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A CLASS OF DUST-LIKE SELF-SIMILAR SOLUTIONS OF THE

MASSLESS EINSTEIN-VLASOV SYSTEM.

Alan D. Rendall1, Juan J. L. Velázquez2

Abstract

In this paper the existence of a class of self-similar solutions of the

Einstein-Vlasov system is proved. The initial data for these solutions are

not smooth, with their particle density being supported in a submani-

fold of codimension one. They can be thought of as intermediate between

smooth solutions of the Einstein-Vlasov system and dust. The motivation

for studying them is to obtain insights into possible violation of weak cos-

mic censorship by solutions of the Einstein-Vlasov system. By assuming a

suitable form of the unknowns it is shown that the existence question can

be reduced to that of the existence of a certain type of solution of a four-

dimensional system of ordinary differential equations depending on two

parameters. This solution starts at a particular point P0 and converges to

a stationary solution P1 as the independent variable tends to infinity. The

existence proof is based on a shooting argument and involves relating the

dynamics of solutions of the four-dimensional system to that of solutions

of certain two- and three-dimensional systems obtained from it by limiting

processes.

1 INTRODUCTION

It is well known that solutions of the Einstein equations coupled with suitable
models of matter can yield singularities in finite time. The unknowns in these
equations are the spacetime metric and some matter fields. The exact nature
of the latter depends on the physical situation being considered. The usual
terminology in general relativity is that there is said to be a singularity if the
metric fails to be causally geodesically complete, i.e. if there are timelike or
null geodesics which in at least one direction are inextendible and of finite affine
length. The singularity is said to be in the future or the past according to the
incomplete direction of the geodesics. It is expected on the basis of physical
intuition, and known to be true in some simple cases, that the geodesic in-
completeness is associated with the energy density or some curvature invariants
blowing up. For background on this subject see textbooks such as [13], [28] and
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[25]. One of the best known types of singularities in general relativity are those
which occur inside black holes. When a black hole is formed by the collapse of
matter it is known that under suitable circumstances an event horizon is formed
which ensures that the singularity can have no influence on distant observers.

Mathematical relativity is the study of the properties of solutions of the Ein-
stein equations coupled to various matter equations. One of the main questions
in the field is the cosmic censorship hypothesis. There are two versions of this
conjecture called weak and strong cosmic censorship, both of which were pro-
posed by Roger Penrose. It should be noted that, contrary to what the names
might suggest, the strong version does not imply the weak one. The results
proved in what follows are motivated by weak cosmic censorship and strong
cosmic censorship will not be discussed further here. Weak cosmic censorship is
a statement which concerns isolated systems in general relativity. Mathemat-
ically this means considering solutions of the Einstein equations which evolve
from asymptotically flat initial data. Initial data for the Einstein equations con-
sist of a Riemannian metric hab, a symmetric tensor kab and some matter fields
which for the moment will be denoted generically by F0, all defined on a three-
dimensional manifold S. Solving the Cauchy problem for the Einstein-matter
equations means embedding the manifold S into a four-dimensional manifold
M on which are defined a Lorentzian metric gαβ and matter fields F such that
hab and kab are the pull-backs to S of the induced metric and second funda-
mental form of the image of the embedding of S while F0 is the pullback of
the matter fields. The metric gαβ and the matter fields F are required to sat-
isfy the Einstein-matter equations. A comprehensive treatment of the Cauchy
problem for the Einstein equations can be found in [26]. Initial data on R

3 are
called asymptotically flat if the metric hab tends to the flat metric at infinity
in a suitable sense while kab and F0 tend to zero. Physically this corresponds
to concentrating attention on a particular physical system while ignoring the
influence of the rest of the universe.

A solution of the Einstein-matter equations evolving from initial data is said
to be a development of that data if each inextendible causal curve intersects
the initial hypersurface precisely once. When this property holds the initial
hypersurface is said to be a Cauchy hypersurface for that solution. In general,
a solution is called globally hyperbolic if it admits a Cauchy hypersurface. For
prescribed data there is a development which is maximal in the sense that any
other development can be embedded into it. It is unique up to a diffeomorphism
which preserves the initial hypersurface.

In a spacetime evolving from asymptotically flat data it is often possible
to define future null infinity I+ as a set of ideal endpoints of complete future-
directed null geodesics. We can say that any singularity occurring does not
influence events near infinity if there is no inextendible causal curve to the fu-
ture of the initial hypersurface which is incomplete in the past while intersecting
a future-complete null geodesic. The first of these properties means intuitively
that this curve represents a signal which comes out of a singularity while the
second property means that it reaches a region which can communicate with
infinity. If a curve of this type does exist it is said that a globally naked singular-

2



ity exists. The past of null infinity, J−(I+), is the set of points for which there
is a future-directed causal curve starting there and going to null infinity. The
complement of J−(I+) is called the black hole region. Its boundary is called
the event horizon and is a null hypersurface in M .

There is a notion of completeness of null infinity. A precise definition will
not be given here but roughly speaking it corresponds to the situation where
there are timelike curves contained in J−(I+) which exist for a infinite time
towards the future. Physically this means that there are observers which can
remain outside the black hole for an unlimited amount of time. If the maximal
globally hyperbolic development of asymptotically flat initial data always has a
complete null infinity then this ensures the absence of globally naked singulari-
ties. For any inextendible causal curve to the future of the initial surface which
goes to null infinity must intersect the initial hypersurface. Hence it cannot be
incomplete in the past. The completeness of I+ ensures that the solution is
large enough to represent the whole future of a system evolving from the initial
data under consideration. The intuitive content of the weak cosmic censorship
hypothesis is that in the time evolution corresponding to initial data for the Ein-
stein equations coupled to reasonable (non-pathological) matter the existence
of a singularity implies that of an event horizon which covers the singularity
and hides it from distant observers. Often this is weakened to the requirement
that a horizon exists in the case of generic initial data. Up to now this intuitive
picture has only been developed into a precise mathematical formulation under
special circumstances. In general finding the correct formulation is part of the
problem to be solved.

Due to the mathematical complexity of the Einstein equations many of the
studies related to singularity formation for these equations have been carried
out for spherically symmetric solutions. In spherical symmetry the Einstein
vacuum equations are non-dynamical due to Birkhoff’s theorem, which says
that any spherically symmetric vacuum solution is locally isometric to the
Schwarzschild solution and, in particular, static. Thus it is essential to in-
clude matter of some kind. A matter model which has proved very useful for
this task is the scalar field. This is a real-valued function φ which satisfies the
wave equation ∇α∇αφ = 0. In this case the Einstein equations take the form
Rαβ = 8π∇αφ∇βφ, where Rαβ is the Ricci curvature of gαβ . The spherically
symmetric Einstein-scalar field equations were studied in great detail in a series
of papers by Demetrios Christodoulou. This culminated in [7] and [8]. In [7]
it was shown that in this system naked singularities can evolve from regular
asymptotically flat initial data. This represents a problem for the weak cosmic
censorship hypothesis but the conjecture can be saved by a genericity assump-
tion since it was shown in [8] that generic initial data do not lead to naked
singularities.

For the spherically symmetric Einstein-scalar field equations it is known
from the work of Christodoulou [6] that small asymptotically flat initial data
lead to a solution which is geodesically complete and hence free of singularities.
(In fact this small data result has recently been extended to the case without
symmetry [15].) On the other hand there are certain large initial data for which
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it is known that a black hole is formed. The threshold between these two types
of behaviour was studied in influential work by Choptuik [3] and many other
papers since. This area of research is known as critical collapse and is surveyed
in [12]. It is entirely numerical and heuristic and unfortunately mathematically
rigorous results are not yet available.

The scalar field provides a simple and well-behaved matter model. At the
same time no such field has been experimentally observed and the matter fields
of importance for applications to astrophysics are of other kinds. One astro-
physically relevant matter field which has good mathematical properties is col-
lisionless matter described by the Vlasov equation. The necessary definitions
are given in the next section. For the moment let it just be noted that the un-
known in the Vlasov equation is a non-negative real-valued function f(t, xa, vb)
depending on local coordinates (t, xa) on M and velocity variables vb. Ana-
logues of a number of the results proved for the scalar field have been proved
for the Einstein-Vlasov system. For small initial data the solutions are geodesi-
cally complete [22]. There are certain large initial data for which a black hole is
formed [1]. The threshold between these two types of behaviour has been inves-
tigated numerically in [23] and [18]. A closely related matter model which has
been very popular in theoretical general relativity is dust, a fluid with vanishing
pressure. It is equivalent to consider distributional solutions of the Vlasov equa-
tion of the form f(t, xa, vb) = ρ(t, xa)δ(vb − ub(t, xa)) where the δ is a Dirac
distribution. From many points of view dust is relatively simple to analyse.
Unfortunately it has a strong tendency to form singularities where the energy
density blows up, even in the absence of gravity. For this reason it must be
regarded as pathological and of limited appropriateness for the investigation of
cosmic censorship. A detailed mathematical study of formation of singularities
in the Einstein equations coupled to dust was given in [5]. In spherical sym-
metry dust particles move as spherical shells. It can easily happen that shells
including a strictly positive total mass come together at one radius and this
causes the density to blow up. This effect is known as shell-crossing.

The motivation for this paper is the wish to understand cosmic censorship
better for spherically symmetric solutions of the Einstein-Vlasov system. Is it
true that in asymptotically flat spherically symmetric solutions of the Einstein-
Vlasov system there are no naked singularities for generic data so that colli-
sionless matter is as well-behaved as the scalar field? Could it even be that the
Vlasov equation is better-behaved and that there are no naked singularities at
all? No answers to these questions, positive or negative, are available although
considerable effort has been invested into obtaining a positive answer. In what
follows we try to obtain new insights by approaching a negative result through
an interpolation between dust and smooth solutions of the Vlasov equation and
looking for self-similar solutions. There are some results on related equations
which give some hints. In the case of the Vlasov-Poisson system, the non-
relativistic analogue of the Einstein-Vlasov system, global existence for general
data, not necessarily symmetric, was proved by Pfaffelmoser [20] and Lions and
Perthame [16]. The relativistic Vlasov-Poisson system, which is in some sense
intermediate between the Vlasov-Poisson and Einstein-Vlasov systems, (but not
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in all ways) has been shown to have solutions which develop singularities in fi-
nite time. Rather precise information is available about the nature of these
singularities [14].

As a side remark, we mention a paper [27] where it was suggested that
naked singularities are formed in solutions of the Einstein-Vlasov system. The
solutions concerned were axially symmetric but not spherically symmetric. The
work is purely numerical but trying to understand what it means for the an-
alytical problem leads to the conclusion that the solutions computed in [27]
were dust solutions rather than smooth solutions of the Einstein-Vlasov system.
This is discussed in [24]. There are also reasons for doubting that the numerical
results really show the formation of a naked singularity [29].

A class of distributional solutions of the Einstein-Vlasov system intermedi-
ate between smooth solutions and dust is given by the Einstein clusters [11].
These are spherically symmetric and static, i.e. there exists a timelike Killing
vector field which is orthogonal to spacelike hypersurfaces. It is supposed that
the support of f consists of va such that the geodesics with these initial data
are tangent to the spheres of constant distance from the centre of symmetry
on these spacelike hypersurfaces. This means that the radial velocity and its
time derivative in the geodesic equation are zero. These are in general two inde-
pendent conditions on the data at a given time. A wider class, the generalized
Einstein clusters [9], [2], is obtained as follows. In the case of the Einstein clus-
ters taking the union of the spheres at a fixed distance from the centre defines
a foliation of the spacetime by timelike hypersurfaces and the condition on the
support means that the four-velocity of a particle with the given initial data
is everywhere tangent to these timelike hypersurfaces. The generalized Ein-
stein clusters are obtained by dropping the condition of staticity and replacing
the family of timelike hypersurfaces invariant under the timelike Killing vector
field by another foliation by timelike hypersurfaces which intersect any Cauchy
surface in spheres and whose equation of motion follows from the Vlasov equa-
tion. Once again the four-velocity of a particle in the support of f is tangent
to these hypersurfaces at all times. An analytical formulation of this definition
will be given in the next section. It should be noted that the generalized Ein-
stein clusters exhibit shell-crossing singularities and thus can still be thought
of as pathological. We are interested in them as an intermediate step towards
better-behaved matter models.

