); there will be a candidate

operator for a space-time supercharge provided that X is an SU(3) structure manifold

and the connection A satisfies the zero-slope HYM equations; finally, the background will

admit a single-valued dilaton if ω is conformally balanced.

Some of these conditions will receive α′ and string corrections. While we expect that

the topological conditions will be unaffected by quantum corrections, the equations for

the background fields will be corrected. For instance, experience with (2,2) Calabi-Yau

compactifications suggests that even in α′ perturbation theory ∇− may no longer be an

SU(3) holonomy connection. Furthermore, for bundles of non-zero degree a non-zero slope

can be generated at one loop in string perturbation theory [24].

3. World-sheet supersymmetry in N = 2 torsional backgrounds

In the preceding section we reviewed the connection between N = 1 space-time supersym-

metry and (0,2) super-conformal invariance on the world-sheet. Similar results hold for

heterotic compactifications with N = 2 space-time supersymmetry in four dimensions [7,8].

The result is that N = 2 space-time supersymmetry is preserved if and only if the right-

moving Virasoro algebra is enhanced to a product of a c̄ = 6 (0,4) and a free c̄ = 3 (0,2)

superconformal algebra, where the latter is equipped with a pair of commuting bosonic

(non-R) currents. If these are to be realized in the NLSM, they must correspond to two

commuting isometries of the metric and H. Thus we can already conclude that X must

be a T 2 fibration over a four-dimensional base.

In the context of a NLSM compactification, a well-studied example is the heterotic

string on K3×T 2. In this case the NLSM consists of two decoupled theories, and it is easy

to identify the (0,4) and (0,2) supersymmetries. It is not so clear how to construct this large

supersymmetry in the more general case of a torsional background on X constructed as a

non-trivial T 2 fibration over K3. Arguments based on a dual M-theory description [1], as

well as a direct supergravity analysis [3,4,11] show that such N = 2-preserving backgrounds

exist. In this section we will find the requisite world-sheet supersymmetry structures in

the NLSM.

3.1 The desired algebra

We are interested in NLSMs that possess a (0,2)+(0,4) SUSY. We will denote this algebra
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A2 ⊕A4, with A2 having generators qA, r, p and non-trivial commutation relations

[r, qA] = iεABqB, {qA, qB} = 2δABp. (3.1)

The (0,4) algebra A4 has a richer structure. In the standard presentation, e.g. in [25],

the supercharges are taken to be two doublets under the SU(2) R-symmetry. We will

find it convenient to use the representation which naturally arises from the N=4 NLSM

construction [26, 27]. Taking the SU(2) R-symmetry generators to be Ra and the four

supercharges Q0, Qa, the non-vanishing commutators are

[Ra, Rb] = 2iεabcRc, [Ra, Q0] = iQa, [Ra, Qb] = −iδabQ0 + iεabcQc,

{Qa, Qb} = 2δabP, Q2
0 = P. (3.2)

It will be convenient for us to make a choice of a diagonal subalgebra A+
2 ⊂ A2 ⊕A4.

Such a choice is of course not unique, but the ambiguity just corresponds to choosing an

N = 1 subalgebra of the space-time N = 2 theory. Without loss of generality we will take

A+
2 to be generated by

R = r +R3, Q1 = q1 +Q0, Q2 = q2 +Q3, P = p+ P, (3.3)

with the action on the NLSM matter fields as reviewed above5

P = −i∂+, R · ψµ = −iJ µν ψν ,
Q1 · φµ = −iψµ, Q2 · φµ = iJ µν ψν , (3.4)

Q1 · ψµ = ∂+φ
µ, Q2 · ψµ = J µν ∂+φ

ν + iJ µν,ρψνψρ. (3.5)

Closure of A+
2 requires J to be a complex structure on X, and the action is A+

2 -invariant

when (2.14, 2.15) hold.

