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SUMMARY

We demonstrate explicitly the existence of a new family of outgoing-wave normal
modes of pulsating relativistic stars, the first such family known that has no analogue
in Newtonian stars. These modes were discovered earlier by the authors in a toy
model, where they were called strongly damped normal modes. Kojima then found
the first examples of these modes in realistic spherical polytropic stellar models. Here
we give a number of arguments that demonstrate the existence of this family
unequivocally, and we calculate a large number of eigenfrequencies. Physically, the
modes arise directly from the coupling of the fluid oscillations of the star to the
gravitational-wave oscillations of the space-time metric. Previously studied modes of
relativistic stars have been close analogues of modes of Newtonian stars, where the
coupling to gravitational waves mainly generates a small imaginary part to the
frequency. Such modes can be classified using the Newtonian classes: f-, p-, g- and 7-
modes. The present modes, by contrast, have no Newtonian analogue. They are pri-
marily oscillations of the space-time metric in which the fluid hardly vibrates at all. We
christen them w-modes (gravitational-wave modes). These modes are strongly
damped, being characterized by complex frequencies with unusually large imaginary
parts, comparable to their real parts. We calculate a sequence of /=2 modes for a
number of spherical polytropic stellar models. An interesting feature of w-modes is
that the lowest order mode of each sequence has a frequency similar to that of the
lowest order mode of a spherical black hole. For higher modes, the spectrum diverges
from the black-hole spectrum, but shows remarkable similarity to that of the strongly
damped modes of the toy problem. As carriers of gravitational-wave information, w-
modes may be important and observable in the burst of gravitational radiation that
follows the formation of a neutron star. They should also be essential in solving the
problem of the completeness of the outgoing-wave normal modes of radiating
systems.

1 INTRODUCTION

The non-radial oscillations of neutron stars in general rela-
tivity, characterized by the emission of gravitational radia-
tion, provide a unique probe of the coupling of strong
gravitational fields to matter at supranuclear densities. The
potential observability of such modes with future gravita-
tional-wave detectors (Schutz 1989) or in X-ray observations
makes it important to understand their spectrum fully. In
addition, there are important unanswered mathematical
questions that require a full understanding of the spectrum,
such as the completeness of the normal modes for describing
arbitrary initial perturbations of stars.

The equations which describe the non-radial pulsations of
non-rotating relativistic stellar models were first found by
Thorne & Campolattaro (1967a,b). They proved that
Einstein’s equations describing small, non-radial, even-
parity, quasi-periodic oscillations of relativistic stellar models
could be reduced to a fifth-order system of ordinary differen-
tial equations. Sixteen years later Lindblom & Detweiler
(1983) reduced the system of the equations to a fourth-order
one. This system is more natural, since from physical
arguments one expects to have two second-order differential
equations coupled together, the first describing the fluid
perturbations and the second the gravitational-wave
freedom. The fourth-order system seems to be irreducible,
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although very recent work by Chandrasekhar & Ferrari
(1991a,b) has further simplified the form that the system
takes. A detailed review of the work that was done before
1985 can be found in Kokkotas (1985).

When stellar oscillations couple with gravitational waves
they are usually damped because the waves carry away the
pulsational energy of the star. [There are circumstances
where the loss of energy to gravitational radiation causes
certain modes of rotating stars to grow (Chandrasekhar
1970; Friedman & Schutz 1978), but such instabilities are
not of concern to us in this paper.] The eigenfrequencies of
the normal modes of the system become complex; the real
part gives the pulsation rate and the imaginary part the
damping of the pulsation as a result of the emission of the
gravitational radiation. In all previously studied modes, the
imaginary part of the frequency was found to be very small
compared to the real part, which leads to a slow decay of the
oscillation. Kokkotas & Schutz (1986), studying a simple
‘toy’ radiating system, found a new family of normal modes
of oscillations, in which the system rapidly loses energy: the
eigenfrequencies have an imaginary part which is compar-
able to their real part. We conjectured there that realistic
stars should exhibit these modes as well, and we prove that
here.

Because the comparison of our results with those of the
toy problem is important in establishing that we have indeed
found this class of modes, we shall briefly describe the toy
problem and its motivation. The physical system we wish to
study - the relativistic star — can be thought of as two
coupled dynamical systems. These are the fluid of which the
star is made, and the gravitational field of general relativity,
which has its own independent dynamical freedom. They are
coupled, and the strength of the coupling depends on how
relativistic the star is. The toy problem models the essentials
of this system: it consists of two one-dimensional strings,
coupled by a spring of spring constant k. One string is
finite and tied down at both ends; it models the star, with its
p-modes. The other string is semi-infinite, being tied down at
one end. We place an outgoing-wave boundary condition at
infinity on this string. This models the gravitational-wave
field. The spring that connects the centre of the finite string
to the semi-infinite one models the real coupling of gravita-
tional waves to fluid motions.

If the coupling is weak, then the modes of the finite string
are hardly disturbed by the coupling; the main effect is that
they leak energy to the other string, which is then radiated
away down it. This gives such modes a small imaginary part
to their frequency. In the absence of coupling, the semi-
infinite string does not have modes at all. The coupling does,
however, create such modes. Since their energy is con-
centrated predominantly on the semi-infinite string, they
radiate the energy away quickly, so they are strongly damped.
If the coupling increases, then more of the energy is trans-
ferred to the finite string instead of being directly radiated
away, and the damping is slower. As the coupling is weak-
ened, the strongly damped eigenfrequencies move off to
imaginary infinity in the complex frequency plane, where
they disappear when the coupling is turned off completely.