There are two major differences between the generalized Einstein clusters
and the solutions studied in this paper. In the case of Einstein clusters the
value of the angular momentum of the particles F is uniquely determined by
the distance r to the centre of symmetry. By contrast, in the solutions studied
in this paper the angular momentum takes a continuous range of values for each
value of r. The second difference is that in the case of Einstein clusters at each
spacetime point the component of the velocity vector va of a particle in the
direction of the vector ∂r takes on only one value. In the case of the solutions
obtained in this paper the component along the direction ∂r of the velocity
vector takes on two different values at most spacetime points. This only fails
at some exceptional values of r at a given time. This difference in the structure
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of the generalized Einstein clusters and the solutions considered in this paper is
what gives some plausibility to the idea that the solutions described here could
be a big step towards better-behaved matter models. From the physical point
of view, in the case of the generalized Einstein clusters the material particle
with the smallest value of r would not experience any gravitational field, and
therefore could not approach the centre r = 0 unless its angular momentum
vanished. In the solutions studied in this paper, since two radial velocities are
allowed at each spacetime point, the material particle with the smallest value
of r changes in time. This allows the occurrence of a collective collapse of the
whole distribution of particles towards the origin with some of them coming
closer and closer to the center as the value of some suitable time coordinate t

increases.
Self-similar solutions of the massless Einstein-Vlasov system have also been

considered in the paper [17]. There are several differences between the approach
in [17] and the one considered in this paper. The first one is the choice of the
rescaling group under which the solutions are invariant. The massless Einstein-
Vlasov system is invariant under a two-dimensional group of rescalings. The
choice of a particular one-dimensional rescaling group has been made in this
paper by imposing that the distribution function f for the particles remains
always of order one (see Sections 2, 3). This condition is natural, because the
function f is invariant along characteristic curves. On the contrary, the choice of
one-dimensional rescaling group for the solutions in [17] imposes that f becomes
unbounded near the singularity for the particles within the self-similar region,
something that can be achieved assuming that the distribution of matter is
singular near the light-cone. The second difference between the solutions in [17]
and those in this paper is that the solutions in [17] can be thought of as self-
similar perturbations of the flat Minkowski space. As a matter of fact they have
been computed by means of a perturbative iteration procedure that takes flat
space as a starting point and where the terms in the resulting series have been
computed numerically. By contrast, the solutions of this paper are obtained by
means of a shooting procedure in which a parameter that measures the amount
of energy in the self-similar region is of order one. The approach in this paper
uses purely analytical methods and does not rely on numerical computations.
On the other hand, in order to simplify the arguments, we have restricted the
analysis in this paper to the study of dust-like solutions, an assumption that
was not made in [17].

The plan of the paper is as follows. We will first reduce the problem of
finding self-similar solutions of the Einstein-Vlasov system to an ODE problem
that can be transformed into a four-dimensional system using suitable changes
of variables. Using these transformations it will be seen that the construction
of the desired self-similar solutions reduces to finding a particular orbit in the
corresponding four-dimensional space connecting a certain point with a steady
state that has a three-dimensional stable manifold. The existence of such an
orbit will be shown by adjusting a parameter that measures the density of par-
ticles in a particular perturbative limit. The precise limit under consideration,
which has the goal of making the problem feasible using analytical methods, cor-
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responds to assuming that the radius of the region empty of particles, measured
in the natural self-similar variables, is small.

2 THE EINSTEIN-VLASOV SYSTEM IN
SCHWARZSCHILD COORDINATES.

We do not use exactly the classical Schwarzschild coordinates, but a slight mod-
ification of them that normalizes the time to be the proper time at the center
r = 0. The metric is given by (cf. [21]):

ds2 = −e2µ(t,r)dt2 + e2λ(t,r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (2.1)

If we restrict our attention to spherically symmetric solutions it is convenient
to use the quantities (cf. [21]):

r = |x| , w =
x · v
r

, F = |x ∧ v|2

to parametrize the velocity variables. In particular F is constant along charac-
teristics. Writing the particle density as

f = f (r, w, F, t)

the Einstein-Vlasov system for spherically symmetric solutions in these coordi-
nates becomes:

∂tf + eµ−λw

E
∂rf −

(
λtw + eµ−λµrE − eµ−λ F

r3E

)
∂wf = 0 (2.2)

where:

E =

√
1 + w2 +

F

r2
(2.3)

and the functions λ, µ that characterize the gravitational field satisfy:

e−2λ (2rλr − 1) + 1 = 8πr2ρ, (2.4)

e−2λ (2rµr + 1)− 1 = 8πr2p (2.5)

with boundary conditions:

µ (0) = 0 , λ (0) = 0, (2.6)

λ (∞) = 0. (2.7)

On the other hand ρ and p are given by:

ρ = ρ (r, t) =
π

r2

∫ ∞

−∞

[∫ ∞

0

EfdF

]
dw, (2.8)

p = p (r, t) =
π

r2

∫ ∞

−∞

[∫ ∞

0

w2

E
fdF

]
dw. (2.9)
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With these basic equations in hand it is possible to give some details con-
cerning generalized Einstein clusters, as promised in the introduction. These
are not required to understand the main results of the paper but help to put
those results into a wider context. A distributional solution of the Vlasov equa-
tion whose support is a smooth submanifold Σ has the property that Σ is a
union of characteristics of the equation. A simple example is that of dust where
the support is the graph of a function ua(t, x) of the form W (t, r)x

a

r
. When

expressed in terms of polar coordinates this becomes the graph of a function
W (t, r) augmented by the condition F = 0. Here the function W solves the
equations

dR

dt
= eµ(t,R)−λ(t,R)W

E
, (2.10)

dW

dt
= −(λ̇(t, R)W + eµ(t,R)−λ(t,R)µ′(t, R)E) (2.11)

where E =
√
1 +W 2.

Now consider the generalized Einstein clusters. They are only defined under
the condition of spherical symmetry. They can be thought of as defining a
matter model which can be used in the spherically symmetric Einstein-matter
equations. Here they will be described in terms of Schwarzschild coordinates.
The basic unknown is a function R(t, r) which satisfies R(0, r) = r. It is the
area radius at time t of the shell which had area radius r at time 0. As input
we require a function F (r) which is the angular momentum of the particles on
the shell which was at radius r at time zero and N(r) which is the density of
particles per shell evaluated on the shell which had area radius r at t = 0. For
some purposes it is more convenient to use R as a radial coordinate instead of r
and this is what was done in the original papers [9] and [2]. For a given shell at
a given time the angular momentum and radial velocity of the particles are fixed
and so the intersection of the support of the solution with the fibre of the mass
shell over the point with coordinates (t, r) has codimension two. The following
equations should be satisfied:

dR

dt
= eµ−λW

E
, (2.12)

dW

dt
= −

(
λ̇W + eµ−λµ′E − eµ−λ F

R3E

)
(2.13)

where E =
√
1 +W 2 + F

R2 and the functions λ and µ are to be evaluated at the

point (t, R). These are the full characteristic equations for the Vlasov equation.
The difference in the coupled system comes from the fact that the expressions
for the components of the energy-momentum tensor are different in the two
cases. In the case of Einstein clusters the characteristics of interest have W = 0
and dW

dt
= 0. It follows immediately that dR

dt
= 0. In that case the angular

momentum is related to the geometry by the relation F = r3µ′

1−rµ′
.

The equations which have been written up to now describe particles of unit
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mass. We are interested in the construction of solutions of (2.2)-(2.9) supported
in a region where

(
w2 + F

r2

)
takes large values near the formation of the singu-

larity. This suggests replacing (2.3) by:

E =

√
w2 +

F

r2
. (2.14)

The system (2.2), (2.4)-(2.9), (2.14) is invariant under the rescaling:

r → θr , t → θt for t < 0 , w → 1√
θ
w , F → θF (2.15)

for any θ > 0. It is then natural to look for solutions of (2.2), (2.4)-(2.14)
invariant under the rescaling (2.15). They will be the self-similar solutions in
which we will be interested in this paper.

The system obtained when (2.3) is replaced by (2.14) can be interpreted as
describing particles of zero rest mass. The rationale for this assumption is that
near the singularity the derived solution will satisfy w2+ F

r2
>> 1, and therefore

it could be expected that it is possible to treat the whole Einstein-Vlasov system
with massive particles as a perturbation of the massless problem.

In what follows we will consider solutions of (2.2), (2.4)-(2.14) where f is
not a bounded function, but a measure concentrated on some hypersurfaces that
will be described in detail later. As was mentioned in the introduction there
is a class of distributional solutions of the Einstein-Vlasov system which are
equivalent to what is usually known in the literature as dust. From this point of
view the solutions considered in this paper are intermediate between dust and
smooth solutions and hence will be called dust-like solutions. Note, however,
that in contrast to dust they do have some velocity dispersion. The dimension
of the support of f in the tangent space at a given spacetime point is zero for
dust, one for generalized Einstein clusters, two for the solutions in this paper
and three for smooth solutions. For the solutions here it will be possible to
describe the distribution of velocities for the particles at a given point using a
function depending on one coordinate, while a general distribution of velocities
compatible with the assumption of spherical symmetry would depend on two
coordinates.

3 SELF-SIMILAR SOLUTIONS

In this section we formulate the system of equations satisfied by the solutions
of (2.2), (2.4)-(2.9), (2.14) that are invariant under the transformation (2.15).
We will call these self-similar solutions in what follows. It is convenient, as a
first step, in order to transform (2.2), (2.4)-(2.14) to a more convenient form to
define a new variable:

v =
w√
F
. (3.1)
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We will assume in the rest of the paper that f = 0 for (r, v, F, t) = (r, v, 0, t)
in order to avoid singularities in (3.1). Moreover, we can even assume a more
stringent condition on f, namely f = 0 for 0 ≤ F ≤ δ0 for some δ0 > 0.
Concerning the support in the r coordinate, the solutions constructed in this
paper will vanish for r ≤ y0 (−t) for some y0 > 0.

Making the change of variables (r, w, F, t) → (r, v, F, t) and denoting the new
distribution function by f with a slight abuse of notation we can transform the
system (2.2), (2.8)-(2.14) into:

∂tf + eµ−λ v

Ẽ
∂rf −

(
λtv + eµ−λµrẼ − eµ−λ 1

r3Ẽ

)
∂vf = 0, (3.2)

Ẽ =

√
v2 +

1

r2
, (3.3)

ρ =
π

r2

∫ ∞

−∞
Ẽ

[∫ ∞

0

fFdF

]
dv, (3.4)

p =
π

r2

∫ ∞

−∞

v2

Ẽ

[∫ ∞

0

fFdF

]
dv. (3.5)

Notice that the change of variables (3.1) eliminates the dependence on the vari-
able F for the characteristic curves associated to the Vlasov equation (cf. (3.2)).
Moreover, the functions ρ and p and therefore the functions λ, µ characteriz-
ing the gravitational fields depend on f only through the reduced distribution
function:

ζ (r, v, t) ≡
∫ ∞

0

fFdF. (3.6)

In particular, it is possible to write a closed problem for the reduced distribu-
tion function that can be obtained multiplying (3.2) by F and integrating with
respect to this variable:

∂tζ + eµ−λ v

Ẽ
∂rζ −

(
λtv + eµ−λµrẼ − eµ−λ 1

r3Ẽ

)
∂vζ = 0, (3.7)

Ẽ =

√
v2 +

1

r2
, (3.8)

ρ =
π

r2

∫ ∞

−∞
Ẽζdv, (3.9)

p =
π

r2

∫ ∞

−∞

v2

Ẽ
ζdv. (3.10)

The system (3.7)-(3.10) complemented with (2.4), (2.5) is a closed system of
equations.

We will now study the class of self-similar solutions of the system (2.4), (2.5),
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(3.2)-(3.5). These are the functions having the functional dependence:

f (r, v, F, t) = G (y, V,Φ) , µ (r, t) = U (y) , λ (r, t) = Λ (y) , (3.11)

y =
r

(−t)
, V = (−t) v , Φ =

F

(−t)
. (3.12)

The solutions of (2.4), (2.5), (3.2)-(3.5) with this functional dependence satisfy:

yGy − V GV +ΦGΦ + eU−ΛV

Ê
Gy

−
(
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
GV

= 0 (3.13)

where:

Ê =

√
V 2 +

1

y2
(3.14)

and

e−2Λ (2yΛy − 1) + 1 = 8πy2ρ̃, (3.15)

e−2Λ (2yUy + 1)− 1 = 8πy2p̃ (3.16)

with boundary conditions:

U = 0 , Λ = 0 at y = 0. (3.17)

Here:

ρ̃ =
π

y2

∫ ∞

−∞
Ê

[∫ ∞

0

GΦdΦ

]
dV, (3.18)

p̃ =
π

y2

∫ ∞

−∞

V 2

Ê

[∫ ∞

0

GΦdΦ

]
dV. (3.19)

The function G which is a solution of (3.13)-(3.19) is constant along the
characteristic curves of (3.13) which are given by:

dy

dσ
= y + eU−Λ V√

V 2 + 1
y2

= y + eU−Λ V y√
V 2y2 + 1

, (3.20)

dV

dσ
= −V −

(
yΛyV +

eU−ΛUy

y

√
V 2y2 + 1− eU−Λ 1

y2
√
V 2y2 + 1

)
, (3.21)

dΦ

dσ
= Φ. (3.22)

In these equations σ is just a parameter that is used to parametrize the charac-
teristic curves. Its precise definition will be given later in some specific cases.
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The equations (3.20)-(3.22) can be integrated explicitly for any pair of func-
tions U = U (y) , Λ = Λ (y). Indeed, the first two equations can be rewritten
as:

dy

dσ
= e−Λ ∂H

∂V
, (3.23)

dV

dσ
= −e−Λ∂H

∂y
(3.24)

where:

H ≡ eU

y

√
V 2y2 + 1+ yV eΛ. (3.25)

The trajectories in the (y, V )-plane associated to the solutions of (3.20), (3.21)
are contained in the level sets:

H = h. (3.26)

We will also need the self-similar formulation of the integrated form of the
equation (3.7). In this case the function ζ in (3.6) has the functional dependence:

ζ (r, v, t) = (−t)
2
Θ(y, V ) .

Notice that:

Θ (y, V ) =

∫ ∞

0

GΦdΦ. (3.27)

The function Θ satisfies:

yΘy − VΘV − 2Θ + eU−ΛV

Ê
Θy

−
(
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
ΘV

= 0 (3.28)

and:

ρ̃ =
π

y2

∫ ∞

−∞
ÊΘdV, (3.29)

p̃ =
π

y2

∫ ∞

−∞

V 2

Ê
ΘdV. (3.30)

The characteristic curves associated to (3.28) are (3.20), (3.21) and:

dΘ

dσ
= 2Θ. (3.31)
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4 SINGULAR SELF-SIMILAR SOLUTIONS:
GENERAL PROPERTIES.

