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We prove by explicit computation that the operators D4R4 and D6R4 in N = 8 supergravity have
non-vanishing single-soft scalar limits at the 6-point level, and therefore they violate the continuous
E7(7) symmetry. The soft limits precisely match automorphism constraints. Together with previous

results for R4, this provides a direct proof that no E7(7)-invariant candidate counterterm exists
below 7-loop order. At 7-loops, we characterize the infinite tower of independent supersymmetric
operators D4R6, R8, ϕ2R8,. . . with n > 4 fields and prove that they all violate E7(7) symmetry.
This means that the 4-graviton amplitude determines finiteness at 7-loop order. We show that
the corresponding candidate counterterm D8R4 has a non-linear supersymmetrization such that its
single- and double-soft scalar limits are compatible with E7(7) up to and including 6-points. At loop
orders 7, 8, 9 we provide an exhaustive account of all independent candidate counterterms with up
to 16, 14, 12 fields, respectively, together with their potential single-soft scalar limits.

INTRODUCTION

N = 8 supergravity has maximal supersymmetry, and
the classical theory has global continuous E7(7) symme-
try which is spontaneously broken to SU(8). Explicit
calculations have demonstrated that the 4-graviton am-
plitude in N = 8 supergravity is finite up to 4-loop order
[1]. Together with string- and superspace-based obser-
vations [2, 3], this spurred a wave of renewed interest in
the question of whether the loop computations based on
generalized unitarity [4] could yield a UV finite result to
all orders1 — or at which loop order the first divergence
might occur.

In gravity, logarithmic UV divergences in on-shell L-
loop amplitudes are associated with local counterterm
operators of mass dimension δ = 2L + 2 composed of
fields from the classical theory. The counterterms must
respect the non-anomalous symmetries of the theory. It
was shown in [7–9] that below 7-loop order, there are
only 3 independent operators consistent with linearized
N = 8 supersymmetry and global SU(8) R-symmetry
[10]. These are the 3-, 5- and 6-loop supersymmetric
candidate counterterms R4, D4R4, and D6R4.

The perturbative S-matrix of N = 8 supergravity
should respect E7(7) symmetry [11], so one must subject
R4, D4R4, and D6R4 to this test. A necessary condition
for a counterterm to be E7(7)-compatible, is that its ma-
trix elements vanish in the ‘single-soft limit’ pµ → 0 for

1 This question is well-defined whether or not N = 8 supergravity
is sensible as a full quantum theory [5, 6].

each external scalar line [12–14]. The scalars ofN = 8 su-
pergravity are the ‘pions’ of this soft-pion theorem since
they are the 70 Goldstone bosons of the spontaneously
broken generators of E7(7). It was recently proven [15]
that the soft scalar property fails for 6-point matrix el-
ements of the operator R4 (see also [16]). Thus E7(7)

excludes R4 and explains the finite 3-loop result found in
[1].

In the present paper we show first that the 5- and 6-
loop operators D4R4 and D6R4 are incompatible with
E7(7) symmetry because their 6-point matrix elements
have non-vanishing single-soft scalar limits. Previous
string theory [17] and superspace [18] arguments sug-
gested this E7(7)-violation. Our results mean that no
UV divergences occur in N = 8 supergravity below the
7-loop level.

We then survey the candidate counterterms for loop or-
ders L = 7, 8, 9 using two new algorithmic methods: one
program counts monomials in the fields of N = 8 super-
gravity in representations of the superalgebra SU(2, 2|8),
the other applies Gröbner basis methods to construct
their explicit local matrix elements. Our analysis shows
that at each loop level 7, 8, 9, there is an infinite tower of
independent n-point supersymmetric counterterms with
n ≥ 4. At 7-loop order we find that none of the n-field
operators with n > 4 are E7(7)-compatible. This leaves
D8R4 as the only candidate counterterm at L = 7. We
show that its matrix elements are E7(7)-compatible at
least up to 6-points. We observe that it requires remark-
able cancellations for E7(7) to be satisfied to all orders
for any L ≥ 7 candidate counterterm.
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E7(7)-VIOLATION OF D4R4 AND D6R4