In order to enlarge the symmetry algebra from A+
2 to A2 ⊕ A4, we must find the

generators of the U(1) × SU(2) R-symmetry r, Ra. Assuming the R-symmetries continue

to leave the λ and φ invariant, their action is specified by the four tensors I, Ka:

r · ψµ = −iIµν ψν , Ra · ψµ = −iKµaνψν . (3.6)

These R-symmetry generators obviously commute with P = −i∂+. From R = r + R3

we see that J = I + K3. Having found such tensors, we can unambiguously define the

generators of A2 ⊕A4 in terms of those of A+
2 and the R-symmetry:

q2 = −i[r,Q1], q1 = i[r,Q2], p = q2
2,

Qa = −i[Ra,Q1], Q0 = Q1 − q1, P = P − p. (3.7)

5Note that for any SUSY transformation, the transformation of the left-moving fermions is determined
by the tranformation of the bosons, e.g. Q1 · λ = −(Q1 · φµ)Aµλ.
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More explicitly, we have rather simple expressions for Qa and q2:

Qa · φµ = iKµaνψν , Qa · ψµ = Kµaν∂+φ
ν + iKµaν,ρψνψρ,

q2 · φµ = iIµν ψν , q2 · ψµ = Iµν ∂+φ
ν + iIµν,ρψνψρ, (3.8)

while q1 is a bit more complicated:

q1 · φµ = iJ µν Iνλψλ, q1 · ψµ = −Iµν J νλ ∂+φ
λ + iMµ

λρψ
λψρ,

Mµ
λρ = J µν,[ρI

ν
λ] + Iν[ρJ

µ
λ],ν − J

ν
[λI

µ
ρ],ν − I

µ
ν J ν[λ,ρ]. (3.9)

These transformations will generate symmetries of the action if I,Ka are R-symmetries,

i.e. (2.14) and (2.15) are obeyed with J replaced by I or Ka.
Thus, the transformations are determined by the tensors I and Ka, and our next task

is to find the conditions on I and Ka under which the transformations close to A2 ⊕ A4.

The full list of commutators to be checked might appear slighlty daunting, but since some

of the relations follow from the others by the Jacobi identity, the computation is tractable.

We begin with a simplifying observation: there exists another natural (0,2) subalgebra

A−2 ⊂ A2 ⊕A4 with generators

R′ = −r +R3, Q′1 = Q1, Q′2 = −q2 +Q3, P ′ = P . (3.10)

Since A−2 contains the linearly realized (0,1) subalgebra generated by Q1,P , we see that

closure of A−2 requires J− = −I+K3 to be a second integrable complex structure on X. It

is not hard to show that the generators defined in (3.6) and (3.7) close to A2⊕A4 provided

that I,Ka can be chosen so that A±2 close (i.e. J± = ±I+K3 are complex structures) and

the realization satisfies

[r,Ra] = 0, [Ra, Rb] = 2iεabcRc,

[Ra, qA] = 0, [r, q1] = iq2, [Ra, Qb] + [Ra, Qb] = 0, a 6= b. (3.11)

When evaluating these requirements on the matter fields, we naturally meet two types of

terms: the first involve various algebraic combinations of the I and Ka contracted into

either ψµ or ∂+φ
µ; the second involve the tensors and their derivatives contracted into

a fermion bilinear ψλψρ. Since the two types of terms clearly do not mix, we may first

evaluate the algebraic conditions and then move on to the differential ones.

3.2 Algebraic conditions

The closure of the R-symmetry (first line in (3.11)) leads just to algebraic conditions:

[I,Ka] = 0, [Ka,Kb] = 2εabcKc. (3.12)

The closure of A±2 requires J 2
± = −1, which implies

I2 +K2
3 = −1, {I,K3} = 0. (3.13)
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The remaining algebraic requirements arise from

[Ra, q2] = 0 =⇒ IKa = KaI = 0,

[Ra, Qb] + [Rb, Qa] = 0, a 6= b =⇒ KaKb = εabcKc, a 6= b. (3.14)

When combined with [Ka,Kb] = 2εabcKc, the latter condition yields

KaKb = δabK2
3 + εabcKc. (3.15)

The remaining relation, [r, q1] = iq2, does not lead to additional algebraic constraints.

The algebraic conditions become quite stringent when combined with the metric com-

patibility conditions (first line of eqn. (2.14)) for I, J and Ka and the torus isometries.