The main goal of this paper is to construct a family of distributional solutions of
(3.13)-(3.19) for which G = G (y, V,Φ) is a measure supported on some surfaces
in the three-dimensional space with coordinates (y, V,Φ) . In this section we
will describe in a heuristic manner the argument yielding the construction of
such solutions. The arguments will be made rigorous in the rest of the paper.
The key idea behind the argument is that the problem can be transformed into
a system of ordinary differential equations for the particular class of solutions
described in this section.

Taking into account that the singularities of the distribution G might be
expected to be propagated by characteristics it is natural to look for solutions
of (3.13)-(3.19) of the form:

G (y, V,Φ) = A (y, V,Φ) δ (H (y, V )− h) (4.1)

satisfying (3.13) in the sense of distributions. Let us assume that A, H have the
differentiability properties required for all the following formal computations.
Plugging (4.1) into (3.13) we obtain:

(a (y, V )Ay + b (y, V )AV +ΦAΦ) δ (H − h)

+A (a (y, V )Hy + b (y, V )HV ) δ
′ (H − h)

= 0

where:

a (y, V ) ≡ y + eU−Λ V

Ê
= eΛ

∂H

∂V
, (4.2)

b (y, V ) ≡ −V −
(
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
= −eΛ

∂H

∂y
. (4.3)

Notice that a (y, V )Hy + b (y, V )HV = 0. Then:

(a (y, V )Ay + b (y, V )AV +ΦAΦ) δ (H − h) = 0.

This equation is satisfied if:

a (y, V )Ay + b (y, V )AV +ΦAΦ = 0 (4.4)

on the surface {H = h} × R
+. Let us assume that the curve {H = h} can be

parametrized, at least locally, using a parameter σ satisfying:

y = y (σ) , V = V (σ) ,

dy (σ)

dσ
= a (y (σ) , V (σ)) ,

dV (σ)

dσ
= b (y (σ) , V (σ)) . (4.5)
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Then the function A can be written on the surface {H = h}×R
+ as a function

of the variables (σ,Φ) . We can write:

A (y (σ) , V (σ) ,Φ) = Ā (σ,Φ) for (y, V, σ) ∈ {H = h} × R
+ (4.6)

and using (4.5) we can rewrite (4.4) as:

Āσ +ΦĀΦ = 0. (4.7)

Since the curves {H = h} can be determined in terms of Θ alone it is con-
venient to compute this distribution explicitly. If G has the form (4.1) the
distribution Θ defined in (3.27) is given by:

Θ (y, V ) = βδ (H − h) (4.8)

where:

β =

∫ ∞

0

AΦdΦ.

Since A is given by (4.6) it follows that:

β = β (σ) =

∫ ∞

0

Ā (σ,Φ)ΦdΦ for (y, V ) ∈ {H = h} . (4.9)

We can compute β (σ) along the curve {H = h} . To this end we multiply (4.7)
by Φ and integrate in the Φ variable in the interval [0,∞) . Then:

βσ = 2β.

The function β then takes the form:

β (σ) = β0e
2σ (4.10)

for some β0 ≥ 0.
In the rest of the paper we prove that there exist functions Ā (σ,Φ) as in

(4.6) and curves {H = h} with Λ, U solving (3.15)-(3.17) and ρ̃, p̃ as in (3.18),
(3.19) such that (4.1) solves (3.13) in the sense of distributions.

5 SINGULAR SELF-SIMILAR SOLUTIONS:

DESCRIBING THEIR SUPPORT.

In this section we describe in a precise manner the form of the curved surface
containing the support of the distribution G for the self-similar solutions con-
structed in this paper. Such a surface is contained in the surface S = γ × R

+,

where γ ⊂ {(y, V ) : y > 0 , V ∈ R} is an unbounded curve, at a strictly positive
distance from the line {y = 0} ≡ {(y, V ) : y = 0 , V ∈ R} with a discontinuity
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in its curvature at the point (y0, V0) ∈ γ placed at the minimum distance from
the line {y = 0} . In order to avoid such irregular curves it is more convenient
to assume that the curve γ is the union of two analytic curves γ1 and γ2 that
can be parametrized in the form:

γi = {(y, V ) : y0 < y < ∞ , V = Vi (y)} , i = 1, 2 (5.1)

where the functions Vi (y) are analytic and satisfy:

lim
y→y

+
0

V1 (y) = lim
y→y

+
0

V2 (y) = V0 = − 1√
1− y20

, (5.2)

V1 (y) < V2 (y) for y0 < y < ∞ (5.3)

for some y0 ∈ (0, 1) . Since the curves γi are contained in the curve {H = h} it
follows that the functions Vi (y) are the two roots of the equation:

eU

y

√
V 2y2 + 1 + yV eΛ = h (5.4)

assuming that such roots exist. Then:

V1 (y) =
1

(e2U − y2e2Λ)

[
−yeΛh−

√

(yeΛh)
2 − (e2U − y2e2Λ)

(
e2U

y2
− h2

)]
,

(5.5)

V2 (y) =
1

(e2U − y2e2Λ)

[
−yeΛh+

√

(yeΛh)
2 − (e2U − y2e2Λ)

(
e2U

y2
− h2

)]
.

(5.6)

Notice that for such solutions the support of G in (4.1) is contained in the
half-plane {y ≥ y0} . Therefore, ρ (y) = p (y) = 0 for y < y0. Then (3.15)-(3.17)
imply U (y) = Λ (y) = 0 for y < y0.

Under suitable regularity assumptions for the curves γi near the point (y0, V0)
that will be made precise below the functions U and Λ are continuous at the
point y = y0. In such a case (5.4) implies:

h =

√
V 2
0 y

2
0 + 1

y0
+ y0V0 =

√
1− y20
y0

. (5.7)

We will prove later that it is possible to construct the desired curves γi , i = 1, 2,
defined by means of (5.1) with the property that the following limits exist:

lim
y→y

+
0

Vi (y)− V0√
y − y0

= Ki , Ki ∈ R , i = 1, 2 , K1 < K2. (5.8)
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Moreover, the quotients of the functions Λ and U by
√
y − y0 also tend to finite

limits. Let:

lim
y→y

+
0

Λ (y)√
y − y0

= θ1 ∈ R, (5.9)

lim
y→y

+
0

U (y)√
y − y0

= θ2 ∈ R. (5.10)

We parametrize the curve γ = {H = h} as in the previous section using a
parameter σ. We will denote a parameter of this kind on the curves γ1, γ2 by
σ1, σ2 respectively. Due to (4.2), (4.5), (5.1) it follows that:

dσi

dy
=

1

a (y, Vi (y))
=

1

y + eU−Λ Vi(y)y√
(Vi(y))

2y2+1

, i = 1, 2. (5.11)

We will normalize the parameters σi = σi (y) by means of the condition:

σi (y0) = 0 , i = 1, 2. (5.12)

Finally we remark that in order to obtain the functions U and Λ we need
to prescribe the distribution Θ defined by (3.27). Using (4.8), (4.10) it then
follows that:

Θ (y, V ) =
β0χ{y>y0}e

2σ1(y)

∣∣∂H
∂V

(y, V1 (y))
∣∣ δ (V − V1 (y))

+
β0χ{y>y0}e

2σ2(y)

∣∣∂H
∂V

(y, V2 (y))
∣∣ δ (V − V2 (y)) (5.13)

where χ{y>y0} is the characteristic function of the half-plane {y > y0} . Using
(3.29), (3.30) it follows that:

ρ̃ (y) =
πβ0χ{y>y0}

y3

[
e2σ1(y)

∣∣∂H
∂V

(y, V1 (y))
∣∣

√
(V1 (y))

2
y2 + 1

+
e2σ2(y)

∣∣∂H
∂V

(y, V2 (y))
∣∣

√
(V2 (y))

2
y2 + 1

]
, (5.14)

p̃ (y) =
πβ0χ{y>y0}

y


 e2σ1(y)

∣∣∂H
∂V

(y, V1 (y))
∣∣

(V1 (y))
2

√
(V1 (y))

2
y2 + 1

+
e2σ2(y)

∣∣∂H
∂V

(y, V2 (y))
∣∣

(V2 (y))
2

√
(V2 (y))

2
y2 + 1


 (5.15)

and the functions U and Λ can then be obtained using the equations (3.15),
(3.16).
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Due to the dust-like character of the solutions considered in this paper, they
exhibit a singular behaviour for ρ̃ and p̃ at the radius y = y0. This singularity
is due to the fact that at this point the radial velocity of the particles, in self-
similar variables, vanishes. However, since the motion of the trajectories after
they reach the singularity continues in a smooth way, and since ρ̃ and p̃ are
integrable near this radius, this singularity can be expected to disappear if the
dust-like assumption is relaxed and some thickness is given to the support of
the distribution function in the phase space.

The main result of this paper is the following:

Theorem 1 There exists ε0 > 0 small such that, for any y0 ∈ (0, ε0) there exist
a value of β0 > 0 and two curves γ1, γ2 that can be parametrized as in (5.1)
with the functions V1 (y) , V2 (y) as in (5.5), (5.6) satisfying (5.2), (5.3), (5.8),
the functions U, Λ satisfying (3.15), (3.16) and (5.9), (5.10) with ρ̃, p̃ as in
(5.14), (5.15) and σ1, σ2 solving (5.11), (5.12).

Using Theorem 1 it is possible to obtain distributional solutions of the prob-
lem (3.13)-(3.19). In order to make the definition of the distribution G in
(4.1) precise we use (4.6), (4.7). Let us prescribe a smooth function Ā0 (Φ) in
Φ ∈ (0,∞) . Taking into account (4.7) we can then define:

Ā (σ,Φ) = Ā0

(
e−σΦ

)
.

Using the structure of the curves γ1, γ2 it would then follow that the distribution
G in (4.1) would be given by:

G (y, V,Φ) =
Ā0

(
e−σ1(y)Φ

)
χ{y>y0}∣∣∂H

∂V
(y, V1 (y))

∣∣ δ (V − V1 (y))

+
Ā0

(
e−σ2(y)Φ

)
χ{y>y0}∣∣∂H

∂V
(y, V2 (y))

∣∣ δ (V − V2 (y)) . (5.16)

We then have the following result:

Theorem 2 Suppose that the function Ā0 (·) ∈ C1
0 (0,∞) satisfies

∫ ∞

0

Ā0 (Φ)ΦdΦ = β0. (5.17)

Let us define a Radon measure G ∈ M (R+ × R× R
+) by means of (5.16) with

the functions V1 (·) , V2 (·) , σ1 (·) , σ2 (·) as in Theorem 1. Then the functions
ρ̃, p̃ defined (3.18), (3.19) belong to the spaces L

p
loc (0,∞) for 1 ≤ p < 2.

The functions Λ, U defined by means of (3.15)-(3.17) belong to W
1,p
loc (0,∞) for

1 ≤ p < 2. The measure G satisfies (3.13) in the sense of distributions.
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Remark 3 The space C1
0 (0,∞) is the space of compactly supported continu-

ously differentiable functions and the space M (R+ × R× R
+) is the space of

Radon measures on R
+ × R × R

+. It is not necessary to require A0 (·) to be
compactly supported. Actually this condition could be replaced by assumptions
of fast enough decay near the origin and infinity.

Remark 4 It is worth noticing that the functions ρ̃, p̃ associated to the distri-
bution G have an integrable singularity as y → y+0 .

In the rest of this section we will prove Theorem 2. Theorem 1 will be proved
in the remaining sections of the paper using a shooting argument and refined
asymptotics of the solutions for y0 small. The following auxiliary result will be
used in the proof of Theorem 2 and it will be proved in Section 6. We remark
that Theorem 2 will not be used in either the proof of Theorem 1 or that of
Proposition 5 below.

Proposition 5 The curves γ1, γ2 whose existence has been proved in Theorem
1 satisfy the following conditions:

lim
y→y+

0

∂H
∂V

(y, V1 (y))√
y − y0

= L1 , lim
y→y+

0

∂H
∂V

(y, V2 (y))√
y − y0

= L2 (5.18)

for some constants L1 < L2.

Proof of Theorem 2. Using (3.27), (5.16) and (5.17) we obtain:

Θ (y, V ) =

∫ ∞

0

GΦdΦ =
β0e

2σ1(y)χ{y>y0}∣∣∂H
∂V

(y, V1 (y))
∣∣ δ (V − V1 (y))

+
β0e

2σ2(y)χ{y>y0}∣∣∂H
∂V

(y, V2 (y))
∣∣ δ (V − V2 (y)) . (5.19)

We can then compute ρ̃, p̃ using (3.29), (3.30):

ρ̃ (y) =
πβ0χ{y>y0}

y3


e

2σ1(y)

√
1 + y2 (V1 (y))

2

∣∣∂H
∂V

(y, V1 (y))
∣∣ +

e2σ2(y)

√
1 + y2 (V2 (y))

2

∣∣∂H
∂V

(y, V2 (y))
∣∣


 ,

(5.20)

p̃ (y) =
πβ0χ{y>y0}

y


 e2σ1(y) (V1 (y))

2

∣∣∂H
∂V

(y, V1 (y))
∣∣
√
1 + y2 (V1 (y))

2

+
e2σ2(y) (V2 (y))

2

∣∣∂H
∂V

(y, V2 (y))
∣∣
√
1 + y2 (V2 (y))

2


 . (5.21)
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Using (5.8)-(5.10), (5.18), we obtain:

|ρ̃ (y)|+ |p̃ (y)| ≤ Cχ{y>y0}√
y − y0

(5.22)

whence the estimate ρ̃, p̃ ∈ L
p
loc (0,∞) , 1 ≤ p < 2, in the theorem follows. On

the other hand (3.15)-(3.17) imply:

Λ = −1

2
log

(
1− 8π

y

∫ y

y0

ξ2ρ̃ (ξ) dξ

)
, (5.23)

U =

∫ y

y0

[(
8πξ2p̃ (ξ) + 1

)
e2Λ(ξ) − 1

]

2ξ
dξ. (5.24)

Due to Theorem 1 the functions Λ, U are bounded for any finite value y > 0.
On the other hand, (5.23), (5.24) imply Λ, U ∈ W

1,p
loc (0,∞) , 1 ≤ p < 2.