To investigate E7(7) we study the soft scalar limit of the
6-point NMHV matrix elements 〈++−−ϕϕ̄〉D2kR4 . The
external states are two pairs of opposite helicity gravi-
tons and two conjugate scalars. These matrix elements
contain local terms from nth order field monomials in the
nonlinear SUSY completion of D2kR4 as well as non-local
pole diagrams in which one or more lines of the operator
are off-shell and communicate to tree vertices from the
classical Lagrangian. It is practically impossible to cal-
culate these matrix elements with either Feynman rules
(because the non-linear supersymmetrizations of D2kR4

are unknown) or recursion relations (because the matrix
elements do not fall off under standard complex defor-
mations of their external momenta). Instead we use the
α′-expansion of the closed string tree amplitude to obtain
the desired matrix elements.

At tree level, the closed string effective action takes
the form

Seff = SSG − 2α′3ζ(3)e-6φR4 − ζ(5)α′5e-10φD4R4 (1)

+ 2
3α
′6ζ(3)2e-12φD6R4 − 1

2α
′7ζ(7)e-14φD8R4 + . . . .

All closed string amplitudes in this work are obtained via
KLT [19] from the open string amplitudes of [20]. The
amplitudes confirm the structure and coefficients of (1).

Couplings of the dilaton φ break the SU(8)-symmetry
of the supergravity theory to SU(4)×SU(4) when α′ > 0,
and thus the supersymmetric operators of Seff are not the
desired SU(8)-invariant operators. As explained in [15],
an SU(8)-averaging procedure extracts the SU(8) singlet
contribution from the string matrix elements. Specifi-
cally, the SU(8) average of the 〈++−−ϕ ϕ̄〉e-(2k+6)φD2kR4

matrix elements from string theory is

〈++−−ϕϕ̄〉avg = 1
35 〈++−−ϕ1234ϕ5678〉 (2)

− 16
35 〈++−−ϕ123|5ϕ4|678〉+ 18

35 〈++−−ϕ12|56ϕ34|78〉 .

The 3 terms on the right side correspond to the 3 in-
equivalent ways to construct scalars from particles of
the N = 4 gauge theory, namely from gluons, gluinos,
and N = 4 scalars. There are 35 distinct embeddings of
SU(4)× SU(4) in SU(8). Averaging is sufficient to give
the matrix elements of the N = 8 field theory operator
R4, as done in [15], and we extend it here to D4R4. For
D6R4 a further correction is necessary and is discussed
below.

Before proceeding, we note that the operators in the
action (1) are normalized such that their 4-point matrix
elements are 〈++−−〉 = g(s, t, u)[12]4〈34〉4 with

gR4 = 1 , gD4R4 = s2 + t2 + u2 ,

gD6R4 = s3 + t3 + u3 , gD8R4 = (s2 + t2 + u2)2 .
(3)

5-loop counterterm D4R4

At order α′5, the SU(8)-average (2) of the string the-
ory amplitudes directly gives the matrix elements of the
unique SU(8)-invariant supersymmetrization of D4R4.
The result is a complicated non-local expression, but its
single-soft scalar limit is very simple and local, viz.

lim
p6→0
〈++−−ϕϕ̄〉D4R4 = − 6

7 [12]4〈34〉4
∑
i<j

s2
ij . (4)

Since this limit is non-vanishing, the operator D4R4 is
incompatible with continuous E7(7) symmetry.

6-loop counterterm D6R4

The single-soft scalar limit of the SU(8)-singlet part of
the closed string matrix element at order α′6, obtained
by SU(8)-averaging, is

lim
p6→0
〈++−−ϕϕ̄〉(e-12φD6R4)avg = − 33

35 [12]4〈34〉4
∑
i<j

s3
ij .