The most general metric on X compatible with the isometries is

ds2 = ĝijdy
idyj + GIJ(dθI +AIi dy

i)(dθJ +AJj dy
j), (3.16)

where i, j = 1, . . . , 4, I, J = 1, 2, and all tensors are independent of the fiber coordinates

θ1 and θ2. Clearly the metric has the Kaluza-Klein gauge invariance θI → θI + f I(y),

AI → AI − df I . Up to an over-all scaling by a y-dependent function, the most general

Hermitian form compatible with this gauge invariance is

ω = 1
2 ω̂ijdy

i ∧ dyj + Θ1 ∧Θ2, (3.17)

where

ΘI = dθI +AIi dy
i. (3.18)

Compatibility of the metric and complex structure determines J νµ = ωµρg
ρν , and splitting

up the tensor in block form we find

J =

(
K̂i3j 0

ÎIMAMj −AImK̂m3j ÎIJ

)
. (3.19)

We have defined K̂i3j = ω̂jkĝ
ki and ÎIJ = εJKGKI . J 2 = −1 if and only if K̂3 and Î define

almost complex structures in the base and fiber directions, respectively.

It is easy to see that the algebraic conditions and metric compatibility are satisfied by

I =

(
0 0

ÎA Î

)
, Ka =

(
K̂a 0

−AK̂a 0

)
, (3.20)

when the K̂a obey

K̂aK̂b = −14δab + εabcK̂c, and K̂kaiĝkj + ĝikK̂kaj = 0. (3.21)

With a little more work it is possible to show that this solution is unique up to diffeomor-
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phisms.6

Thus, the algebraic conditions require the base manifold to admit an almost hyper-

Hermitian structure given by the K̂a and ĝ, while Î is a metric-compatible complex struc-

ture in the fiber directions. We parametrize the latter in a standard way in terms of a

single complex, possibly base-dependent, parameter τ(y) = τ1(y) + iτ2(y) with τ2 ≥ 0:

Î =
1

τ2

(
−τ1 −|τ |2

1 τ1

)
. (3.22)

The fiber metric GIJ then takes the form

G =
e−2η(y)

τ2

(
1 τ1

τ1 |τ |2

)
. (3.23)

3.3 Differential conditions

Having found a general solution to the algebraic conditions, we move on to the differential

ones arising from fermion bilinear terms in the transformations. Our first set of conditions

comes from closure of the A±2 subalgebras. From our discussion of (0,2) SUSY, it is clear

that the differential conditions require J± to be integrable complex structures. Splitting the

Nijenhuis tensors into the base and fiber components, we find three non-trivial components,

leading to the following requirements:

N k
ij(J±) = 0 =⇒ N k

ij(K̂3) = 0,

NK
iI (J±) = 0 =⇒ K̂m3i ÎKI,m ± ÎMI ÎKM,i = 0,

NK
ij (J±) = 0 =⇒ FKij − K̂m3iFKmnK̂n3j ± ÎKM (K̂m3iFMmj + FMimK̂m3j) = 0. (3.24)

The first simply means that K̂3 is an integrable complex structure on the base. The second

condition with the (-)+ sign requires τ to vary (anti)holomorphically with respect to K̂3.

The last condition takes a familiar form when written in complex coordinates (zα, zα) on

the base: F 1
αβ
± τF 2

αβ
= 0. Consequently, integrability of both J+ and J− requires τ to be

constant and FM to be (1,1) forms on the base, i.e.

K̂m3iFMmj + FMimK̂m3j = 0. (3.25)

Using these constraints, we obtain a simplification of the q1 transformation: the only non-

vanishing components of the seemingly complicated Mµ
λρ in (3.9) are

MK
ij = −1

2F
K
ij . (3.26)

6A straight-forward way to show this is to solve the algebraic requirements at a point in X. The result
is that I,J ,K are determined up to an orthogonal transformation.
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The remaining differential conditions for algebra closure arise from

[Ra, q2] · ψµ = 0 =⇒ K̂maiFMmj + FMimK̂maj = 0,

[Ra, Qb] + [Rb, Qa] = 0, a 6= b =⇒ K̂a are integrable. (3.27)