In order to conclude the proof of Theorem 2 it only remains to prove that G
solves (3.13) in the sense of distributions. This is equivalent to showing that:

∫

R+×R×R+

[
− (yϕ)y + (V ϕ)V − (Φϕ)Φ −

(
eU−Λ V

Ê
ϕ

)

y

+

((
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
ϕ

)

V

]
GdydV dΦ

= 0 (5.25)

for any ϕ = ϕ (y, V,Φ) ∈ C∞
0 (R+ × R× R

+) . Using (5.16) we can rewrite (5.25)
as:

J ≡
2∑

i=1

∫ ∞

y0

∫ ∞

0

[
− (yϕ)y + (V ϕ)V − (Φϕ)Φ −

(
eU−ΛV

Ê
ϕ

)

y

+ (5.26)

((
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
ϕ

)

V

]∣∣∣∣
(y,Vi(y),Φ)

Ā0

(
e−σi(y)Φ

)
∣∣∂H
∂V

(y, Vi (y))
∣∣dΦdy

= 0

and making the change of variables e−σi(y)Φ → Φ we can transform J into:

J ≡
2∑

i=1

∫ ∞

y0

∫ ∞

0

[
− (yϕ)y + (V ϕ)V − (Φϕ)Φ −

(
eU−Λ V

Ê
ϕ

)

y

+

((
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
ϕ

)

V

]∣∣∣∣
(y,Vi(y),Φeσi(y))

Ā0 (Φ) e
σi(y)

∣∣∂H
∂V

(y, Vi (y))
∣∣dydΦ

(5.27)
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Notice that we can write:

F ≡ − (yϕ)y + (V ϕ)V − (Φϕ)Φ −
(
eU−Λ V

Ê
ϕ

)

y

+

((
yΛyV + eU−ΛUyÊ − eU−Λ 1

y3Ê

)
ϕ

)

V

= −yϕy + V ϕV − (Φϕ)Φ −
(
eU−Λ V y√

1 + V 2y2
ϕ

)

y

+

((
yΛyV +

eU−ΛUy

y

√
1 + V 2y2 − eU−Λ 1

y2
√
1 + V 2y2

)
ϕ

)

V

and, using Leibniz’s rule:

F = −yΛyϕ− yeΛ
(
e−Λϕ

)
y
+ V ϕV − ΦϕΦ − ϕ− Uye

U−Λ V y√
1 + V 2y2

ϕ

− eU−Λ V√
1 + V 2y2

ϕ+ eU−Λ V 3y2

(1 + V 2y2)
3
2

ϕ− eU
V y√

1 + V 2y2

(
e−Λϕ

)
y

+

(
yΛy + Uye

U−Λ V y√
1 + V 2y2

+ eU−Λ V

(1 + V 2y2)
3
2

)
ϕ

+

(
yΛyV +

eU−ΛUy

y

√
1 + V 2y2 − eU−Λ 1

y2
√
1 + V 2y2

)
ϕV .

After some cancellations:

F (y, V,Φ) = −
(
yeΛ + eU

V y√
1 + V 2y2

)
(
e−Λϕ

)
y
− ΦeΛ

(
e−Λϕ

)
Φ
− ϕ

+

(
yΛyV eΛ + V eΛ +

eUUy

y

√
1 + V 2y2 − eU

1

y2
√
1 + V 2y2

)
(
e−Λϕ

)
V
.

(5.28)

Then (5.27) can be rewritten as:

2∑

i=1

∫ ∞

y0

∫ ∞

0

F
(
y, Vi (y) ,Φe

σi(y)
) Ā0 (Φ) e

σi(y)

∣∣∂H
∂V

(y, Vi (y))
∣∣dΦdy = 0.

Due to Proposition 5 as well as the fact that the curves γ1, γ2 are globally
defined it follows that:

∣∣∣∣
∂H

∂V
(y, Vi (y))

∣∣∣∣ = (−1)
i−1 ∂H

∂V
(y, Vi (y)) .

Then:

J =
2∑

i=1

(−1)i−1
∫ ∞

y0

∫ ∞

0

F
(
y, Vi (y) ,Φe

σi(y)
) Ā0 (Φ) e

σi(y)

∂H
∂V

(y, Vi (y))
dΦdy. (5.29)
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Using (3.25) and (5.28) we obtain:

F (y, V,Φ)

yeΛ + eU V y√
V 2y2+1

= −
(
e−Λϕ

)
y
− Φ

y + eU−Λ V y√
V 2y2+1

(
e−Λϕ

)
Φ

− 1

y + eU−Λ V y√
V 2y2+1

(
e−Λϕ

)

+
1

y + eU−Λ V y√
V 2y2+1

(
yΛyV + V +

eU−ΛUy

y

√
1 + V 2y2

)(
e−Λϕ

)
V

− eU−Λ

y + eU−Λ V y√
V 2y2+1

1

y2
√
1 + V 2y2

(
e−Λϕ

)
V
.

Equations (4.3), (4.4) and (5.11) give:

dVi

dy
(y) = − 1

y + eU−Λ V y√
V 2y2+1

(
yΛyV + V +

eU−ΛUy

y

√
1 + V 2y2

−eU−Λ 1

y2
√
1 + V 2y2

)
. (5.30)

Therefore

F
(
y, Vi (y) ,Φe

σi(y)
) eσi(y)

∂H
∂V

(y, Vi (y))

= eσi(y)

[
−
(
e−Λϕ

)
y
− Φ

dσi

dy

(
e−Λϕ

)
Φ

−dσi

dy

(
e−Λϕ

)
− dVi

dy
(y)
(
e−Λϕ

)]∣∣∣∣
V (y,Vi(y),Φeσi(y))

.

It then follows, using the chain rule that:

d

dy

(
eσi(y)e−Λ(y)ϕ

(
y, Vi (y) ,Φe

σi(y)
))

= −F
(
y, Vi (y) ,Φe

σi(y)
) eσi(y)

∂H
∂V

(y, Vi (y))
.

Formula (5.29) then becomes:

J =

2∑

i=1

(−1)
i−1
∫ ∞

y0

∫ ∞

0

Ā0 (Φ)
d

dy

(
eσi(y)e−Λ(y)ϕ

(
y, Vi (y) ,Φe

σi(y)
))

dΦdy

or, equivalently:

J =
2∑

i=1

(−1)i−1
∫ ∞

0

Ā0 (Φ)
(
eσi(y0)e−Λ(y0)ϕ

(
y0, Vi

(
y+0
)
,Φeσi(y0)

))
dΦ
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and using (5.9), (5.10), (5.12):

J ≡
2∑

i=1

(−1)
i−1
∫ ∞

0

Ā0 (Φ)ϕ (y0, Vi (y0) ,Φ) dΦ.

Due to the fact that ϕ
(
y0, Vi

(
y+0
)
,Φ
)
= ϕ (y0, V0,Φ) for i = 1, 2 we have J = 0

and (5.26) follows. This concludes the proof of the theorem.

We now remark that it is possible to derive some detailed information about
the behaviour of the curves γ1, γ2 as y → ∞.

Theorem 6 Suppose that the curves γ1, γ2 are as in Theorem 1. Then, the
following asymptotic formulas hold:

U = log

(
y

y0

)
+ log

(√
1− y20

)
+ o (1) as y → ∞,

Λ → log
(√

3
)

as y → ∞,

V1 = −2y0
√
3 (1− y20)

(1− 4y20) y
(1 + o(1)) as y → ∞,

V2 = −
√
1− y20√
3y0

C1

y

(
y0

y

)2

(1 + o(1)) as y → ∞

for a suitable constant C1 ∈ R.

Notice that the asymptotic behaviour of the solutions in Theorem 6 shows
that the support of these solutions approaches the line {V = 0} away from the
self-similar region (i.e. for y → ∞). This is the one of the main differences
between the solutions described in this paper and the ones in [17].

It is relevant to notice that the spacetime described by the solutions in
Theorem 6 exhibits curvature singularities and not just coordinate singularities.
To this end we use Kretschmann scalar (cf. [25]):

RαβγδRαβγδ = 4K2 +
16m2

r6
+ 12r−2∇a∇br∇a∇br

where K is the gaussian curvature of the quotient of the spacetime by the
symmetry group and m is the Hawking mass that can be computed by means
of:

m =
r

2
(1− ∂ar∂

ar) .

Combining (2.1), (3.11), (3.12) we obtain the following self-similar form for the
Hawking mass:

m =
r

2

(
1− e

−2Λ( r
(−t) )

)
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and therefore, it follows from Theorem 6 that:

m ∼ r

3
for

r

(−t)
sufficiently large.

On the other hand, the last term in the Kretschmann scalar can be written as
(cf. [10], Appendix A):

24r−2

(
1

2r
(k −∇br∇cr) + 2πrtrT

)2

+96π2

(
Tab −

trT

2
gab

)(
T ab − trT

2
gab
)
.

The last term turns out to be positive for any matter model satisfying the dom-
inant energy condition, which includes in particular the case of Vlasov matter.

Therefore RαβγδRαβγδ ≥ 16m2

r6
and so the curvature becomes singular as r → 0

for a fixed large value of r
(−t) .

We remark that the solutions which have been derived do not provide an
example of violation of the cosmic censorship hypothesis for Vlasov matter, be-
cause the spacetimes concerned are not asymptotically flat as r → ∞. Moreover,
it turns out that the region contained inside the light cone reaching the singular
point at r = 0, t = 0− in the spacetime described by Theorem 6 is dependent on
the data on the whole region with 0 ≤ r < ∞. This implies that a gluing of this
spacetime with another one causally disconnected from the singular point is
not possible, because this would require doing some gluing along regions where
r = ∞. In order to check these statements it is convenient to rewrite the metric
(2.1) in double null coordinates. Notice that (2.1), (3.11) and (3.12) yield the
following self-similar structure for the metric:

ds2 = −e
2U( r

(−t) )dt2 + e
2Λ( r

(−t) )dr2 + r2
(
dθ2 + sin2 θdϕ2

)
.

The double null coordinates are then just the constants of integration associated
to the pair of differential equations:

−e
U( r

(−t) )dt+ e
Λ( r

(−t) )dr = 0,

e
U( r

(−t) )dt+ e
Λ( r

(−t) )dr = 0.

The solutions of these equations can be written in terms of two integration
constants u and v that will define the double null coordinates. The particular
choice of coordinates has been made in order to obtain u and v taking values in
compact sets:

arctanh (u) = log (−t) +

∫ y

0

eΛ(ξ)−U(ξ)

1 + ξeΛ(ξ)−U(ξ)
dξ

arctanh (v) = log (−t)−
∫ y

0

eΛ(ξ)−U(ξ)

1− ξeΛ(ξ)−U(ξ)
dξ

In the region close to the centre (i.e. y << 1) the structure of the metric
is similar to Minkowski. On the other hand, Theorem 6 yields the following
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asymptotics for r >> (−t) :

arctanh (v) ∼ log (−t) +

√
3y0√

1− y20
log

(
r

(−t)

)
,

arctanh (u) ∼ − log (−t) +

√
3y0√

1− y20
log

(
r

(−t)

)
.

The light cone approaching the singular point is described in these coordinates
by the line u = 1. Notice along such a line, for v of order one we would have
r = ∞, whence the assertion above follows.

For these reasons a spacetime behaving asymptotically as Minkowski can-
not be obtained gluing the self-similar solution obtained in this paper with a
spacetime causally disconnected from the singular point. This kind of gluing
might be possible for non self-similar solutions of the Einstein equations behav-
ing asymptotically near the singular point like those described in this paper.
However, such an analysis is beyond the scope of this paper.

6 PROOF OF THEOREM 1.

The strategy used to prove Theorem 1 is the following. We first transform
the original problem (3.15), (3.16), (5.2), (5.3), (5.5), (5.6), (5.8)-(5.12), (5.14),
(5.15) into a family of four-dimensional autonomous systems depending on the
parameter β0 by means of a change of variables. It will be shown that proving
Theorem 1 is equivalent to finding an orbit for this system connecting two
specific points P0, P1 of the four-dimensional phase space. The point P1 is
a unstable saddle point with an associated three-dimensional stable manifold
M = M (β0) that can be described in detail in the limit y0 → 0. A shooting
argument will show that for a suitable choice of the parameter β0 the manifold
M (β0) contains the point P0. In the rest of this section we give the details of
this argument.