Stimulated by the toy model, Kojima (1988) was the first
to look for and find strongly damped modes in realistic poly-
tropic stellar models. As we explain below, the problem is a
delicate one numerically, and Kojima’s method was best

suited to weakly relativistic models. In this paper we give two
alternative methods of finding the eigenfrequencies, which
are better suited to the relativistic regime. Where we study
some of Kojima’s more relativistic models, our methods give
eigenfrequencies that agree satisfactorily with each other,
and which are not very different from those of Kojima.
Because of the numerical delicacy, further work will be
required before the spectrum of these modes is fully under-
stood. Nevertheless, we feel that the present results are suffi-
cient to establish without any doubt that the w-modes are
indeed the strongly damped modes of the relativistic star.

The plan of the paper is as follows. In the next section we
shall briefly discuss the theory of non-radial oscillations for
relativistic stars and we shall write down the form of the
equations that we shall use. In Section 3 we shall describe the
two methods we adopt for solving the normal-mode equa-
tion; and in Section 4 we present and analyse our results.
Finally in the last section we discuss the significance of the
results.

2 THE PERTURBATION EQUATIONS

In this paper we follow Lindblom & Detweiler (1983; see
also Detweiler & Lindblom 1985) in formulating the per-
turbation equations, which we briefly describe in this section.

The unperturbed metric is the general static spherically
symmetric metric, which describes the geometry of an equi-
librium stellar model:

ds?=— e di> + &M dr + r(d6? + sin’6 d?), (1)
with
e—l(l‘)=1_2_jw(£)_ (2)

r

where M(r) is the ‘gravitational mass’ inside the radius r.
The hydrostatic equilibrium is described by the usual
equations (cf: Schutz 1983):

M
cfi—r=4:ltr2p, (3)
dv_, (M+4ar'p) (4)
dr r(ir—2M) °’
do__lo+p)ds 5
dr 2 ar’

where p and p are the energy density and the pressure of the
fluid inside the star. The pressure and density are related by
an equation of state p = o(p), which in this paper we take to
be polytropic, i.e.,

p=Kp'+m, (6)

where K and n are constants. The adiabatic index v is given
by:

_otpdp

p do’ 7)

14

This equation of state was used by Balbinski et al. (1985) in
their test of the quadrupole formula, and by Kojima (1988)
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in his search for strongly damped modes. We have chosen to
use it rather than a more realistic one for two reasons: (i) our
aim is to establish the existence of w-modes, and so we do
not want to complicate the analysis with irrelevant details,
and (ii) this allows us to compare our results for the fmodes
with those of Balbinski et al. (1985) in order to test our
numerical procedure.

The method of integrating the equilibrium equations for a
specific model is standard (cf. Schutz 1983). The perturba-
tions of the static spherical star can be decomposed into the
appropriate spherical harmonics Y,,, and are assumed to
have a harmonic time dependence e’. Then the perturbed
metric can be written in Regge-Wheeler gauge in the follow-
ing form:

ds?= —e'1+rH,Y,,e*) di*—2iwr**'H, Y, dt dr
+eM1-rH,Y,,e*) dr?
+ r{1~ rKY,, e d0?+sin’6 dg>). (8)

The perturbation of the fluid inside the star is described
by the Lagrangian displacement vector &“ with components:

Er=p-lem R WY, e, (92)
§0= _ !—2Vi Y, iwt (9b>
r 60 lme s
-2
o _ T V_a_ Y, e 9c
e 9e)

The five perturbation functions H,, H,, K, V and W depend
only on r and are not all linearly independent; instead, the
Einstein equations imply that they satisfy the following rela-
tion:

(M +nr+ Q)Hy= +8are ?X~[(n+1)Q— w?rie"**H,
e
+|nr—w*re”’—-= Q2M-r+Q)| K,
r

(10)
where
Q=M+4nrip, n=%¢+2)¢—-1),
and the function X is defined by:
X=wXpo+ple "?V-r'pe""M2W+i(o+p)e?H, (11)
The Detweiler-Lindblom form of the equations is:
re *H)= —[(¢+1)e *+2Mr ' +4arip—p)H,+ Hy+ K
—16z(o+p)V, (12a)

rK'=Hy+(n+1)H,— [z+ 1 —%’] K—-8na(o+p)'*W,

(12b)
rW'==(¢+1)W+ret2(yp) le 12X —4(L+ 1)r 2V
+3H,+K), (12¢)
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rX = —t’X+%(,o+p)e"/2 1(1—%) H,+[rro%e™”
3, r-1
+(n+1)]H1+(5 vr—l) K—¢t(t+1wr'V

—[87(p+p)et?+ 2w 2V — r2(r~2e~ 2] W} .(12d)

If we regard H, in the right-hand side of these equations as
the function of X, H, and K that is given in equation (10),
then this system of four differential equations can be written
in vectorial form as

Y(r)=Q(r,4,0)Yr), (13)
where Y is the vector
Y={H, K, WX}, (14)

while the 4 X 4 matrix Q depends on 7, £ and w.