(5)
It is important to realize that at order α′6, the 6-point

NMHV closed string amplitudes receive contributions
from diagrams involving one vertex from e−12φD6R4 (to-
gether with vertices from the supergravity Lagrangian)
and from pole diagrams with two 4-point vertices of
e−6φR4 (which coincides with R4 at 4-points). Since R4

is not present in N = 8 supergravity, its contributions
must be removed to extract the matrix elements of the
supergravity operator D6R4. The removal process must
be supersymmetric.

We first compute the R4−R4 pole contributions to
the 6-graviton NMHV matrix element 〈−−−+++〉 as
follows. This amplitude has dimension 14. Factorization
at the pole determines the simple form

〈12〉4[45]4〈3|P126|6]4/P 2
126 + 8 permutations , (6)

up to a local polynomial. The 9 terms correspond to
the 9 distinct 3-particle pole diagrams. The result (6) is
then checked by computation of the Feynman diagrams
from the R4 vertex [21]. As the non-linear supersym-
metrization of R4 may contribute additional local terms,
we also consider adding the most general gauge-invariant
and bose-symmetric polynomial of dimension 14 that can
contribute to 〈−−−+++〉, namely(

〈12〉〈23〉〈31〉[45][56][64]
)2
P 2

123 . (7)

To incorporate SUSY, we separately show that there
is a basis for SU(8)-invariant 6-particle NMHV superam-
plitudes (an alternative to the basis in [22]) consisting of
〈−−−+++〉 and 8 distinct permutations of the states.
In this basis we write a superamplitude ansatz as the
sum of the pole amplitude (6) plus a multiple of (7). We
then impose full S6 permutation symmetry on the ansatz.
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This fixes the coefficient of the polynomial (7) to vanish
and determines the SUSY completion of the desired pole
diagram uniquely!

Finally we project out the scalar-graviton matrix el-
ement from this superamplitude and take its single-soft
scalar limit to find

lim
p6→0
〈++−−ϕϕ̄〉(R4)2 = − 1

70 [12]4〈34〉4
∑
i<j

s3
ij . (8)

It is this contribution that we need to subtract from (5)
to obtain the single-soft scalar limits of the unique inde-
pendent D6R4 operator in N = 8 supergravity. Taking
the relative normalization [−2α′3ζ(3)]2/[ 2

3α
′6ζ(3)2] = 6

of operators in the string effective action (1) into account,
we obtain

lim
p6→0
〈++−−ϕϕ̄〉D6R4 = − 30

35 [12]4〈34〉4
∑
i<j

s3
ij . (9)

This non-vanishing result shows that the operator D6R4

is also incompatible with continuous E7(7) symmetry.
R4, D4R4 and D6R4 are the only local supersymmet-

ric and SU(8)-symmetric operators for loop levels L ≤ 6
[7–9]. Hence N = 8 supergravity has no potential coun-
terterms that satisfy the continuous E7(7) symmetry for
L ≤ 6. We stress that string theory is used as a tool to
extract SU(8)-invariant matrix elements that must agree
with the matrix elements of the N = 8 supergravity op-
erators R4, D4R4 and D6R4 because each of these oper-
ators is unique. No remnant of string-specific dynamics
remains in the final results.

Matching to automorphism analysis

The non-vanishing single-soft scalar limits found above
have their origin in local 6-point interactions of the
schematic form ϕ2D2kR4 which appear in the non-linear
completion of D2kR4. Let us encode this completion as
f(ϕ)D2kR4, with

f(ϕ) = 1− a
[
ϕ1234ϕ5678 + 34 inequiv. perms

]
+ . . . .