6.1 Reduction of the problem to an autonomous system.

Instead of the set of variables (y, U,Λ, Vi, σi) it is more convenient to use the
set of variables (s, u,Λ, ζi, Qi) where:

s = log

(
y

y0

)
, U = log

(
y

y0

)
+u , ζi = yVi , Qi =

y0

y
eσi , i = 1, 2. (6.1)
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Then, the evolution equations (3.15), (3.16), (5.4), (5.11) become:

eu
√
ζ2i + 1 + y0ζie

Λ =
√
1− y20 , i = 1, 2 , ζ1 < ζ2, (6.2)

dQi

ds
= − euQiζi[

y0eΛ
√
(ζi)

2
+ 1 + ζieu

] , i = 1, 2, (6.3)

e−2Λ (2Λs − 1) + 1 =
θ

2



 Q2
1

[
ζ21 + 1

]
∣∣∣ζ1eu + y0eΛ

√
ζ21 + 1

∣∣∣
+

Q2
2

[
ζ22 + 1

]
∣∣∣ζ2eu + y0eΛ

√
ζ22 + 1

∣∣∣



 ,

(6.4)

e−2Λ (2us + 3)− 1 =
θ

2


 Q2

1 (ζ1)
2

∣∣∣ζ1eu + y0eΛ
√
ζ21 + 1

∣∣∣
+

Q2
2 (ζ2)

2

∣∣∣ζ2eu + y0eΛ
√
ζ22 + 1

∣∣∣




(6.5)

where

θ =
16π2β0

y0
. (6.6)

The initial conditions (3.17), (5.12) imply:

u = 0 , Λ = 0 , Qi = 1 , i = 1, 2 at s = 0. (6.7)

Notice that the system (6.3)-(6.5) with ζi as in (6.2) is a four-dimensional au-
tonomous system of equations for the unknown functions (Q1, Q2,Λ, u) . Notice
however that the system seems to becomes singular if the variables (Q1, Q2,Λ, u)
approach the values in (6.7) due to the vanishing of the denominators in (6.4),

(6.5). To treat these singularities we rewrite the terms

[
y0e

Λ

√
(ζi)

2
+ 1 + ζie

u

]
.

Notice that (6.2) implies:

ζi =
1(

1− y20e
2(Λ−u)

)
[
−y0

√
1− y20e

Λ−2u ∓ Z

]
, i = 1, 2, (6.8)

Z =
√
(e−2u (1− y20)− 1)

(
1− y20e

2(Λ−u)
)
+ y20 (1− y20) e

2(Λ−2u). (6.9)

Then:

y0e
Λ

√
(ζi)

2
+ 1 + ζie

u = ∓euZ , i = 1, 2
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and the system of equations (6.3)-(6.5) becomes:

dQ1

ds
=

Q1ζ1

Z
, (6.10)

dQ2

ds
= −Q2ζ2

Z
, (6.11)

e−2Λ (2Λs − 1) + 1 =
θe−u

2

[
Q2

1

Z

[
ζ21 + 1

]
+

Q2
2

Z

[
ζ22 + 1

]]
, (6.12)

e−2Λ (2us + 3)− 1 =
θe−u

2

[
Q2

1ζ
2
1

Z
+

Q2
2ζ

2
2

Z

]
. (6.13)

We now eliminate the variables Λ, u in (6.3)-(6.5) and replace them by the
functions Z and G where Z is as in (6.9) and G is defined by means of:

G = e−2Λ. (6.14)

Then (6.12) becomes:

Gs = 1−G− θe−u

2

[
Q2

1

Z

[
ζ21 + 1

]
+

Q2
2

Z

[
ζ22 + 1

]]
. (6.15)

On the other hand (6.9) implies:

e−2u =
Z2 + 1

[(1− y20) + y20e
2Λ]

=

(
Z2 + 1

)
G

[G+ y20 (1−G)]
(6.16)

whence:

u = −1

2
log

( (
Z2 + 1

)
G

[G+ y20 (1−G)]

)
.

Differentiating this formula we obtain:

us = − ZZs

(Z2 + 1)
− y20

2

Gs

[G+ y20 (1−G)]G
.

Eliminating us from this formula using (6.13), (6.15) we obtain:

ZZs =

(
3

2
− 1

2G
−∆

)(
Z2 + 1

)
(6.17)

where:

∆ ≡ y20
2

Gs

[G+ y20 (1−G)]G
+

θe−u

4G

[
Q2

1 (ζ1)
2

Z
+

Q2
2 (ζ2)

2

Z

]
.

Using (6.15) it then follows, after some computations, that:

4GZ
[
G+ y20 (1−G)

]
∆ = 2 (1−G) y20Z (6.18)

+ θe−u
[
−y20

[
Q2

1

[
ζ21 + 1

]
+Q2

2

[
ζ22 + 1

]]

+
[
Q2

1 (ζ1)
2 +Q2

2 (ζ2)
2
] [

G+ y20 (1−G)
]]

.
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The last bracket in (6.18) can be rewritten as:
[
−y20

[
Q2

1

[
ζ21 + 1

]
+Q2

2

[
ζ22 + 1

]]
+
[
Q2

1 (ζ1)
2 +Q2

2 (ζ2)
2
] [

G+ y20 (1−G)
]]

= Q2
1

[
ζ21 − y20

(
ζ21 + 1

)]
+Q2

2

[
ζ22 − y20

(
ζ22 + 1

)]

+
(
1− y20

) [
Q2

1 (ζ1)
2
+Q2

2 (ζ2)
2
]
(G− 1) . (6.19)

Using (6.8) we obtain:

[
ζ2i − y20

(
ζ2i + 1

)]
=

(
1− y20

)
Z2

(
1− y20e

2(Λ−u)
)2 ± 2y0

(
1− y20

) 3
2 eΛ−2u

(
1− y20e

2(Λ−u)
)2 Z

+ y20

[(
1− y20

)2
e2(Λ−2u)

(
1− y20e

2(Λ−u)
)2 − 1

]
, i = 1, 2. (6.20)

Plugging (6.20) into (6.19) it then follows that:
[
−y20

[
Q2

1

[
ζ21 + 1

]
+Q2

2

[
ζ22 + 1

]]
+
[
Q2

1 (ζ1)
2
+Q2

2 (ζ2)
2
] [

G+ y20 (1−G)
]]

=

(
1− y20

)
Z2

(
1− y20e

2(Λ−u)
)2
(
Q2

1 +Q2
2

)
+

2y0
(
1− y20

) 3
2 eΛ−2u

(
1− y20e

2(Λ−u)
)2

(
Q2

1 −Q2
2

)
Z

+ y20

[(
1− y20

)2
e2(Λ−2u)

(
1− y20e

2(Λ−u)
)2 − 1

]
(
Q2

1 +Q2
2

)

+
(
1− y20

) [
Q2

1 (ζ1)
2
+Q2

2 (ζ2)
2
]
(G− 1)

and using (6.18) we arrive at:

∆ =
(1−G) y20

2G [G+ y20 (1−G)]

+
θe−u

4G [G+ y20 (1−G)]

[ (
1− y20

)
Z

(
1− y20e

2(Λ−u)
)2
(
Q2

1 +Q2
2

)

+
2y0

(
1− y20

) 3
2 eΛ−2u

(
1− y20e

2(Λ−u)
)2

(
Q2

1 −Q2
2

)
+

1

Z
Φ


 (6.21)

where:

Φ = y20

[(
1− y20

)2
e2(Λ−2u)

(
1− y20e

2(Λ−u)
)2 − 1

]
(
Q2

1 +Q2
2

)

+
(
1− y20

) [
Q2

1 (ζ1)
2
+Q2

2 (ζ2)
2
]
(G− 1) . (6.22)

In order to obtain analytic solutions it is convenient to introduce the change of
variables:

ds = 2GZdχ , χ = 0 at s = 0. (6.23)

27



Then the system (6.10), (6.11), (6.15), (6.17) becomes:

dQ1

dχ
= 2GQ1ζ1, (6.24)

dQ2

dχ
= −2GQ2ζ2, (6.25)

dG

dχ
= 2G

[
Z (1−G)− θe−u

2

[
Q2

1

[
ζ21 + 1

]
+Q2

2

[
ζ22 + 1

]]]
, (6.26)

dZ

dχ
= (3G− 1− 2G∆)

(
Z2 + 1

)
(6.27)

with the initial conditions:

Q1 = Q2 = 1 , G = 1 , Z = 0 , at χ = 0. (6.28)

We can further simplify Φ in (6.22) using (6.8):

Φ = y20

[(
1− y20

)2
e2(Λ−2u)

(
1− y20e

2(Λ−u)
)2 − 1

]
(
Q2

1 +Q2
2

)
(6.29)

+

(
1− y20

)
(G− 1)

(
1− y20e

2(Λ−u)
)2
[[
y20
(
1− y20

)
e2(Λ−2u) + Z2

] (
Q2

1 +Q2
2

)]

+2y0

√
1− y20ZeΛ−2u

(
Q2

1 −Q2
2

)]
.

In order to identify the behaviour of Φ as Z → 0 we write the terms in brackets
on the right-hand side of (6.29) as:
[(

1− y20
)2

e2(Λ−2u)

(
1− y20e

2(Λ−u)
)2 − 1

]

=
1

(
1− y20e

2(Λ−u)
)2
[(
1− y20

)2 (
e2(Λ−2u) − 1

)
+ 2

(
1− y20

)
y20

(
e2(Λ−u) − 1

)

−y40

(
e2(Λ−u) − 1

)2]
.

Then (6.29) becomes:

Φ =
y20
(
1− y20

) (
Q2

1 +Q2
2

)
(
1− y20e

2(Λ−u)
)2

[(
1− y20

) (
e2(Λ−2u) − 1

)
+ 2y20

(
e2(Λ−u) − 1

)

+
(
1− y20

)
(G− 1) e2(Λ−2u)

]

+

(
1− y20

)
(G− 1)

(
1− y20e

2(Λ−u)
)2
[
Z2
(
Q2

1 +Q2
2

)
+ 2y0

√
1− y20ZeΛ−2u

(
Q2

1 −Q2
2

)]

− y60
(
Q2

1 +Q2
2

)
(
1− y20e

2(Λ−u)
)2
(
e2(Λ−u) − 1

)2
. (6.30)
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In order to simplify this formula we write, using (6.14), (6.16):

[(
1− y20

) (
e2(Λ−2u) − 1

)
+ 2y20

(
e2(Λ−u) − 1

)
+
(
1− y20

)
(G− 1) e2(Λ−2u)

]

= −
(
1− y20

) (
1− e−4u

)
+ 2y20

(
e2(Λ−u) − 1

)

= −
(
1− y20

)
(
1−

(
G

[G+ y20 (1−G)]

)2
)

+ 2y20

(
1

[G+ y20 (1−G)]
− 1

)

+
(
1− y20

) (
2Z2 + Z4

)( G

[G+ y20 (1−G)]

)2

+ 2y20

(
Z2

[G+ y20 (1−G)]

)
,

(
e2(Λ−u) − 1

)
=

Z2 + (1−G)
(
1− y20

)

[G+ y20 (1−G)]
.

Plugging these formulas into (6.30) we obtain, after some computations:

Φ

Z
=

y20
(
1− y20

) (
Q2

1 +Q2
2

)
(
1− y20e

2(Λ−u)
)2

[
(
1− y20

) (
2Z + Z3

)( G

[G+ y20 (1−G)]

)2

+2y20

(
Z

[G+ y20 (1−G)]

)]

+

(
1− y20

)
(G− 1)

(
1− y20e

2(Λ−u)
)2
[
Z
(
Q2

1 +Q2
2

)
+ 2y0

√
1− y20e

Λ−2u
(
Q2

1 −Q2
2

)]

− y60
(
Q2

1 +Q2
2

)
(
1− y20e

2(Λ−u)
)2

[
2
(
1− y20

)
Z (1−G) + Z3

[G+ y20 (1−G)]
2

]
. (6.31)

Summarizing, we have transformed the original problem (3.15), (3.16), (5.4),
(5.11) into the system of equations (6.24)-(6.27) with ∆ as in (6.21), Φ

Z
as in

(6.31), ζi as in (6.8) and Λ, u given by (6.14), (6.16). The initial data for
(Q1, Q2, G, Z) are as in (6.28).

Some of the forms that we have derived for the ODE problems above are more
convenient for describing the solutions in different regions of the phase space.
We will change freely between the different groups of equivalent variables in the
following.

6.2 Local existence of the curves γ1, γ2.

With the reformulation of the problem obtained in the previous subsection the
existence of the curves γ1, γ2 in a neighbourhood of the point (y0, V0) can be
obtained using standard ODE theory.
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Proposition 7 For any y0 ∈ (0, 1) and any β0 > 0 there exist δ > 0 and two
curves γ1, γ2 that can be parametrized as

γi = {(y, V ) : y0 < y < y0 + δ , V = Vi (y)} , i = 1, 2 (6.32)

with the functions V1 (y) , V2 (y) as in (5.5), (5.6) satisfying (5.2), (5.3), (5.8)
the functions U, Λ satisfying (3.15), (3.16) and (5.9), (5.10) with ρ̃, p̃ as in
(5.14), (5.15) and σ1, σ2 solving (5.11), (5.12).