The equations (12a-d) form a fourth-order system of
linear differential equations. For every choice of ¢ and w
there will exist four linearly independent solutions. The
physical solutions satisfy appropriate boundary conditions at
the surface and the centre of the star. The perturbations must
be finite at the centre of the star where the system becomes
singular for r=0. At the surface of the star (r=R) the func-
tion X(r) must vanish; this is equivalent to the vanishing of
the perturbed pressure. These conditions in general allow
only one physically acceptable solution to exist inside the
star. When continued outside the star, this will consist in
general of a mixture of incoming and outgoing radiation. A
normal mode is defined as a solution for which there is pure
outgoing radiation.

The complex value of w for such a solution is its eigen-
frequency. Such eigenfrequencies are generally located at
discrete places in the complex-w plane.

2.1 Numerical solution inside the star

Fixing £ and w, we find the regular solution as follows. At the
surface of the star, the boundary condition X(R)=0 allows
us to select three linearly independent vectors Y;, Y, and Y,
as initial data and to integrate them inwards from r=R to
r=R/2. The solution we seek will be a linear combination of
these three solutions:

Yyue=a Y ta,Y,+a,Y,. (15)

We then start at the centre of the star with a Taylor
approximation of the form

Y(r)=¥(0)+31 ¥"(0)r>. (16)

The regularity conditions at the centre allow two linearly
independent solutions ¥, and Y;. We integrate these from
near r=0 to r=R/2. The solution we seek is a linear com-
bination of the form:

Y(':ent=a4Y4+a5Y5' (17)

Of the coefficients a,, a,, as, a,, as that we have introduced,
one is an arbitrary linear scale. The other four are deter-
mined by matching the inner and outer solutions at 7= R/2:

Ycent( R/2) = Y;urf(R/z)
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This determines the regular solution for the chosen ¢ and w.
Our procedure is essentially that of Lindblom & Detweiler
(1983); for more detailed information one should refer to
their paper. The main difference in the present paper is that
we allow w to be complex, which forces Y and the coeffi-
cients g, to be complex as well. Another important difference
is in the numerical procedure that we have used here for
handling the static background star, i.e. the functions M, v, p
and p. Instead of calculating their values on a fixed grid of
points and then using them in our calculations, we prefer to
solve the system of equations (3)-(5) in parallel with the
system (12) in order to adaptively refine the grid until we
achieve a pre-determined accuracy.

2.2 The solution outside the star

In order to decompose the solution found in the previous
section into incoming and outgoing waves, we must continue
the numerical integration outside the star. The system of
equations (12a-d) changes outside the star since there is no
matter and the fluid perturbations vanish. The fourth-order
system of differential equations reduces to a single-order
differential equation, which, as was shown by Fackerell
(1971),is Zerilli’s (1970) one-dimensional wave equation
2

42 (- Mriz=0, (18)
dry

where Vry)is the effective potential

2(1-2M/r) . , 3 0 s 5 5
=5—"= +1)r’ + + +
Nrx) Pt 3M)F [n*(n+1)r’ + 30> Mr* + 9nM*r+ 9M’),
(19)
and ry is the ‘tortoise’ coordinate, related to r by
re=r+2Mlog(r—2M). (20)

Equation (18) admits two linearly independent solutions
that asymptotically represent outgoing and incoming waves;

they admit the following asymptotic approximation near
r=00:

Zi=eiiwr* Z Zfr_k. (21)

k=0

The coefficients Z; can be determined from a five-term
recurrence relation derived by Chandrasekhar & Detweiler
(1975). If we define Z, (r) and Z_(r) to be the solutions of the
Zerilli equation (18) that have the respective asymptotic
approximations given in (21), then we see that Z,(r) is the
incoming-wave solution, while the Z_(r) is the solution for
outgoing gravitational radiation. Any solution of the Zerilli
equation is a linear combination of Z_(r)and Z_(r).

When we consider how to perform this calculation
numerically, it is easiest to start with a description of how one
goes about searching for eigenfrequencies with small imagi-
nary parts, such as those for the f-, p- and g-modes. For a
given harmonic index ¢, one chooses a complex value for w
and finds the unique solution which is valid inside the star, as
above. The values of H, and K at the surface of the star
determine (Fackerell 1971) the initial values Z,,. and Z_,

star

for the numerical integration of the Zerilli equation outside
the star. One starts the numerical integration of the Zerilli
equation from r= R, producing the solution

Zoutside(w’[;r)=Al(w)Z—(r)+Bl(w)Z+(r)’ (22)

outside the star. One continues this integration out to a
radius large enough to give a clean separation between Z,
and Z_; we have found that 50| w|~! is usually satisfactory.
At this distance one matches the numerical values of Z and
Z' to the corresponding values derived from the series
solution (21). That is, one uses the numerical solution in the
left-hand side of equation (22) and its derivative; one uses the
asymptotic approximations (21) in the right-hand sides of
these equations; and one solves the result for the coefficients
A w) and B,(w). The eigenfrequency condition (no
incoming radiation) is then

_ Bw)
Af o)

felw) =0. (23)

It is preferable to use the ratio f(w) because it is independent
of how the arbitrary scale factor in the set of coefficients g;
for the interior solution was chosen. The whole procedure
may be viewed as solving the non-linear complex equation
(23). This equation can be solved with Muller’s iterative
search technique (Press ef al. 1986) using a parabolic
approximation to the solution. One makes three initial
guesses for the eigenfrequency and fits the resultant values of
f(w) to a parabola. The roots of this parabola will give a first
approximate value for a complex root of f(w). The proce-
dure can be continued iteratively until a root is found to the
desired accuracy. This can be repeated over the whole com-
plex w-plane if the complete spectrum is needed.