(10)
The “. . . ” indicate higher order terms. The constant a
depends on the operator; for example aR4 = 6

5 for R4

[15]. We can determine a for D4R4 by taking a further
single-soft limit p5→0 on (4) and comparing the resulting
s, t, u-polynomial with the 4-point normalization of (3).
The result is aD4R4 = 12

7 .
Ref. [17] used supersymmetry and duality consider-

ations in d dimensions to constrain the moduli depen-
dent functions f(ϕ) of the BPS operators R4, D4R4 and
D6R4. Specifically, for R4 and D4R4 in 4 dimensions,
they found that f(ϕ) should satisfy the Laplace equation

(∆ + 42)fR4(ϕ) = 0 , (∆ + 60)fD4R4(ϕ) = 0 . (11)

Here, ∆ is the Laplacian on E7(7)/SU(8); in terms of the

scalars ϕabcd of N = 8 supergravity, its leading terms are

∆ =
[ ∂

∂ϕ1234

∂

∂ϕ5678
+ 34 inequiv. perms

]
+ . . . . (12)

It is easy to see that the function (10) with the above
values of a precisely satisfy the Laplace equations (11).
This is a consistency check on our result for the single-
soft scalar limits.

Let us now consider the function f(ϕ) for D6R4. As
explained, the quadratic order of R4 interferes withD6R4

and it is therefore natural that the corresponding Laplace
equation in [17] contains an inhomogeneous term that re-
flects the contribution from R4−R4. Adding a general lin-
ear combination λR4fR4R4 +λD4R4fD6R4D6R4 to the ef-
fective action constrains the moduli-dependent functions
to satisfy [17]

(∆ + 60)fD6R4(ϕ) = −
λ2
R4

λD4R4

[
fR4(ϕ)

]2
. (13)

From (5) and (9), we can reconstruct the coefficient
a in (10) of the functions associated with the SU(8)-
averaged string-theory operator (e-12φD6R4)avg and with
the supergravity operator D6R4. We find

a(e-12φD6R4)avg = 66
35 , aD6R4 = 60

35 . (14)

For (e-12φD6R4)avg, the couplings λ in (13) must take
their string theory values λR4 =−2α′3ζ(3) and λD4R4 =
2
3α
′6ζ(3)2. The N = 8 operator D6R4, on the other

hand, must satisfy (13) with λR4 = 0 because the opera-
tor R4 does not appear in the action of N = 8 supergrav-
ity. Indeed, our results for f for both operators satisfy
the Laplace equation with the expected choice of λ’s.

CONSTRUCTION AND COUNTING OF
COUNTERTERMS

We now discuss the techniques used to classify and con-
struct local supersymmetric operators, especially those
needed for L ≥ 7. We are interested in SU(8)-invariant
operators, which are candidate counterterms, and in op-
erators transforming in the 70 of SU(8). The latter
are candidate operators for local single-soft scalar limits
(SSL’s) of the matrix elements of singlet counterterm op-
erators. First we use representation theory of the super-
algebra SU(2, 2|8) to determine the spectrum and mul-
tiplicity of these operators. The spectrum is classified
by the number n of external fields, the scale dimension,
and the order k of the NkMHV type. Then we construct
matrix elements of several operators explicitly using al-
gorithms which incorporate Gröbner basis techniques.
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Spectrum of local operators

Counterterms ofN = 8 supergravity are supersymmet-
ric, SU(8)-invariant, Lorentz scalar local operators C in-
tegrated over spacetime. These local operators involve n-
fold products of the fundamental fields and their deriva-
tives. We restrict to diffeomorphism-covariant combina-
tions of the fields, such as the Riemann tensor R. In
enumerating all local operators of a given order n (up to
covariance), the equations of motion set the Ricci tensor
equal to a combination of fields of quadratic order (and
higher), which is automatically included at order > n in
the enumeration. The remaining 10 components of the
on-shell Riemann tensor group into fields with Lorentz
spin (2, 0) and (0, 2). The collection of all on-shell super-
gravity fields span a representation of the N = 8 super-
Poincaré algebra as well as an ultrashort representation
of N = 8 superconformal symmetry (see [9] for a recent
discussion). Using the SU(2, 2|8) Dynkin diagram

�
SU(2)L

–⊗–�–�–�–�–�–�–�︸ ︷︷ ︸
SU(8)

–⊗–�
SU(2)R

, (15)

the Dynkin labels of this lowest-weight representation
read [0,0,0001000,0,0], where the SU(8) labels [0001000]
describe a 70 and the SU(2)L × SU(2)R Lorentz spins
indicate a scalar.