The latter condition deserves a word of explanation. When discussing almost hyper-

complex structures it is convenient to introduce the Nijenhuis concomitant tensors7 for

the K̂a defined by

N k
ij(K̂a, K̂b) =

{
K̂mai(K̂kbj,m − K̂kbm,j) + (a↔ b)

}
− (i↔ j). (3.28)

For a = b this reduces to (twice) the usual Nijenhuis tensor for an almost complex structure

K̂a. It can be shown that if any two of these concomitants vanish, then all are zero and the

manifold is hypercomplex. The differential condition we obtain by direct computation of

the commutator is N (K̂a, K̂b) = 0 for a 6= b; however this is equivalent to the integrability

of K̂a.
Finally, we must ensure that the R-symmetries generated by I and Ka really are

symmetries of the action. This, combined with the (0,1) SUSY, is sufficient to ensure that

we have the full A2 ⊕ A4 symmetry. We have already discussed the metric compatibility

requirements among our algebraic conditions. To keep the matter action invariant, we

must also satisfy the differential condition in (2.14) for I and Ka:

∇νIµλ = 1
2(H µ

ν ρI
ρ
λ −H

ρ
ν λI

µ
ρ ), ∇νKµaλ = 1

2(H µ
ν ρK

ρ
aλ −H

ρ
ν λK

µ
aρ). (3.29)

Expanding (3.29) in base and fiber components, we find several conditions. First, G is

constant, so that without loss of generality we may set η(y) = 0 in (3.23). Second, the

components of H with legs in the fiber directions are given by

HIJk = 0, HIjk = GIJF Jjk. (3.30)

Finally, we must have

Hijk = Ĥijk − GMN

[
AMi F

N
jk +AMk F

N
ij +AMj F

N
ki

]
, (3.31)

where the 3-form on the base Ĥ is given by

−Ĥijk = K̂mai∇mK̂ajk + K̂mak∇mK̂aij + K̂maj∇mK̂aki (no sum on a). (3.32)

We will see shortly that (3.32) determines Ĥ and does not lead to any further conditions

on the geometry.

3.4 Hyper-Hermitian surfaces and N = 2 backgrounds

The conditions we have uncovered so far imply that the target-space X is a T 2 bundle

7These objects and their relation to (p,q) world-sheet supersymmetry are nicely reviewed in [27].
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over a hyper-complex surface B. In fact, since the K̂a are also required to be compatible

with the base metric ĝ, B is actually hyper-Hermitian. Such complex surfaces are rather

well-understood,8 and we will here review the pertinent results. The first point is that the

Hermitian forms ω̂aij = K̂kaiĝkj satisfy

dω̂a = β̂ ∧ ω̂a, (3.33)

where β̂ is a closed one-form determined solely by the metric. A short computation shows

that (3.32) is equivalent to Ĥ = − ∗4 β̂, showing that ∇−I = ∇−Ka = 0 determine the

torsion and do not place any additional constraints on the geometry.

Compact hyper-Hermitian surfaces are classified [29]. B must be conformally equiva-

lent to one of the following: a T 4 with a flat metric, a K3 with its hyper-Kähler metric,

or a Hopf surface. A Hopf surface is a quotient C2\{0}/Z, where Z is a cyclic group of

automorphisms generated by

g : (z1, z2) 7→ (sz1 + λzm2 , tz2), m ∈ Z>0, s, t, λ ∈ C, (3.34)

with 0 < |s| ≤ |t| < 1 and (tm − s)λ = 0 [30]. Each of these is a compact hyper-Hermitian

surface diffeomorphic to S1×S3. It can be shown that a Hopf surface is locally conformally

hyper-Kähler [29]. That is, in each coordinate patch there exists a conformal rescaling of

the metric that leads to a hyper-Kähler structure; however, these local rescalings cannot

be patched to a global function on the surface.