Proof. The arguments in Subsection 6.1 show that the proposition follows
from proving local existence and uniqueness for (6.24)-(6.27) with initial data
(6.28). Since the right-hand side of (6.24)-(6.27) is analytic in a neighbourhood
of (Q1, Q2, G, Z) = (1, 1, 1, 0) it follows that there exists a unique solution of
(6.28), (6.24)-(6.27) on an interval of the form 0 < χ < δ0 for some δ0 > 0.
Moreover, for such a solution ∆ → 0 as χ → 0+, whence Z ∼ 2χ as χ → 0+.
Therefore (6.23) yields:

s ∼ 2χ2 as χ → 0+ , χ ∼
√

s

2
as s → 0+,

Z ∼
√
2s as s → 0+. (6.33)

Using (6.1) it follows that:

s ∼ y − y0

y0
as y → y+0 . (6.34)

Combining then (6.1) and (6.8) we obtain (5.8). The asymptotics (5.9), (5.10)
follows from the asymptotics for G, Z in an analogous way.

Moreover, we can prove Proposition 5 in a similar way.
Proof of Proposition 5. It follows from (3.25), (6.1), (6.33), (6.34).

We notice for further reference that we have also proved the following result:

Proposition 8 There exists a unique solution of the system (6.3)-(6.5) with ζi
as in (6.2) and initial data (Q1, Q2,Λ, u) = (1, 1, 0, 0) as s → 0+.

6.3 Steady states for the system (6.24)-(6.27).

In order to study the steady states of (6.24)-(6.27) it is more convenient to use
the form of the equations in (6.2)-(6.5). Then the steady states are characterized
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by:

Qiζi = 0 i = 1, 2, (6.35)

−e−2Λ + 1 =
θ

2



 Q2
1∣∣∣ζ1eu + y0eΛ
√
ζ21 + 1

∣∣∣

[
ζ21 + 1

]

+
Q2

2∣∣∣ζ2eu + y0eΛ
√
ζ22 + 1

∣∣∣

[
(ζ2)

2
+ 1
]


 , (6.36)

3e−2Λ − 1 =
θ

2


 Q2

1 (ζ1)
2

∣∣∣ζ1eu + y0eΛ
√
ζ21 + 1

∣∣∣
+

Q2
2 (ζ2)

2

∣∣∣ζ2eu + y0eΛ
√
ζ22 + 1

∣∣∣


 . (6.37)

The first and third equations imply:

3e−2Λ − 1 = 0. (6.38)

Then, the second equation reduces to:

2

3
=

θ

2



 Q2
1∣∣∣ζ1eu + y0eΛ
√
ζ21 + 1

∣∣∣
+

Q2
2∣∣∣ζ2eu + y0eΛ
√
ζ22 + 1

∣∣∣



 . (6.39)

Notice that (6.39) implies that at least one of the variables Q1, Q2 is different
from zero at the steady state. Suppose that both of them are different from
zero. Then ζ1 = ζ2 = 0, whence, using

eu
√
ζ2i + 1 + y0ζie

Λ =
√
1− y20 , i = 1, 2 , ζ1 ≤ ζ2

it follows that:

eu =
√
1− y20 (6.40)

and (6.39) reduces to:

(
Q2

1 +Q2
2

)
=

4y0e
Λ

3θ
=

4y0
√
3

3θ
.

This defines a family of steady states. Local analysis near these solutions
indicates that they are reached for finite values of y. Since we are interested in
solutions defined for arbitrarily large values of y > y0 a more detailed analysis
of these solutions will not be pursued here. We will then restrict our analysis
to the solutions for which Q1Q2 = 0.

Suppose that Q1 6= 0. Then ζ1 = 0. (6.40) implies:

√
ζ22 + 1 +

y0ζ2e
Λ

√
1− y20

= 1,

ζ2 =

√
1− y20
y0eΛ

[
1−

√
ζ22 + 1

]
< 0.
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This contradicts ζ1 ≤ ζ2. Therefore for solutions with Q1Q2 = 0 we must have
Q2 6= 0 whence ζ2 = 0. Then (6.40) is satisfied and (6.39) yields:

Q2 =

√
4
√
3

3θ
y0 =

2
√
y0

3
1
4

√
θ
.

We remark that for this solution:

ζ1 = − 2heΛ∞

(h2 − e2Λ∞)
= −2y0

√
3 (1− y20)

1− 4y20
.

In order to have ζ1 < ζ2 = 0 we need y0 ∈
(
0, 12
)
.

Summarizing, for each y0 ∈
(
0, 1

2

)
the system (6.24)-(6.27) has the following

steady state:

Q1 = Q1,∞ = 0, (6.41)

Q2 = Q2,∞ =
2
√
y0

3
1
4

√
θ,

(6.42)

Λ = Λ∞ =
log (3)

2
, (6.43)

u = u∞ = log

(√
1− y20

)
. (6.44)

We also introduce the following notation for further reference:

ζ1,∞ = − 2heΛ∞

(h2 − e2Λ∞)
= −2y0

√
3 (1− y20)

1− 4y20
, (6.45)

ζ2,∞ = 0. (6.46)

6.4 Linearization near the equilibrium.

The main result that we prove in this subsection is the following:

Theorem 9 For each y0 ∈
(
0, 12

)
the point P1 = (Q1,∞, Q2,∞,Λ∞, u∞) defined

by (6.41)-(6.44) is an unstable hyperbolic point of the system (6.2)-(6.5). The
corresponding stable manifold of the point (Q1,∞, Q2,∞,Λ∞, u∞) that will be
denoted by Mθ is three-dimensional and it is tangent at this point to the subspace
generated by the vectors









1
0
0
0


 ,




0

− (1−y2
0)

3
5
4 y

3
2
0

√
θ

− 2
3
1




,




0

− 2
√

1−y2
0

3
5
4 y

3
2
0

√
θ

−
√

1−y2
0

3y0

1









. (6.47)
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Proof. The key ingredient in the proof of this theorem is the linearization
of the system (6.2)-(6.5) around the point (Q1,∞, Q2,∞,Λ∞, u∞) . Let us write:

Λ = Λ∞ + L,

u = u∞ + ν,

Q1 = Q1,∞ + q1 = q1,

Q2 = Q2,∞ + q2.

Neglecting terms quadratic in |L|+ |ν|+ |q1|+ |q2| we obtain, after some tedious,
but mechanical computations, the following linearized problem:

dq1

ds
= − 2h2

(h2 − 3)
q1 = −2

(
1− y20

)

(1− 4y20)
q1, (6.48)

dq2

ds
=

2
(
1− y20

)

3
5
4

√
θy

3
2
0

ν, (6.49)

Ls =
3

1
4

√
θ√

y0
q2 +

(
1− y20

)

3y20
ν − 2L, (6.50)

νs = 3L. (6.51)

Looking for solutions of the linearized problem with the form:

eγs




A1

A2

A3

A4




we obtain the following possible values of γ with their corresponding eigenvec-
tors:

γ1 = −2
(
1− y20

)

(1− 4y20)
↔




A1

A2

A3

A4


 =




1
0
0
0


 ,

γ2 = −2 ↔




A1

A2

A3

A4


 =




0

− (1−y2
0)

3
5
4 y

3
2
0

√
θ

− 2
3
1




,

γ3 = −
√
(1− y20)

y0
↔




A1

A2

A3

A4


 =




0

− 2
√

1−y2
0

3
5
4 y

3
2
0

√
θ

−
√

1−y2
0

3y0

1




,
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γ4 =

√
(1− y20)

y0
↔




0
2
√

1−y2
0

3
5
4 y

3
2
0

√
θ√

1−y2
0

3y0

1




.

The theorem then follows from standard results for stable manifolds (cf. for
instance [4], [19]).

6.5 Reformulation of the solution in the original variables.

Our goal now is to obtain a trajectory connecting the point (Q1, Q2,Λ, u) =
(1, 1, 0, 0) at s = 0 with the point P1 at s = ∞ for a suitable value of θ (or
equivalently β0). Let us remark that such a trajectory would satisfy the re-
quirements in Theorem 1. Indeed, notice that such a trajectory behaves near
the point (y0, V0) as stated in Theorem 1 due to Proposition 7. On the other
hand, such a trajectory would belong to the stable manifold of the point P1 and
therefore its asymptotic behaviour as s → ∞ would be given by:




Q1

Q2

Λ
u


 ∼




Q1,∞
Q2,∞
Λ∞
u∞


+ C1e

−2s




0
(1−y2

0)

3
5
4
√
θy

3
2
0

2
3
−1




+ C2e
−

2(1−y20)
(1−4y2

0)
s




1
0
0
0


+ ...

for sufficiently small y0 (cf. [4]). Notice that the smallness of y0 guarantees that
the last term yields a contribution larger for s → ∞ than the first quadratic
corrections if C2 6= 0.

Using (6.1) we obtain the following asymptotics for the original set of vari-
ables U, Λ, σi, Vi, i = 1, 2 :

U = log

(
y

y0

)
+ u ∼ log

(
y

y0

)
+ log

(√
1− y20

)
+ o (1) as y → ∞,

Λ → log
(√

3
)

as y → ∞,

eσ1 ∼ C2

(
y

y0

)− 1+2y20

(1−4y2
0)

as y → ∞,

eσ2 ∼ Q2,∞

(
y

y0

)
as y → ∞,

V1 ∼ ζ1,∞
y

= −2y0
√
3 (1− y20)

(1− 4y20) y
as y → ∞,

V2 ∼ −
√
1− y20√
3y0

C1

y

(
y0

y

)2

as y → ∞.
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in particular these formulas prove Theorem 6.

6.6 The shooting argument: Approximation of the stable
manifold Mθ for small y0.

Since the stable manifold Mθ is three-dimensional we cannot expect the point
(Q1, Q2,Λ, u) = (1, 1, 0, 0) to belong to Mθ for generic values of θ. The intuitive
idea of the proof which follows is to show that the manifold Mθ divides the set
{0 < G < 1, Z > 0, Qi > 0 , i = 1, 2} into two different regions. If the point
(1, 1, 0, 0) lies on different sides of Mθ for different values of θ then by continuity
there must exist a value θ∗ of θ such that (1, 1, 0, 0) ∈ Mθ. In the rest of the
paper we will obtain approximations to the manifold Mθ for y0 small that will
show that the point (1, 1, 0, 0) lies on different sides of Mθ for large positive
values of θ and small positive values of θ. More precisely, the main result of this
subsection is the following:

Theorem 10 There exists ȳ0 small enough such that, for any y0 in the interval
[0, ȳ0] there exists θ∗ = θ∗ (y0) > 0 such that (1, 1, 0, 0) ∈ Mθ∗ .

Proof. In order to prove Theorem 10 it is convenient to use the coordinates
(Q1, Q2, G, Z) (cf. (6.9), (6.14)). These variables satisfy the system of equations
(6.24)-(6.27). The steady state P1 = P1 (y0) is given in these coordinates by:

P1 = (Q1,∞, Q2,∞, G∞, Z∞) =

(
0,

2
√
y0

3
1
4

√
θ
,
1

3
,

√
3y20

(1− y20)

)
. (6.52)

The point P1 depends continuously on y0 if y0 ∈
[
0, 12
]
. If y0 = 0 the system

(6.24)-(6.27) becomes:

dQ1

dζ
= −2GZQ1, (6.53)

dQ2

dζ
= −2GZQ2, (6.54)

dG

dζ
= 2G


Z (1−G)− θ

[
Z2 + 1

] 3
2

2

(
Q2

1 +Q2
2

)

 , (6.55)

dZ

dζ
=

(
3G− 1− θe−u

2
Z
(
Q2

1 +Q2
2

)) (
Z2 + 1

)
. (6.56)

Theorem 9 shows that the point P1 (y0) is hyperbolic for y0 ∈
(
0, 1

2

]
with a

three-dimensional stable manifold Mθ = Mθ (y0) . On the other hand two of
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the eigenvalues associated to the linearization around P1 of the system (6.24)-
(6.27) degenerate for y0 = 0. More precisely, let us write G = 1

3 + g. Since
P1 (0) =

(
0, 0, 13 , 0

)
we obtain the following linearization of (6.53)-(6.56) near

P1 (0):
dQ1

dζ
= 0 ,

dQ2

dζ
= 0 ,

dG

dζ
=

4Z

9
,

dZ

dζ
= 3g.

The corresponding eigenvalues are
{
0, 0,− 2

√
3

3 , 2
√
3

3

}
and the corresponding

eigenvectors are








1
0
0
0


 ,




0
1
0
0


 ,




0
0

− 2
√
3

9
1


 ,




0
0

2
√
3

9
1








. Standard results

(cf. [4]) show the existence of a centre-stable manifold that will be denoted by
Mθ (0) that is invariant under the flow defined by the system (6.53)-(6.56) and

is tangent at P1 (0) to the plane spanned by









1
0
0
0


 ,




0
1
0
0


 ,




0
0

− 2
√
3

9
1








.