The graded symmetric tensor product of n copies of
the above multiplet provide all local operators with n
fields. We are interested in supersymmetric operators:
there is typically one such operator C in each irrep of
the tensor product. For long supermultiplets it is the
unique top component, obtained by acting with SUSY
generators Q16Q̃16 on the lowest-weight component C0.
(In superspace approaches, this is equivalent to the full
superspace measure

∫
d32θ.) For short or BPS supermul-

tiplets fewer supersymmetries are needed to get from C0

to the top component(s). Hence it is sufficient to enu-
merate the lowest superconformal weights C0. Its super-
conformal transformation properties determine the spin,
SU(8) representation as well as loop and NkMHV level.

More concretely, Dynkin labels translate to scalar local
operators as follows (assume q ≥ p)

[0,p,0000000,q,0] → D3p−q−nϕn+p−qRq−p (singlet) ,

[0,p,0001000,q,0] → D3p−q−n+1ϕn+p−qRq−p (70) .
(16)

Note that we display only prototypical terms, mixture
with other fields is implied: E.g. D4ϕ2 ' RR̄. (Here
we distinguish between the chiral and anti-chiral compo-
nents of the Riemann tensor.) To get from C0 to the su-
persymmetric C in long multiplets, apply Q16Q̃16 ' D16.
A lowest weight as in (16) then corresponds to a NkMHV
counterterm at L loops with

2k = n+ p− q − 4 , 2L =
{ 14 + p+ q − n (singlet),

15 + p+ q − n (70).
(17)

Note that locality requires that the exponents in (16)
are non-negative numbers. In particular, 3p− q − n ≥ 0
implies 2L ≥ 6 + 2n− 4k using (17). This bound on the
existence of local non-BPS operators was conjectured in
[8] and confirmed very recently in [9].

As a simple illustration, consider (16) with n = 4 and
p = q. We find C0 = D2p−4ϕ4, and after application of
D16 it becomes D2p+4R2R̄2; this is just the 4-point MHV
local counterterm D2p+4R4. Locality of C0 requires p ≥
2, so the first available non-BPS operator is D8R4.

In practice, we use a C++ program to enumerate all lo-
cal operators with 2L ≤ 30−n amounting to ∼ 4.8 · 1022

terms.2 These are decomposed into irreps of SU(2, 2|8)
by iteratively removing the lowest weights and their cor-
responding supermultiplets [23]. Special attention needs
to be paid to BPS and short supermultiplets [24]. In to-
tal we obtained around 8.8 · 105 types of supermultiplets
along with their multiplicities.3 Finally we extract su-
permultiplets with scalar SU(8) singlets and 70’s as top
supersymmetry components. The results at L ≤ 9 are
presented in Table I.

Our analysis shows that there are unique 1
2 , 1

4 , 1
8

BPS counterterms R4, D4R4 and D6R4, in agreement
with earlier results [7–9]. They correspond to the lowest
weights

[0,0,0004000,0,0], [0,0,0200020,0,0], [0,0,2000002,0,0] .
(18)

In the previous section, we showed that their 6-point ma-
trix elements have non-vanishing single-soft limits origi-
nating from the non-linear completion of the operators.
The limits correspond to local 70 BPS operators ϕR4,
ϕD4R4 and ϕD6R4, which are descendants of the 1

2 , 1
4 ,

1
8 BPS superconformal primaries ϕ5 with SU(8) Dynkin
labels [0005000], [0201020], [2001002]. The relationship
between BPS operators are illustrated in Table I.