In fact, we can constrain B further. As explained in [3,11], B = T 4 requires the fibra-

tion and torsion to be trivial: X = T 6, and H = 0. Thus, the “simplest” possibility for B

leads to N = 4 space-time SUSY. Can B be a Hopf surface? While all the requirements are

locally satisfied, there is one subtlety: B does not have a holomoprhically trivial canonical

bundle, so the background does not admit a single-valued dilaton. The most direct way to

see this is to consider the requirement of conformal balance. We have

d(ω ∧ ω) = β̂ ∧ ω ∧ ω ?
= 2dϕ ∧ ω ∧ ω. (3.35)

While β̂ is closed for all B, it is not exact for a Hopf surface.

For B = K3 all the conditions can be satisfied, and as expected we can construct two

well-defined spectral flow operators via

Σ2
± = Ω±λµνψ

λψµψν , Ω± = e2ϕΩK3 ∧ (Θ1 ± iΘ2), (3.36)

where we have for simplicity set τ = i, and ΩK3 is the holomorphic 2-form of the K3.

Moreover, as the analysis of [3, 21] shows, for ω̂ = e2ϕωK3, there exist solutions to the

remaining conditions of the Bianchi identity in (2.21) and HYM equations, provided the

bundle is stable and satisfies the requisite topological conditions.

Thus, within the assumptions of the NLSM approach, we can conclude that the only

geometric heterotic compactification preserving exactly N = 2 space-time SUSY in four

8Hyper-Hermitian manifolds are reviewed in [28], as well as in a nice Wikipedia article.
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dimensions is a T 2 bundle over K3 with primitive first Chern classes F I , and torsion

as determined above. Furthermore, the base K3 must be equipped with a conformally

hyper-Kähler metric, with the dilaton proportional to the conformal factor.

3.5 The gauge bundle

Finally, we must discuss the SUSY constraints on the gauge bundle. We take the connection

to be

A = Âidy
i + aIΘ

I , (3.37)

so that Â(y) and aI(y) are invariant under the Kaluza-Klein gauge transformations of θI .

This is a well-defined connection if A transforms as a connection for a bundle Ê → B,

while aI are sections of ad(Ê).9 The curvature has components

F ij = F̂ ij + FMij aM +AMj D̂iaM −AMi D̂jaM ,

F Ij = −D̂jaI −AMj [aM ,aI ],

F IJ = [aI ,aJ ], (3.38)

where D̂ is the covariant derivative with respect to the “base” connection Â, and F̂ is its

curvature.

The Fermi action will possess A2⊕A4 invariance if the curvature F satisfies the analog

of (2.15):

IνµFνλ + FµνIνλ = 0, KνaµFνλ + FµνKνaλ = 0. (3.39)

Expanding these conditions in the by now familiar base-fiber decomposition, we find

D̂jaI = 0, K̂kaiF̂kj + F̂ ikK̂kaj = 0. (3.40)

The second condition in (3.40) implies F̂ is primitive: ω̂a ∧ F̂ = 0, i.e. Â must be a

zero-slope HYM connection over B. Since N = 1 space-time SUSY also requires A to be

a zero-slope HYM connection over X, we have, using the primitivity of F̂ and F I on the

base,

0 = ω ∧ ω ∧F = [a1,a2]ω̂ ∧ ω̂ ∧Θ1 ∧Θ2 =⇒ [a1,a2] = 0. (3.41)

Thus, the aI must be commuting elements of ad(Ê). Supposing that Â has irreducible

holonomy group G, the first condition in (3.40) requires aI to be constant matrices valued

in the commutant of G in E8×E8 or SO(32). In the familiar K3 × T 2 compactification,

we recognize these as the commuting Wilson lines on the torus.

9We will consider Ê that can be embedded in the usual free fermion construction; more general bundles
may require a more general world-sheet treatment [31].
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4. Discussion

In this note we have explored the consequences of N = 2 space-time SUSY in the context of

heterotic NLSMs. Our basic result is that the T 2 principal fibrations over a K3 base already

studied at length in the literature constitute the full class of solutions to the requirements

of SUSY. This is of course in marked contrast to the N = 1 case, where the class of

geometries corresponds to complex 3-folds with trivial canonical bundle. Such geometries

are surely abundant and fairly poorly understood; the reader may consult [32] for some

recent constructions.