The numerical procedure that we have just described for
integrating the Zerilli equation outwards gives good results
when one searches in the complex w-plane for frequencies
with small imaginary part. For the f-, p- and g-modes, it is
usually the case that Im(w) is at least 1000 times less than
Re(w), and all searches for them have used some variant of
this method. But if instead one searches the complex w-plane
for normal-mode frequencies with large imaginary parts, as
we do here, this procedure runs into a well-known numerical
difficulty. The two linearly independent solutions Z.(r)
diverge rapidly in magnitude as r— if the complex
frequency has a large imaginary part, one of them increasing
exponentially and the other decreasing exponentially. If we
write

w=0+Iirt, (24)

then a stable star will have modes that damp, which implies
7> 0. In this case, equation (22) shows that the two solutions
have the asymptotic behaviour

|Z_|~e™and |Z,|~e™ ™. (25)

When integrating outwards from r=R to r— « the outgoing
solution Z_ dominates over Z,, and the extraction of Z,,
from a numerical solution of finite precision at a distance
large enough for the asymptotic forms of Z, to be valid,
becomes impossible. Any attempt to follow numerically the
exponentially decreasing solution will always fail because the
increasing one will dominate in the numerical calculations.

In the next section we describe the two different
approaches that we use to avoid this numerical difficulty.
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3 SOLVING THE ZERILLI EQUATION FOR
LARGE DAMPING

We describe here the two methods we have used to avoid the
difficulty we have just described for integrating the Zerilli
equation when the imaginary part of the frequency is large.
Both avoid integrating Z, numerically far from the star by
performing the match between Z,. and Z, at the surface of
the star.

3.1 The full WKB method

We cannot use the asymptotic approximation (21) to give us
Z, at the surface of the star because it is valid only near
infinity. Instead, we use the WKB solutions, which are differ-
ent asymptotic approximations to Z, that should be good
even at small r provided |w| is large enough. The WKB
approximation for the Zerilli equation (18) outside the star
has the standard form:

Z(w,Z;r%)=0(rs)"? {A,(w) exp [— iJ'uQ(x) dx}

+ B,(w) exp [iJr*Q(x) dxH , (26)

where

O(rs)=[w? = Vre)]'2

The coefficients A,(w) and B,(w) are the same as in equation
(22) above. If we assume that this solution is a good approxi-
mation for r> R, then we need only match the solution (26)
and its derivative at the surface of the star with the values
Z..(R) and Z.,(R) found from the integration inside the
star. Because of the arbitrary linear scale, we need only
match the ratio

Zyul0,6;R) _ ALw)Z_(R)+ B(w)Z'(R) (27)
Zstar(w’[;R) A{(w)Z—(R)+BI(w)Z+(R> ’

where the prime denotes derivation with respect to ry. From
this we calculate the same function as in equation (23):

2. 2]
fo)=Z49)_ el —2i0(R) ZulR) 20(R)]
e Q(R)+i[M>+ Q(R) }
Z..(R) 20(R)

(28)

It is more convenient to use the form

=exp[ — 2iQ(R)]

2o | ZuadR) Q'(R)T‘
Q'R [Zm,(R)Jer(R)

[ zulB. O
[Q(R)+’[zm,(R)+2Q<R)H

(29)

in order to avoid calculating the root of a complex function.
The eigenfrequencies w can be found by calculating the
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zeros of f(w) using the Muller method that we mentioned
earlier.

How good should this method be? The WKB technique is
widely used for solving problems that here correspond to
real frequencies, when w is large. It can, however, be applied
in problems where w is complex, and has notably been done
so recently in searches for black-hole normal modes (Schutz
& Will 1985; Guinn et al. 1990). The fundamental assump-
tion of the technique, namely that the background potential
V(r4) should vary slowly on the characteristic length-scale of
the solution, |w|~!, seems to be satisfied even when w is
complex. We expect errors, of course, if Mw ~ 1, but not
uncontrollable errors; and these should decrease as ||
increases. We use the second method, to which we now turn,
partly in order to quantify these errors.

3.2 The mixed numerical/ WKB method

As we have explained earlier the numerical procedure for
solving the Zerilli equation when Im(w) is large breaks down.
On the other hand, the fully analytic WKB approximation
might not be very good if | w| is not very large. An alternative
is suggested by the following considerations. The numerical
problem that we want to get around is that only one of the
two desired solutions Z, can be found numerically: as
equation (25) shows, if one integrates outwards from the
surface (with, say, roughly equal initial values for the two
functions) one finds Z_ accurately far away, but Z,
disappears in the roundoff error; while if one integrates
inwards from a large radius, one finds Z, accurately at the
surface, but Z_ disappears. The full WKB method replaces
both functions by their WKB approximations; our second
variant will be to calculate one of them accurately numeri-
cally, and essentially to replace only the missing one with the
WKB function. While this still suffers from WKB errors, a
comparison of its results with those from the first method
should serve to quantify the size of these errors.