Explicit matrix elements and superamplitudes

The matrix elements of potential counterterms such as
D2kRn must be polynomials of degree δ = 2(k + n) in
angle and square brackets 〈i j〉, [kl] which satisfy several
constraints. If ai and si denote the number of angle |i〉
and square |i] spinors for each particle i = 1, 2, . . . , n,
then the total number of spinors is fixed by the dimen-
sion of the operator to be

∑
i(ai + si) = 4(k + n). For

each particle i, of helicity hi, there is a helicity weight
constraint ai − si = −2hi. We need polynomials which
are independent under the constraints of momentum con-
servation and the Schouten identity,∑
j

〈ij〉[jk] = 0 , 〈ij〉〈kl〉+〈jk〉〈il〉+〈ki〉〈jl〉 = 0 , (19)

2 The computation took 3.5 hours on a desktop PC.
3 The decomposition took 42 hours.
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and a similar Schouten identity for square brackets.
These polynomials must satisfy bose and fermi symme-
tries when they contain identical particles. Finally, the
polynomials must satisfy SUSY Ward identities. This
was ensured in [8] by packaging n-point matrix elements
into the manifestly SUSY- and SU(8)-invariant superam-
plitudes of [22].

In [8], Mathematica was used to construct the required
independent polynomials. More efficient algorithms are
needed for the higher dimension counterterms studied in
this paper. The constraints (19) define an ideal in a poly-
nomial ring, and the Gröbner basis method [25, 26] is well
suited to choose a basis in the ideal and generate inde-
pendent sets of polynomials in the quotient ring.

Given a (conventional) monomial ordering in the ring,
a Gröbner basis is a subset of the ideal such that the
leading term of any element of the ideal is divisible by a
leading term of an element of the subset. Buchberger’s
algorithm generates the unique reduced Gröbner basis
in which no monomial in a polynomial of this basis is
divisible by a leading term of the other polynomials in
the basis. For the ideal generated by (19), the reduced
Gröbner basis is quite simple. By the theory of Gröbner
bases, the monomials of degree δ (and specific helicity
weights) that are not divisible by any leading term of
the reduced Gröbner basis are a vector space basis of the
quotient ring. This division test concerns only monomi-
als and is computationally fast. (See Ch. 2, Sec. 7 and
Prop. 5.3.1 of [25].)

We used the implementation of the Buchberger’s al-
gorithm in the algebraic software system Macaulay2 [27]
to generate independent polynomials which satisfy di-
mension and helicity weight requirements and the con-
straints (19). These polynomials were then processed by
computer programs similar to those used in [8] which
imposed bose symmetries. Among the resulting polyno-
mials we select the ones that are independent under the
conditions (19).

We have applied the Gröbner basis method to local
counterterms with n ≤ 6. The results are in perfect
agreement with the multiplicities found from the enumer-
ation of SU(2, 2|8) superconformal primary operators. In
addition to an enumeration of independent operators, the
explicit matrix elements allow us to test single-soft scalar
limits. We discuss our L = 7, 8, 9 results below.

7-LOOP COUNTERTERMS: D8R4 AND BEYOND

E7(7)-compatibility of D8R4 at 6-points

The 6-point closed-string tree amplitude at order α′7

only receives contributions from diagrams with one in-
sertion of e-14φD8R4. No lower-dimension operators in
the closed string effective action (1) contribute. For the
SU(8)-averaged single-soft scalar limits of e-14φD8R4 we

obtain

lim
p6→0
〈++−−ϕϕ̄〉(e-14φD8R4)avg

= −2[12]4〈34〉4
[

3
4

∑
i<j

s4
ij + 1

16

(∑
i<j

s2
ij

)2 ]
.

(20)

However, we cannot conclude from this result that the
operator D8R4 violates E7(7): contrary to the lower-loop
cases we have studied, D8R4 is not unique. In fact, as
we show later in this section, there is an infinite tower
of supersymmetric operators of mass dimension 16. It is
relevant for the 6-point matrix elements that there are
two independent supersymmetrizations of D4R6. To any
non-linear supersymmetrization of D8R4 we can add an
arbitrary linear combination of these 6-point operators
and obtain another valid supersymmetrization of D8R4.
The SU(8)-averaged string amplitude picks out one par-
ticular such linear combination whose soft-limits (20)
happen to be non-vanishing.