As has been emphasized, for instance in [11,20], an interesting and hopefully tractable

class of N = 1 backgrounds can be obtained by simply relaxing some of the requirements

of N = 2 SUSY. Perhaps the most mild is to let F 1 + τF 2 have a (2,0) component over

the base manifold. A more drastic modification is to let the complex structure of the T 2

fiber vary holomoprhically over B. In this situation, the local geometry and its relation

to IIB/F-theory was studied in [20]. Of course more dramatic modifications are possible.

For instance, it is argued in [16], there exist many non-geometric solutions, where the

(complexified) volume of the T 2 is fibered over a base manifold.

We should emphasize again that the study of these backgrounds is complicated by

the lack of large radius limit. Since α′ corrections are large, it is difficult to go beyond

a qualitative description of the corresponding string vacua. In the case of N = 2 SUSY,

some additional insight is obtained via the torsional linear sigma models of [17, 33, 34]; to

our knowledge no such description is known for the N = 1 theories. In the N = 2 case

these linear models only make a (0,2) world-sheet SUSY manifest. It would be interesting

to develop descriptions that make manifest all six supercharges.

A prime motivation for our investigation was to describe the (0,2)+(0,4) world-sheet

supersymmetry explicitly. While we were successful in finding this structure even in the

case of non-trivially fibered T 2, it remains a challenge to use this to constrain quantum

corrections. The difficulty is, of course, that our symmetries are not linearly realized on

some familiar superspace. It would be interesting to see to what extent the (0,2)+(0,4)

supersymmetry can be given a superspace formulation.

While four-dimensional compactifications of heterotic strings provided the main mo-

tivation for this work, much of what was done in the previous section did not depend on

the dimensions of the respective target spaces for (0,4) and (0,2) models. It is well known

that higher-dimensional (0,4) NLSMs appear in the context of Calabi-Yau black holes.

M5-branes wrapping very ample divisors give rise to such models, and their study has been

important for the microscopic derivations of black hole entropy for half-BPS sectors in

theories with eight supercharges. More generic (0,2) theories correspond to the largely un-

explored quarter-BPS sector in theories with eight supercharges. The (0,2)+(0,4) structure

could be a useful intermediate class of theories, so a natural question is what is the general

class of models admitting this split. There are clearly some simple generalizations of our

construction, but it may well be that this is just a small subset of the possible models.

An obvious generalization is to replace the T 2 fiber with a higher dimensional torus

T 2k. Of course in order for the full T 2k to be non-trivially fibered, the base B must have
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H2(B) is large enough to support the non-trivial fibration. For instance on B = K3 we

can have k ≤ 9. One could also replace the base with a hyper-Hermitian manifold of higher

dimension.

A more interesting possibility would be to replace T 2 with a general even-dimensional

compact Lie group G.10 It is a classical result that each such G admits a complex struc-

ture [35], and one might try to fiber this over a base B, thereby producing a fibered WZW

model over B. Unfortunately, this idea runs into a simple problem for non-abelian G. In

order to implement our construction, we would need to choose a complex structure on G

with a G-invariant Hermitian form. It is not hard to convince oneself that such a Her-

mitian form does not exist. The difficulty is easily illustrated with G = SU(2) × SU(2).

Taking ea, fa to be right-invariant 1-forms on the two factors, it is easy to pick a complex

structure, for example by choosing the (1,0)-forms to be

σ1 = e1 + ie2, σ2 = e3 + if1, σ3 = f2 + if3. (4.1)

The corresponding Hermitian form is then

ω = e1 ∧ e2 + e3 ∧ f1 + f2 ∧ f3. (4.2)

While perfectly well-defined, ω does not transform covariantly under the left G-action. This

should be compared to the recent work [36], where a WZW model is non-trivially coupled

to a gauged linear sigma model. While it is clear that in this fashion one can produce many

new (0,2) theories, it might also be interesting to study whether it is possible to realize new

NLSMs with (0,2)+(0,4) supersymmetry as a special case, for example by working with

GLSMs with manifest (0,4) supersymmetry, as in [37].
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