Since we need to start our external solution from initial
data at the surface, we choose to calculate the incoming solu-
tion Z, accurately from a numerical integration that starts
far away. It is not hard to choose the starting values for Z,
and Z, far away, since any admixture of Z_ in the solution
will disappear by the time we reach the surface of the star.
We use the series solution (21), but one could equally well
use a WKB approximate solution far away to start off.

The ratio we want is, in this case,

fla)=BA@)__ ZAR)ZAR)~ Zy| L
7 Af0) Z(RIZ(R) Zugs) Zaw— Z+(R))

Zeros of this are the same as zeros of the simpler function

_Zyw_Z-(R)
A e ZR) 0

To calculate this, it is not necessary to use the full form of
the WKB approximation for the second solution Z_. All we
need is the ratio Z_(R)/Z_(R), and this is easy to find from
the numerical values for Z.(R)/Z.(R), since within the
WKB approximation we have
z'_ 7Zi QR 1)
Z. Z. QR)
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where Q=[w?— V(r4)]'/?, and the prime denotes derivation
with respect to r. The proof of this comes from considering
the WKB logarithmic derivatives

! 1

Zi_.n 9

Z iQ 20 (32a)
and

z.__ ., 9

7 iQ 20° (32b)

from which (31) can easily be deduced.

Although this method still relies on the WKB assump-
tions, it uses them in a way significantly different from that of
the first method. We expect, therefore, that the errors made
by the two methods will be comparable but different: the
difference between the two methods should give a measure
of the error in each.

4 RESULTS

We have applied the numerical methods just described to a
few stellar models with the polytropic equation of state (6).
We took the constants # and K to have the values n=1 and
K=100 km. The models are then characterized by their
central density. We have constructed a complete family, from
weakly relativistic models (central density 3 x 10'* g cm™3,
surface redshift 0.081) up to the ultrarelativistic regime
(3x10' gcm™3,0.623). As a test, for each model we calcu-
lated the fundamental f~mode frequency by the method of
Section 2 and compared it with the existing results from
Balbinski et al. (1985) in order to check that the equations
inside the star give the correct results. Then we tested the full
WKB method (Section 3.1) by calculating the f-mode
frequency. The agreement was usually very good for the real
part of the frequency (the difference was of the order less
than 1 per cent). The accuracy for the imaginary part was
worse - it usually came out a factor of 10 or more too small -
but we should not be surprised at this since Im(w) is a tiny
fraction of Re(w). We then used the two methods described
in Section 3 to search for normal-mode frequencies in the
complex plane well away from the real axis.

The results that we have found are remarkable. A well-
defined spectrum of normal-mode frequencies does indeed
exist, with frequencies whose large imaginary parts are com-
parable to their real parts. A striking feature is that, as the
order of the mode increases, the real parts of the frequencies
increase with a nearly constant step while the imaginary parts
vary only slowly. These frequencies are shown in Tables 1, 2,
3 and 4 for four stellar models.

Their values are plotted in Fig. 1, where we also include
the normal-mode frequencies of a Schwarzschild black hole.
This shows three interesting features. The first is that the
spectrum starts from frequencies which are very close to
those of a black hole of similar mass. The nature of this rela-
tionship between stellar normal modes and those of black
holes is not yet clear, but since this class of stellar modes is
dominated by metric perturbations rather than fluid dis-
turbances, some sort of relationship is not surprising. The
different boundary conditions for the stellar and black-hole
problems, however, prevent one making any simple connec-
tion. '

Table 1. (a) Full WKB method and (b) numerical WKB method.
(a)

N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .3350 .4060 .2833 .3430
2 .5960 (.26) .3560 .5039 (.22) .3006
3 .8898 (.29) .3850 .7518 (.25) .32863
4 1.1632 .27 .4123 .9827 (.23) .3484
5 1.4332 .27 .4509 1.2109 (.23) .3810
6 1.6997 (.27) .4651 1.4361 (.23) .3930
7 1.9409 (.24) .4808 1.6398 (.20) .4062
8 2.1537 (.21) .5083 1.8196 (.18) .4295

(b)

N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .3419 L1770 .2884 .1496
2 .6489 (.31) .2423 .5482 (.26) .2047
3 .9236 .27) .2830 .7803 (.23) .2391
4 1.1919 (.27) .3131 1.0060 (.23) .2645
5 1.4575 .27) .3379 1.2314 (.23) .2855
6 1.7211 (.26) .3579 1.4541 (.22) .3024
7 1.9676 (.25) .3793 1.6623 (.21) .3205
8 2.2370 .27 .4013 1.8900 (.23) .3391
9 2.4590 (.22) .4258 2.0776 (.19) .3598

Table 2. (a) Full WKB method and (b) numerical WKB method.