We construct the matrix elements of D4R6 explicitly
with Gröbner basis techniques and find that they have
non-vanishing SSL’s; specifically we find that the SSL’s
of the 6-point matrix elements of the operators D4R6

span the 2-parameter space

lim
p6→0
〈++−−ϕϕ̄〉D4R6

= [12]4〈34〉4
[
c1
∑
i<j

s4
ij + c2

(∑
i<j

s2
ij

)2 ]
.

(21)

It follows from (20) and (21) that we can choose a suit-
able linear combination of the two D4R6 operators to
make the SSL of the 6-point matrix elements of the re-
sulting non-linear supersymmetrization of D8R4 vanish:
thus there exists a supersymmetrization of D8R4 that sat-
isfies

lim
p6→0
〈++−−ϕϕ̄〉D8R4 = 0 . (22)

Since this particular D8R4 satisfies the single-soft
scalar theorems up to 6 points, it is important to also an-
alyze the double-soft limit constraints of [13] that probe
the structure of the coset E7(7)/SU(8). We numerically
verified that various non-trivial double-soft limits [16] of
the 6-point matrix elements of D8R4 behave precisely as
required for E7(7)-invariance. Therefore the matrix ele-
ments of D8R4 are compatible with continuous E7(7) up
to 6 points.

We would like to alert the reader to an alternative con-
struction of the full n-point superamplitudes for the ma-
trix elements of n-point 7-loop counterterms. Once the
counting of the operator’s multiplicity has been estab-
lished by other means (as described above), it is easy to
write down a corresponding set of superamplitudes. For
the two 6-point superamplitudes of D4R6, for example,



6

3-loop 4-pt 5-pt 6-pt

singlet
R4

1×MHV

����ϕ2D2R3
���ϕ2R4

R4 non-linear

↙soft

70 1×ϕR4

5-loop 4-pt 5-pt 6-pt

singlet
D4R4

1×MHV

����ϕ2D6R3 ����ϕ2D4R4

D4R4 non-lin.

↙soft

70 1×ϕD4R4

6-loop 4-pt 5-pt 6-pt

singlet
D6R4

1×MHV

����ϕ2D8R3 ����ϕ2D6R4

D6R4 non-lin.