Classical results (cf. [4]) then show that it is possible to obtain a con-
tinuously differentiable four-dimensional manifold Mθ,ext ⊂

[
0, 12

]
× R

4, with
(y0, Q1, Q2, G, Z) ∈ Mext such that:

Mθ,ext ∩ {y0 = b} = Mθ (b) (6.57)

for any b ∈
(
0, 1

2

)
. Indeed, the manifold Mθ,ext is any centre-stable manifold

at the point (y0, Q1, Q2, G, Z) =
(
0, 0, 0, 13 , 0

)
associated to the system (6.24)-

(6.27) complemented with the additional equation

dy0

dζ
= 0. (6.58)

More precisely, we make use of the fact that the dynamical system of interest
has a smooth extension to an open neighbourhood of the stationary point un-
der consideration. The manifold Mθ,ext is the intersection of a centre-stable
manifold for the extended system with the subset defined by the inequality
y0 ≥ 0. The manifold Mext contains all the points of the form (y0, P1 (y0))
with y0 ∈

[
0, 12
]
since they remain in a neighbourhood of

(
0, 0, 0, 13 , 0

)
for ar-

bitrary times. Moreover, the manifolds Mθ,ext ∩ {y0 = b} are invariant under
the flow (6.24)-(6.27) and since they are formed by points that remain in a
neighbourhood of

(
0, 0, 0, 13 , 0

)
for arbitrarily long times, it follows from (6.58)

that the points in Mθ,ext ∩ {y0 = b} are contained in the stable manifold asso-
ciated to the point P1 (y0) . The uniqueness of the stable manifold then implies
Mθ (b) ⊂ Mθ,ext∩{y0 = b} . Moreover, the form of the tangent space to Mθ,ext

at the point
(
0, 0, 0, 13 , 0

)
implies that the dimension of Mθ,ext ∩ {y0 = b} is

three for small b. Since this is also the dimension of Mθ (b) the relation (6.57)
follows. The continuity of Mext then implies that the centre-stable manifold

36



Mθ (0) can be uniquely obtained as limit of the manifolds Mθ (y0) as y0 → 0+.
In particular the manifold Mθ (0) is unique.

The properties of the manifold Mθ (0) can be analysed in more detail. We
remark that the curve:

√
(Z2 + 1)

√
G (1−G) =

2

3
3
2

, Q1 = Q2 = 0 (6.59)

belongs to Mθ (0) since the hyperplane {Q1 = Q2 = 0} is invariant under the
dynamics induced by (6.53)-(6.56). On the other hand, the invariance of (6.53)-
(6.56) under rotations in the (Q1, Q2)-plane allows the problem to be reduced

to one with smaller dimensionality. More precisely, defining Q =
√

1
2 (Q

2
1 +Q2

2)

leads to the system:

dQ

dζ
= −2GZQ, (6.60)

dG

dζ
= 2G

[
Z (1−G)− θ

[
Z2 + 1

] 3
2 Q2

]
, (6.61)

dZ

dζ
=
(
3G− 1− θZQ2

√
(Z2 + 1)

) (
Z2 + 1

)
. (6.62)

We will denote by Nθ the (two-dimensional) invariant manifold associated to
the system (6.60)-(6.62) that is obtained from Mθ by taking the quotient by
rotations in the Qi and which contains the curve (6.59).

Our goal is to show the existence for any y0 sufficiently small of a value
θ∗ = θ∗ (y0) of θ such that the manifold Mθ∗ (y0) contains the point Q1 =
Q2 = 1, G = 1, Z = 0. This will be done by showing that the corresponding
statement holds in the case y0 = 0 and then doing a perturbation argument.
The statement about the manifold Mθ∗ (0) is equivalent to the statement that
Nθ∗ contains the point (1, 1, 0). It will be shown that the latter statement is
true and, moreover, that when θ is varied through the value θ∗ the manifold
Nθ moves through (1, 1, 0) with non-zero velocity. It then follows that Mθ(0)
moves through (1, 1, 1, 0) with non-zero velocity. Note that the coefficients of the
system extend smoothly to an open neighbourhood of the manifold Mθ∗ (0). As
a consequence the manifold Mθ,ext extends smoothly to small negative values of
y0. The desired statement concerning Mθ(y0) is a consequence of the implicit
function theorem. In more detail, the statement that Mθ depends on θ and y0
in a way which is continuously differentiable means that there is a C1 mapping
Ψ from the product of a neighbourhood of (0, θ∗) in R

2 with Mθ(0) into a
neighbourhood of (1, 1, 1, 0) with the properties that its restriction to y0 = 0
and θ = θ∗ is the identity and that the image of {(y0, θ)} × Mθ∗(0) under
Ψ is Mθ(y0). The condition that the manifold moves with non-zero velocity
implies that if x0 denotes the point of Mθ∗(0) with coordinates (1, 1, 1, 0) the
linearization of Ψ at the point (0, θ∗, x0) with respect to the last four variables
is an isomorphism. This allows the implicit function theorem to be applied.

In order to check the existence of θ∗ it is enough to study the behaviour of
the manifolds Nθ for θ → 0+ and θ → ∞. These manifolds are two-dimensional
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manifolds in the three-dimensional space (Q,G,Z) . Notice that the structure
of the manifolds Nθ can be easily understood using the fact that the parameter
θ can be rescaled out of the system (6.60)-(6.62) using the change of variables:

Q =
1√
θ
q. (6.63)

Then (6.60)-(6.62) becomes:

dq

dζ
= −2GZq, (6.64)

dG

dζ
= 2G

[
Z (1−G)−

[
Z2 + 1

] 3
2 q2

]
, (6.65)

dZ

dζ
=
(
3G− 1− Zq2

√
(Z2 + 1)

) (
Z2 + 1

)
. (6.66)

Let us denote by Ñ the centre-stable manifold at the point (q,G, Z) =(
0, 13 , 0

)
for the dynamics (6.64)-(6.66). The manifold Ñ contains the curve{(

Z2 + 1
)
G (1−G)

2
= 4

33 , q = 0
}
. Notice that:

(Q,G,Z) ∈ Nθ ⇐⇒
(√

θQ,G,Z
)
∈ Ñ .

Therefore the family of manifolds Nθ can be obtained from the manifold Ñ
by means of the rescaling (6.63) while keeping the same value of the variables
G, Z. In order to check if (Q,G,Z) = (1, 1, 0) ∈ Nθ we just need to describe

in detail the intersection of the manifold Ñ with the line {G = 1, Z = 0} . Once
the existence of a value θ∗ of θ for which the manifold Nθ∗ contains the point
(1, 1, 0) has been shown the statement that the manifold Nθ moves through this
point with non-zero velocity follows immediately from the rescaling property.

Notice that the plane {q = 0} is invariant for the system of equations (6.64)-
(6.66). The analysis of the trajectories of (6.64)-(6.66) in this plane can be done
using phase portrait arguments. There is a unique equilibrium point at (G,Z) =(
1
3 , 0
)
with stable manifold

{(
Z2 + 1

)
G (1−G)

2
= 4

33

}
. This manifold splits

the plane (G,Z) in two connected regions. The trajectories starting their motion
in the region that contains the point (G,Z) = (0, 0) reach the line Z = 0 for
a finite value of ζ if Z > 0 initially and eventually develop a singularity where
Z approaches −∞ at a finite value of ζ. On the other hand, the trajectories
starting their motion in the region containing the point (G,Z) = (1, 0) move in
the direction of increasing Z towards Z = ∞, G = 1, a value that is achieved
for a finite value of ζ.

Notice that the solutions of (6.64)-(6.66) starting their dynamics in the set
{0 ≤ G ≤ 1, Z ≥ 0} can only evolve in two different ways. Either the trajectory
remains in the region where Z ≥ 0 for arbitrarily large values of ζ or the
trajectory enters the region {Z < 0} . In the second case this can only happen
through the set G ≤ 1

3 . Since G is decreasing it remains in the set {Z < 0} for
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larger values of ζ and eventually it approaches Z = −∞ for some finite value of
ζ.

Suppose otherwise that the trajectory remains in the region where Z ≥ 0 for
arbitrary values of ζ. Then q decreases to zero and the behaviour of the trajec-
tories is then similar to the ones in the plane {q = 0} . We now claim that either

this trajectory belongs to the stable manifold Ñ or it satisfies limζ→ζ∗ Z (ζ) = ∞
for some ζ∗ ≤ ∞. In order to avoid breaking the continuity of the argument we
will prove this result in Lemma 11 in Section 7.

We will show that there exists a point of the line {G = 1, Z = 0} in the

manifold Ñ . The points of this line enter the region {0 < G < 1, Z > 0} due
to the form of the vector field associated to (6.64)-(6.66). If q (0) > 0 is small,
Lemma 12 shows that Z approaches Z = ∞ for a finite value of ζ. Suppose now
that q (0) > 0 is sufficiently large. Then the trajectory enters the region {Z < 0}
for a finite value of ζ as the following argument shows. A solution which starts
at (q0, 1, 0) with q0 large immediately enters the region Z > 0, G < 1. The
inequality Z ≤ 1 will hold for at least a time 1

4 since dZ
dζ

≤ 4 as long as Z ≤ 1.
The aim is to show that for q0 sufficiently large Z will become negative within
the interval [0, 14 ]. From now on only that interval is considered. Integrating

the equation for q gives the inequality q(ζ) ≥ e−
1
2 q0. The equation for G then

shows that G(ζ) ≤ e−α(q0)ζ where α(q0) = q20e
−1−1. Choose q0 large enough so

that e−
1
40α(q0) ≤ 1

6 . When ζ = 1
40 the inequality Z ≤ 1

10 still holds. Under the
given circumstances G is decreasing on the whole interval [0, 14 ]. The equation
for Z shows that by the time ζ = 9

40 at the latest Z has reached zero.
Let U1 be the set of positive real numbers q0 for which the solution starting

at (q0, 1, 0) is such that Z → −∞ as ζ → ζ∗, where ζ∗ denotes the maximal
time of existence, and let U2 be the set of positive real numbers q0 for which
the solution starting at (q0, 1, 0) is such that Z → +∞ as ζ → ζ∗. It follows
from Lemma 13 that U2 is open. We also know that U1 is open. Moreover, it
has been proved that both U1 and U2 are non-empty. By connectedness of the
interval (0,∞) it follows that there must be a value of q0 for which the solution
starting at (q0, 1, 0) is neither in U1 or U2. For that solution Z is non-negative
and does not tend to infinity and thus, by Lemma 11, it is the desired solution
which lies on Ñ .

The equivalence between the existence of the self-similar solution described
in Section 5 and the existence of a trajectory connecting the points (Q1, Q2, G, Z) =
(1, 1, 1, 0) and (Q1,∞, Q2,∞,Λ∞, u∞) proved in Subsection 6.5 concludes the
proof of Theorem 10. Theorem 1 is just a Corollary of Theorem 10.

7 Some auxiliary lemmas used in the analysis of
(6.64)-(6.66).

Lemma 11 Suppose that a solution of (6.64)-(6.66) is defined for ζ ∈ [ζ∗, ζ∗) ,
where ζ∗ is the maximal time of existence. Suppose that Z (ζ) > 0 for any
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ζ ∈ [ζ∗, ζ∗) and also that G (ζ∗) ∈ (0, 1) , q (ζ∗) > 0. Then, either the curve

{(q (ζ) , G (ζ) , Z (ζ)) : ζ ∈ (ζ∗, ζ∗)} is contained in the stable manifold Ñ or
limζ→ζ∗ Z (ζ) = ∞.

Proof. The plane {G = 0} is invariant under the flow associated to (6.64)-
(6.66). On the other hand, the vector field on the right-hand side of (6.64)-(6.66)
points into the region {G < 1} if q 6= 0. Therefore the region {0 < G < 1, q > 0}
is invariant for the flow defined by (6.64)-(6.66) and we can assume that the
inequalities 0 < G (ζ) < 1, q (ζ) > 0 hold for any ζ ∈ [ζ∗, ζ∗) . We now have two
possibilities:

lim sup
ζ→ζ∗

Z (ζ) < ∞ , (7.1)

lim sup
ζ→ζ∗

Z (ζ) = ∞. (7.2)

Suppose first that (7.1) holds. Then, there exists M > 0 such that

Z (ζ) ≤ M for any ζ ∈ [ζ∗, ζ
∗) . (7.3)

We claim that in this case the trajectory {(q (ζ) , G (ζ) , Z (ζ)) : ζ ∈ (ζ∗, ζ∗)} is

contained in Ñ . Notice that in this case, the boundedness of |(q,G, Z)| implies
that ζ∗ = ∞. Since (GZq) (ζ) > 0 for ζ ∈ [ζ∗,∞) it follows from (6.64) that
q (ζ) is decreasing. Therefore q∞ = limζ→∞ q (ζ) exists and is non-negative.
Suppose that 0 < q∞. Then 0 < q∞ < q (ζ) for any ζ ∈ [ζ∗,∞) . Integrating
(6.64) we obtain

∫∞
ζ∗

(GZq) (ζ) dζ < ∞, whence

∫ ∞

ζ∗

(GZ) (ζ) dζ < ∞. (7.4)

Since dG
dζ

, dZ
dζ

are bounded, (7.4) implies limζ→∞ (GZ) (ζ) = 0. Then (6.65)
implies:

dG

dζ
≤ −q2∞G

for ζ ≥ ζ0 sufficiently large. Therefore limζ→∞ G (ζ) = 0. Equation (6.66) then
yields:

dZ

dζ
≤ −1

2

for ζ ≥ ζ0 large enough. Then Z (ζ) < 0 for large ζ, but this contradicts the
hypothesis of the lemma. It then follows that q∞ = 0.