(a)

N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .5280 .2980 .2822 .1695
2 .8780 (.35) .3760 .4694 (.19) .2013
3 1.2240 (.35) .4280 .6547 (.19) .2289
4 1.5685 (.35) .4669 .8388 (.18) .2497
5 1.9120 (.34) .4980 1.0225 (.18) .2662
6 2.2540 (.34) .5240 1.2065 (.18) .2804
7 2.5954 (.34) .5435 1.3880 (.18) .2907
8 2.9402 (.34) .5575 1.5724 (.18) .2981
9 3.2874 (.35) .5526 1.7581 (.19) .2956
10 3.7002 (.41) .5411 1.9789 (.22) .2894
11 4.0774 (.38) .6043 2.1806 (.20) .3232

(b)

N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .5154 .2681 .2756 .1380
2 .8757 (.36) .3414 .4683 (.19) .1826
3 1.2234 (.35) .4949 .6543 (.19) L2112
4 1.5674 (.34) .4344 .8383 (.18) .2323
5 1.9106 (.34) .4653 1.0218 (.18) .2488
6 2.2531 (.34) .4912 1.2050 (.18) .2627
7 2.5973 (.34) .5123 1.3890 (.18) .2740
8 2.9383 (.34) .5233 1.5714 (.18) .2799
9 3.2844 (.35) .5196 1.7565 (.19) L2779
10 3.7034 (.42) .5063 1.9806 (.22) .2707
11 4.0680 (.36) .5841 2.1758 (.19) .3124

The second interesting feature of Fig. 1 is that, generally,
the less relativistic the model is, the larger is the damping rate
of any mode. This was also seen in the toy problem of
Kokkotas & Schutz (1986): as the coupling weakened, the
damping increased.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/abs/1992MNRAS.255..119K

2VNRAS, 2557 - LI0K

I'I_

Table 3. (a) Full WKB method and (b) numerical WKB method.

(a)

N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .5180 .1740 .2599 .0870
2 .8110 (.29) .2690 .4069 (.15) .1351
3 1.1040 (.29) .3240 .5536 (.15) .1626
4 1.4000 (.30) .3630 L7022 (.18) .1822
5 1.6937 (.29) .3920 .8493 (.15) .1967
6 1.9940 (.30) .4140 .9999 (.15) .2008
7 2.2867 (.29) .4293 1.1466 (.15) .2183
8 2.6011 (.31) .4229 1.3043 (.16) .2120
9 2.9545 (.35) .4338 1.4814 (.18) .2175
10 3.2864 (.33) .4880 1.6479 .17) .2447

(b)

N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .5223 .1897 .2619 .0951
2 .8123 (.29) .2889 .4073 (.15) .1449
3 1.1016 (.29) .3429 .5524 (.15) L1719
4 1.3966 (.29) .3800 .7003 (.15) .1906
5 1.6893 (.29) .4077 .8471 (.15) .2044
6 2.9910 (.30) .4292 .9984 (.15) .2152
7 2.2831 (.29) .4439 1.1448 (.15) .2226
8 2.5999 (.32) .4349 1.3036 (.16) .2181
9 2.9478 (.35) .4455 1.4781 (.17) .2234
10 3.2848 (.34) .5008 1.6471 .17) .2509
11 3.5735 (.29) .5340 1.7926 (.18) .2678

Table 4. (a) Full WKB method and (b) numerical WKB method.

(a)
N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .4620 .0800 .2409 .0415
2 .6825 (.22) L1710 .3556 (.11) .0891
3 .9100 (.23) .2220 .4743 (.12) .1158
4 1.1421 (.23) .2566 .5950 (.12) .1337
5 1.3750 (.23) .2830 L7163 (.12) .1472
6 1.6100 (.23) L2974 .8387 (.12) .1549
7 1.8522 (.24) .3015 .9649 (.13) L1571
8 2.1473 (.29) .3068 1.1186 (.15) .1598
9 2.3978 (.25) .3506 1.2491 (.13) .1858
10 2.6405 (.24) .3784 1.3756 (.13) L1971
11 2.8956 (.25) .4000 1.5084 (.13) .2084
12 3.1418 (.25) .4148 1.6367 (.13) .2161
13 3.4041 (.26) .4263 1.7734 (.14) L2221
(b)
N Re(wM) A Re(w) Im(wM) Re(w) A Re(w) Im(w)
1 .4632 .1033 L2413 .0538
2 .6838 (.22) .1961 .3562 (.11) .1022
3 .9074 (.22) L2474 L4727 (.12) .1289
4 1.1365 (.23) L2795 .5921 (.12) .1456
5 1.3685 (.23) .3036 L7129 (.12) .1681
6 1.6037 (.24) .3166 .8354 (.12) .1650
7 1.8477 (.29) .3211 .9625 (.13) .1673
8 2.1366 (.29) .3232 1.1130 (.15) .1684
9 2.3913 (.24) .3728 1.2457 (.13) .1942
10 2.6354 (.28) .3938 1.3729 (.13) .2052
11 2.8903 (.28) .4134 1.5087 (.13) .2183
12 3.1255 (.24) .4288 1.6282 (.12) .2234
13 3.3955 .27 .4445 1.7669 (.14) .2315

W-modes of pulsating relativistic stars 125

0.8 — T — T T T T
07 | 1
06 | B
05 | b
—_
=
Boat .
€ |
031 Model 1 ]
Model 2
021 Model 3 1
Model 4 1
01 Black Hole |
0.0 N L N T .
0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0 45

Re(oM)

Figure 1. The frequency spectrum of w-modes for ¢=2 for four
polytropic stellar models, calculated by the full WKB method, are
plotted together with the spectrum of the Schwarzschild black-hole
frequencies. All frequencies are made dimensionless by multiplica-
tion by the mass of the star. Note the proximity of the lowest w-
mode of each model to the black-hole spectrum.

The third feature is the kink in each w-mode curve as the
order of the mode increases. We have no explanation of this.

In Figs 2-5 we compare the eigenfrequencies of the four
models as calculated by the two methods of Section 3. The
agreement of the two methods is apparent and this means
that any errors in the values of the eigenfrequencies due to
the WKB approximation do not affect our confidence that
we have in fact demonstrated the existence of this new family
of modes.

In Fig. 6, we plot the frequencies in units of km~1, i.e. not
normalized by the stellar mass. The trend of stronger damp-
ing with weaker coupling is even more evident here than in
Fig. 1.

We have plotted the eigenfrequencies that Kojima found
together with ours in Figs 2 and 3. Some of his eigen-
frequencies appear to be within our errors, but others are
further away. Agreement is better for the more weakly rela-
tivistic star in Fig. 2, where Kojima’s method is better and
ours seems to be worse. In Fig. 3, Kojima’s method is near its
limits of validity, and his values are presumably not as
reliable as ours.

Further evidence for the identification of our eigen-
frequencies as strongly damped modes comes from an
examination of the eigenfunctions. In Fig. 7 we compare the
behaviour of the eigenfunctions for the metric perturbations
K and H, for an f~mode and w-mode in Model 2. For both
modes the eigenfunctions have been normalized to 1 at the
surface (r=28.861 km). We display their values only within
the star. It is clear that with this normalization, these metric
perturbations have similar size throughout the star. Notice,
however, that K and H, are in phase with each other for the
w-mode, but out of phase for the fmode.

The behaviour of the fluid perturbation W in the two
modes is completely different (Fig. 8). With the normaliza-
tion still fixed as in Fig. 7, the fluid perturbation inside the
star is an order of magnitude smaller for the w-mode than for
the f~mode. This is exactly what one expects from our inter-
pretation of the w-mode, and exactly what we see in the toy
model. This disparity is not seen in any of the families of
modes explored before this.
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Figure 2. The /=2 w-mode spectrum of Model 1 (the least rela-
tivistic model). The characteristics of Model 1 may be found in the
caption to Table 1. We give the results of both numerical methods
described in the text, together with those for a Schwarzschild black
hole. Agreement between the two methods is poorer than in the
more relativistic models (later figures). The difference between the
two is a measure of the accuracy of our determination of the eigen-
frequencies. We show the three eigenfrequencies found by Kojima
(1988) for the same model. These seem to be within our errors.
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Figure 3. As Fig. 2 for Model 2. The characteristics of Model 2
may be found in the caption to Table 2. Agreement between the
methods is much better than for Model 1. We show the three eigen-
frequencies found by Kojima (1988) for this model. His values are
rather far from ours, probably because his method is close to its
limit of convergence for this model.

5 DISCUSSION

We believe that these calculations convincingly establish that
realistic stellar models do indeed have families of strongly
damped normal modes in close analogy to those that we
discovered in the toy problem, despite the numerical diffi-
culty of finding them. There are a number of reasons, out-
lined below.

(i) In the toy model, the strongly damped sequence of
eigenfrequencies had the property that the real part of the
frequency increased in regular steps while the imaginary part
remained essentially fixed; the imaginary part depended only
on the coupling constant k, and was essentially logarithmic in

MODEL 3
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Figure 4. As Fig. 2 for Model 3. The characteristics of Model 3
may be found in the caption to Table 3. Our methods agree even
better here.
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Figure 5. As Fig. 2 for Model 4. The characteristics of Model 4
may be found in the caption to Table 4. The errors have become
very small in this highly relativistic model.
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Figure 6. The frequency spectrum of ¢ =2 w-modes for the four
polytropic stellar models are plotted in units of km~!. This shows
the trend with increasing redshift very well.

it. In our case, the real part increases in regular steps, and the
imaginary part increases only slowly. This increase in the
imaginary part along the sequence is not necessarily in
contradiction to the toy problem. In the toy problem, the
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Figure 7. Comparison of the metric perturbation eigenfunctions (K
and H,) of a strongly damped w-mode (open symbols) with those of
a weakly damped fmode (filled symbols). The w-mode is the
‘fundamental’ of Model 2 from Fig. 2. The normalization is fixed by
requiring K=1 at the surface. The plot covers the interior of the
star only. With this normalization, there is little difference between
the two modes’ gravitational-wave amplitudes inside the star. This is
in contrast to the fluid perturbation (Fig. 8).
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Figure 8. As Fig. 7, but for the eigenfunction associated with the
fluid perturbation W. The normalization of Fig. 7 is preserved here,
and we find that the fmode (filled symbols) has an order-of-
magnitude larger amplitude than the w-mode (open symbols). This
is further evidence of the different natures of the two kinds of
modes: w-modes are primarily gravitational-wave modes, while f-
modes are primarily fluid modes.

coupling between the strings was the same for all modes. In
our case, the coupling is a gravitational one, and it is a
commonplace observation that short-wavelength gravita-
tional perturbations do not couple so strongly to the fluid as
long-wavelength ones: for example, the Cowling approxima-
tion is very good for higher order p- and g-modes. If this
holds for the w-modes, then one would expect a slow
increase in the imaginary part of the frequency as one goes
along the sequence.