Due to (7.3) and since limζ→∞ q (ζ) = 0 we can approximate the trajec-
tories associated to (6.64)-(6.66) for large values of ζ using the corresponding
trajectories associated to (6.64)-(6.66) for q = 0. The study of the trajecto-
ries associated to (6.64)-(6.66) that are contained in {q = 0} ∩ {0 < G < 1}
reduces to a two-dimensional phase portrait. These trajectories can have only
three different behaviours. Either they are contained in Ñ ∩ {q = 0} , or they
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reach the plane {Z = 0} , with G < 1
3 , entering {Z < 0} , or they become un-

bounded. The continuous dependence of the trajectories with respect to the
initial values as well as the fact that limζ→∞ q (ζ) = 0 implies then that either

limζ→∞ dist
(
(q (ζ) , G (ζ) , Z (ζ)) , Ñ ∩ {q = 0}

)
= 0, or Z (ζ) < 0 for some

ζ < ∞, or Z (ζ) ≥ M + 1 for some ζ < ∞. The second alternative con-
tradicts the hypothesis of the lemma. The third alternative contradicts (7.3)
and therefore only the first alternative is left. However, in that case limζ→∞
(q (ζ) , G (ζ) , Z (ζ)) =

(
0, 13 , 0

)
and the trajectory is contained in Ñ as claimed.

Suppose then that (7.2) holds. We claim that in this case limζ→ζ∗ Z (ζ) = ∞.

Notice that the monotonicity of q (ζ) implies that limζ→ζ∗ q (ζ) = q∞ exists.
We will first prove that q∞ = 0. Suppose that, on the contrary, q∞ > 0. Then
q (ζ) > q∞ > 0 for any ζ ∈ [ζ∗, ζ∗) . Equation (6.66) as well as G < 1 yields:

dZ

dζ
<
(
2− Zq2∞

√
Z2 + 1

) (
Z2 + 1

)

for any ζ ∈ [ζ∗, ζ∗) . This inequality implies dZ
dζ

< 0 for Z > Z∞ = Z∞ (q∞) .

Therefore Z (ζ) < Z∞ for ζ ∈ [ζ∗, ζ∗) and this contradicts (7.2). From now on
take q∞ = 0. We can then assume (7.2) and

lim
ζ→ζ∗

q (ζ) = 0. (7.5)

Suppose also that lim infζ→ζ∗ Z (ζ) < ∞. This is equivalent to the existence of
0 < M < ∞ and a subsequence {ζn} with ζn → ζ∗ as n → ∞ such that:

Z (ζn) ≤ M. (7.6)

We now claim that:
lim
ζ→ζ∗

[Z (ζ) q (ζ)] = 0. (7.7)

To prove (7.7) we argue as follows. Combining (6.64), (6.66) we obtain:

d

dζ
(Zq) = qZ2 (G− 1) + q (3G− 1)− Zq3

√
(Z2 + 1)3. (7.8)

We now use the inequality Z

√
(Z2 + 1)

3 ≥ Z4 for Z > 0. Then, using also the
inequality G < 1 :

d

dζ
(Zq) ≤ q−1

[
(3G− 1) q2 − (Zq)

4
]
. (7.9)

It follows from this inequality, as well as (7.5) that for any ε > 0, every tra-
jectory satisfying the hypothesis of Lemma 11 and entering any of the regions
{(q,G, Z) : Zq < ε } for ζ sufficiently close to ζ∗ remains in such a region for
later times. If ζ∗ = ∞, the meaning of sufficiently close is large enough. Due
to (7.5) and (7.6), for any ε > 0, there exist ζn arbitrarily close to ζ∗ such that
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(Zq) (ζn) < ε. Then (Zq) (ζ) < ε for any ζ ∈ (ζn, ζ
∗) . Since ε is arbitrary we

obtain (7.7).
Combining (7.5) and (7.7) it follows that:

lim
ζ→ζ∗

δ1 (ζ) = lim
ζ→ζ∗

δ2 (ζ) = 0 (7.10)

where:

δ1 (ζ) = Zq2
√
Z2 + 1 , δ2 (ζ) =

(
Z2 + 1

) 3
2 q2

Z + 1
.

We can then rewrite (6.64), (6.66) as:

dq

dζ
= −2GZq, (7.11)

dG

dζ
= 2G [Z (1−G)− (Z + 1) δ2 (ζ)] , (7.12)

dZ

dζ
= (3G− 1− δ1 (ζ))

(
Z2 + 1

)
. (7.13)

We now claim the following. Given any ε0 belonging to the interval
(
0, 23
)

suppose that the trajectory under consideration enters the set:

Ωε0 =

{
G ≥ 1

3
+ ε0 , Z ≥ 1

}

for some ζ < ζ∗ sufficiently close to ζ∗. Then limζ→ζ∗ Z (ζ) = ∞ and ζ∗ < ∞.

The proof as the follows. Due to (7.10) the set Ωε0 is invariant for (7.11)-(7.13)
if ζ is close to ζ∗. Then, for ζ close to ζ∗ we have:

dZ

dζ
≥ ε0

(
Z2 + 1

)

and this implies limζ→ζ∗ Z (ζ) = ∞ and ζ∗ < ∞.

Therefore, to complete the proof of Lemma 11 it only remains to prove that
the trajectory enters Ωε0 for values of ζ sufficiently close to ζ∗. Due to (7.2) and
(7.6) there exists a sequence

{
ζ̄n
}
with ζn < ζ̄n < ζ∗ such that:

Z
(
ζ̄n
)
= 2M and

dZ

dζ

(
ζ̄n
)
≥ 0.

Due to (7.13) this implies:

lim sup
n→∞

G
(
ζ̄n
)
≥ 1

3
. (7.14)

On the other hand, a Gronwall type of argument applied to (7.13) implies the
existence of αM > 0, depending only on M such that:

0 <
M

2
≤ Z (ζ) ≤ 4M for ζ ∈

[
ζ̄n, ζ̄n + αM

]
. (7.15)
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Comparing the solution of the equation (7.12) with the solution of the equation
dG
dζ

= 2GZ (1−G) with the same initial datum at ζ = ζ̄n and taking into ac-

count (7.14), (7.15) it then follows that, for n large enough
(
q
(
ζ̄n
)
, G
(
ζ̄n
)
, Z
(
ζ̄n
))

∈
Ωε0 . Therefore limζ→ζ∗ Z (ζ) = ∞. This contradicts (7.6) and the lemma follows.

Lemma 12 There exists δ > 0 sufficiently small such that, the solution of
(6.64)-(6.66) with initial value (q (0) , G (0) , Z (0)) = (q0, 1, 0) and 0 < q0 < δ

satisfies limζ→ζ∗ Z (ζ) = ∞, where ζ∗ denotes the maximal time of existence of
the trajectory.

Proof. The trajectory enters the region {Z > 0} and as long as it remains
there, the function q (ζ) is decreasing. The inequality ∂Z

∂ζ
≤ 4 holds as long

as Z ≤ 1. It follows that Z ≤ 1 on the interval
[
0, 1

4

]
. On that interval the

inequality ∂(logG)
∂ζ

≥ −2
5
2 q20 holds and hence G ≥ e−q20 . Furthermore

∂Z

∂ζ
≥ 3e−q20 − 1−

√
2q20 = β(q0). (7.16)

Choose δ sufficiently small that β(δ) > 1 and e−δ2 > 1
2 . Then Z

(
1
4

)
> 1

4 and

G > 1
2 on

[
0, 14
]
. Choose ǫ > 0 and suppose that 2δ2 < ǫ4. Then it follows from

(7.9) that the set defined by the inequality Zq ≤ ǫ is invariant. Thus the solution
remains in that region on its whole interval of existence. Now δ1(ζ) ≤ ǫ

√
ǫ2 + δ2

and δ2(ζ) ≤ (ǫ2 + δ2). Let [0, ζ1) be the longest interval on which G ≥ 1
2 . From

what has been shown already ζ1 ≥ 1
4 . Reduce the size of ǫ if necessary so that

ǫ
√
ǫ2 + δ2 < 1

2 . Then it follows from (7.13) that Z is increasing on [0, ζ1) and
hence is greater than 1

4 for ζ ≥ ζ1. Putting this information into (7.12) shows
that provided ǫ2 + q20 < 1

16 then G cannot decrease. For δ sufficiently small
this gives a contradiction unless ζ1 = ζ∗. In particular there is a positive lower
bound for Z at late times. Furthermore (7.13) implies that limζ→ζ∗ Z (ζ) = ∞
and the lemma follows.

Lemma 13 Suppose that a solution satisfying the hypotheses of Lemma 11 with
ζ∗ = 0 has the property that limζ→ζ∗ Z(ζ) = ∞. Then any solution starting
sufficiently close to the given solution for ζ = 0 also has the property that Z

tends to infinity on its maximal interval of existence.

Proof. To start with a number of further consequences of the hypotheses of
Lemma 11 will be derived. The assumption on the initial condition only plays
a role towards the end of the proof. It has been shown in the proof of Lemma
11 that limζ→ζ∗ q (ζ) = 0. We now claim that (7.7) holds. Suppose that it is
not true. Then we claim that the limit limζ→ζ∗ (Zq) (ζ) = L exists and that
L > 0. Indeed, notice first that lim infζ→ζ∗ (Zq) (ζ) > 0. Otherwise there would
exist a sequence {ζn} such that limn→∞ ζn = ζ∗ with limn→∞ (Zq) (ζn) = 0.
Combining this with the fact that q → 0 and (7.9) we would obtain (7.7), a
contradiction. Thus lim infζ→ζ∗ (Zq) (ζ) > 0. Using again the fact that q → 0
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and (7.9) it follows that (Zq) is monotone decreasing for ζ close to ζ∗, whence
the limit limζ→ζ∗ (Zq) (ζ) = L exists. Moreover we have obtained also in this
case that (Zq) (ζ) > L for ζ close to ζ∗.

It follows from the proof of Lemma 11 that ζ∗ < ∞. By the boundedness of
the right hand side of (6.64) it follows by integrating this equation between ζ and
ζ∗ that q(ζ) ≤ a−1(ζ∗−ζ) for a positive constant a. Hence q−1(ζ) ≥ a(ζ∗−ζ)−1.
This can be used together with the limiting behaviour of Zq to estimate the
right hand side of (7.8) from above. The first term is negative and can be
discarded. The second term tends to zero as ζ → ζ∗. The third term can be
written in a suggestive form as −q−1[(Zq)

√
((Zq)2 + q2)3]. The expression in

square brackets tends to a positive limit as ζ → ζ∗. Thus the right hand side
of (7.8) fails to be integrable, contradicting the fact that Zq is positive. This
contradiction completes the proof that limζ→ζ∗ (Zq) (ζ) = 0.

We now use some arguments analogous to the ones used in the proof of
Lemmas 11 and 12. As a next step we prove that G(ζ) tends to a limit as
ζ → ζ∗ and that this limit is greater than 1

3 . We first claim that:

S = lim sup
ζ→ζ∗

G (ζ) ≥ 1

3
. (7.17)

Indeed, suppose first that S = lim supζ→ζ∗ G (ζ) < 1
3 . Since limζ→ζ∗ (Zq) (ζ) =

0 we can approximate (6.60)-(6.62) by the system (7.11)-(7.13). Using (7.13) it
follows that Z (ζ) is decreasing for ζ close to ζ∗. This contradicts (7.2) and then
(7.17) follows. On the other hand (7.12) implies that G is increasing if G > 1

4
for ζ close to ζ∗. Using (7.17) it then follows that G increases for ζ close to ζ∗.
Therefore the limit limζ→ζ∗ G (ζ) exists and:

lim
ζ→ζ∗

G (ζ) ≥ 1

3
.

Since G is monotonically increasing we can parametrize Z as a function of
G. Let us denote the corresponding function by Z = Z̃ (G) . Then by (7.12) and
(7.13):

d(log Z̃)

dG
=

(3G− 1− δ1(ζ))(1 + Z̃−2)

2G[(1−G)− (1 + Z̃−1)δ2(ζ)]
. (7.18)

If the limit of G were less than one the right hand side of this expression would
be bounded and it would follow that Z was bounded, a contradiction. Hence
limζ→ζ∗ G(ζ) = 1.

To complete the proof the condition on the initial data in the hypothe-
ses of the lemma will be used. Since limζ→ζ∗ Z (ζ) = ∞, limζ→ζ∗ q (ζ) = 0,
limζ→ζ∗ (Zq) (ζ) = 0 and limζ→ζ∗ G (ζ) > 1

3 it follows that for any sufficiently
small δ > 0 and for any solution

(
q̄, Ḡ, Z̄

)
that is sufficiently close to (q,G, Z)

at ζ = 0 we have for some ζ0 < ζ∗ :

q̄ (ζ0) ≤ δ3 , Ḡ (ζ0) ≥
1

3
+ δ ,

(
Z̄q̄
)
(ζ0) ≤ δ , Z̄ (ζ0) ≥

1

δ
. (7.19)
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It will now be shown that for δ sufficiently small the region defined by these
four inequalities is invariant. On the part of the boundary of the region where
q̄ = δ3 we have dq̄

dζ
< 0. On the part of the boundary where Z̄q̄ = δ assuming

that δ < 3−
1
3 suffices to show, using (7.9), that the derivative of Z̄q̄ is negative.

On the part with Ḡ = 1
3 + δ the following inequality holds:

∂Ḡ

∂ζ
≥ 2

3

[
2

3δ
− 1− (δ

1
2 + δ

5
2 )2 − (δ + δ3)2

]
. (7.20)

Choosing δ sufficiently small implies that the right hand side of this inequality
is positive. On the whole region

dZ̄

dζ
≥ δ(3 −

√
δ2 + δ6). (7.21)

If δ is small enough then this quantity is positive. Putting these facts together
shows that the solution starts in the region of interest when ζ = ζ0 and stays
there. In particular Ḡ (ζ) ≥ 1

3 + δ for ζ ≥ ζ0. Therefore Z̄ blows up in finite
time due to (7.13) and Lemma 13 follows.
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