(ii) The size of the imaginary part of the frequency in the
toy problem was smaller than or comparable to that of the
lowest order real part when the dimensionless coupling con-
stant was greater than about 0.01. If this coupling corre-
sponds in the stellar case to something like M/R, then the
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relative sizes of the real and imaginary parts of the fre-
quencies are similar in the two problems.

(iii) Perhaps most convincingly, the fluid part of the eigen-
functions of the modes (the function W) is very weak com-
pared to its typical value for f-modes.

We conclude from this that the strongly damped modes of
the star, which we have christened w-modes, do in fact exist.

Despite their quick damping, these modes are more than
mere curiosities. In the first milliseconds after the formation
of a neutron star in collapse, the radiation that comes out will
be due to two sources. The first is the obvious one, namely
the fluid motions during collapse; but the second will be
whatever initial gravitational-wave data the collapse itself
generates. The w-modes may well be strongly in evidence
within the burst of gravitational waves that follows gravita-
tional collapse. Their signature, of a ringing with damping on
a few cycles, would be very similar to the signature found by
Sun & Price (1988) for the normal modes of black holes
formed in gravitational collapse, and would be very different
from the very slowly decaying but much smaller amplitude
ringing of the p-modes. In fact, techniques similar to those
used by Sun & Price could be applied here to predict how
much excitation the w-modes will suffer as a result of a
collapse.

Moreover, the w-modes are likely to be essential in any
proof that the normal modes of a relativistic star are com-
plete for some sort of initial data. A completeness proof of
this type is one of the principal unsolved problems of relati-
vistic stellar perturbation theory, and was one of the motiva-
tions of the Sun & Price work on black holes.

It is also conceivable that in more complex situations, such
as stars with rotation or especially stars with ergoregions, the
w-modes could (like the f-modes) become unstable, and
thereby place a limit on the rotation rate of stars. But we feel
that it is unlikely that this limit will be stronger than that
provided by effects already known, such as the fmode
instability (Chandrasekhar 1970; Friedman & Schutz 1978).

In addition, the w-modes may prove to be prototypes for
other families of modes that arise in relativistic stars. The
essential features of the present problem are, we feel, as
follows. A new or hitherto neglected effect (in this case,
general relativity) couples two very different systems: one in
which there is a well-defined spectrum of normal modes (the
Newtonian star with its f-, p- and g-modes) and the other a
wave system on an infinite domain in which there are no con-
ventional modes at all, because in the absence of coupling it
has no means of trapping or reflecting waves (here, the
gravitational-wave field of Minkowski space-time). The
coupling results in two distinct families of modes: the first is
(for weak coupling) a small change in the already-established
family ( f~modes of relativistic stars acquire a small damping),
while the other is a completely new spectrum of strongly
damped modes, whose damping increases as the coupling
increases (the w-modes here).

Another relativistic system that may show similar spectral
effects is the problem recently introduced by Chandrasekhar
& Ferrari (1991b). In non-rotating relativistic stars, the so-
called even-parity perturbations give rise to the f-, p- and g-
modes that we have referred to here. But there are also
odd-parity perturbations in both the fluid and the gravita-
tional-wave field that do not, however, couple to each other
or to the even-parity perturbations. Chandrasekhar & Ferrari
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study what happens when the star has a small amount of
rotation: the non-sphericity of the resulting metric couples
the even- and odd-parity perturbations together.

The Chandrasekhar-Ferrari problem resembles the w-
mode problem in that the coupling brings together an estab-
lished spectrum (the even-parity modes) with a wave field
(the odd-parity gravitational perturbations). This should give
rise to some modes with strong damping. This problem is
complicated, however, by the coupling of an additional odd-
parity system, the fluid perturbations, that have a well-
defined spectrum, albeit completely degenerate at zero
frequency in the absence of coupling. From these may arise
in addition a weakly damped spectrum in which the imagi-
nary part of the frequency is of the same order as the real
part, both going to zero as the coupling decreases. This
fascinating problem will surely merit further study, not only
because of its intrinsic interest but also because, as
Chandrasekhar & Ferrari point out, the new modes may
provide observable evidence of the Lense-Thirring effect
(‘dragging of inertial frames’), which has so far not been
directly observed in any physical system.

The w-modes represent, therefore, not only the comple-
tion of the spectrum of normal modes of a non-rotating star
in general relativity, but also a new class of mode that may
have important physical ramifications and that we may
expect to see in other situations where finite systems like
stars are coupled to radiative fields. In this paper we have
firmly established their existence, reassured ourselves of the
reliability of our earlier toy model (Kokkotas & Schutz
1986), and confirmed some of the earlier numerical results
of Kojima (1988). Probably the most important impediment
to learning more about them is the lack of a numerical
method that can handle the exponential behaviour of the
modes at infinity. The application of improved methods of
numerical integration would open the way to studying the
dependence of these modes on the structure of the star (espe-
cially in more realistic stars), and the origin and reality of the
curious kinks in the spectrum seen in each model. It would
also be interesting to study the relationship of these modes to

those of black holes, and to see if they can be made to go
unstable in any situations.
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