↙soft

70 1×ϕD6R4

7-loop 4-pt 5-pt 6-pt 7-pt 8-pt 9-pt 10-pt 11-pt 12-pt 13-pt 14-pt 15-pt 16-pt

singlet D8R4

1×MHV

���D6R5 D4R6

2×NMHV

���D2R7 R8

3×N2MHV

����ϕ2D2R7 ϕ2R8

4×N3MHV

����ϕ4D2R7 ϕ4R8

6×N4MHV

����ϕ6D2R7 ϕ6R8

8×N5MHV

����ϕ8D2R7 ϕ8R8

10×N6MHV

↙soft ↙soft ↙soft ↙soft ↙soft ↙soft

70 ϕD8R4

2×
ϕD4R6

4×
ϕR8

6×
ϕ3R8

9×
ϕ5R8

14×
ϕ7R8

19×

8-loop 4-pt 5-pt 6-pt 7-pt 8-pt 9-pt 10-pt 11-pt 12-pt 13-pt 14-pt

singlet D10R4

1×MHV

D8R5

1×MHV

D6R6

3×NMHV

D4R7

3×NMHV

D2R8

8×N2MHV

R9

8×N2MHV

ϕ2D2R8

25×N3MHV

ϕ2R9

22×N3MHV

ϕ4D2R8

66×N4MHV

ϕ4R9

51×N4MHV

ϕ6D2R8

153×N5MHV

↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙

70 ϕD10R4

3×
ϕD8R5

4×
ϕD6R6

17×
ϕD4R7

16×
ϕD2R8

81×
ϕR9

63×
ϕ3D2R8

232×
ϕ3R9

211×
ϕ5D2R8

1033×

9-loop 4-pt 5-pt 6-pt 7-pt 8-pt 9-pt 10-pt 11-pt 12-pt

singlet
D12R4

2×MHV

D10R5

1×MHV

D8R6

12×NMHV
2×MHV

D6R7

14×NMHV

D4R8

117×N2MHV
7×NMHV

D2R9

123×N2MHV

R10

780×N3MHV
36×N2MHV

ϕ2D2R9

783×N3MHV

ϕ2R10

4349×N4MHV
169×N3MHV

↙ ↙ ↙ ↙ ↙ ↙ ↙

70
ϕD12R4

5×N0.5MHV

ϕD10R5

8×N0.5MHV

ϕD8R6

122×N1.5MHV

5×N0.5MHV

ϕD6R7

194×N1.5MHV

ϕD4R8

1814×N2.5MHV

52×N1.5MHV

ϕD2R9

2317×N2.5MHV

ϕR10

16485×N3.5MHV

469×N2.5MHV

TABLE I. Supersymmetric SU(8)-singlet L-loop counterterms and the SU(8) 70 operators which describe their potential
single-soft scalar limits. When the singlet operator is in the NkMHV classification, the single-soft scalar limit operator belongs

to the N(k− 1
2
)MHV sector. For L < 7, there are no independent singlet operators with n > 4, but the non-vanishing single-soft

scalar limits arise from the non-linear completions of the 4-point operators D2kR4.

one can choose the basis

AD4R6 = δ(Q̃)δ(Q)
[
(ϕ1, ϕ2)(ϕ3, ϕ4)(ϕ5, ϕ6) + perms

]
,

AD4R6′ = δ(Q̃)δ(Q)
[

(ϕ1, ϕ2, ϕ3, ϕ4) (ϕ5, ϕ6) + perms
]
.

(23)

Here Q, Q̃ are the usual supercharges that act on the
Grassmann η-variables of the superamplitude as differ-
entiation and multiplication, respectively, and thus

δ(Q) =

8∏
a=1

∑
i<j

[ij]
∂2

∂ηia∂ηja
, δ(Q̃) =

8∏
a=1

∑
i<j

〈ij〉ηiaηja .

(24)
The sums in (23) run over all inequivalent permutations
of the external state labels i of the ϕi, and the ϕ-products
are defined as

(ϕi, ϕj)≡εa1a2a3a4b1b2b3b4 ×
∏4
t=1ηiatηjbt ,

(ϕi, ϕj , ϕk, ϕl)≡εa1a2a3a4b1b2b3c1εd1d2d3d4c2c3c4b4

×
∏4
t=1ηiatηjbtηkctηldt .

(25)

Of course, the choice of contractions is not unique,
and only through the previously established multiplicity
count do we know that it is sufficient to consider the two

contractions given in (23). A similar construction can
be carried out for the three 8-point N2MHV superampli-
tudes of R8. Again, one can immediately propose three
superamplitudes that span the space of R8 counterterms,
for example by considering three order-8 contractions in-
volving the ϕ-products (25).

The infinite tower of 7-loop counterterms

We now examine the multiplicity of potential 7-loop
n-point counterterms [8]

D8R4, D4R6, R8, ϕ2R8, ϕ4R8, . . . . (26)

7-loop operators correspond to long multiplets, and are
thus supersymmetric descendants of local operators com-
posed from only scalars with no derivatives. This follows
from setting L = 7 in (16) and (17). SU(8)-singlet op-
erators C only exist for even n at L = 7, and we write
them schematically as

C ' Q16Q̃16ϕ2q. (27)

The lowest weight ϕ2q must be in an SU(8)-singlet com-
bination, and every such singlet gives rise to a long super-
multiplet. Hence there is one 7-loop n-point counterterm
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for each singlet in the decomposition of the symmetric
tensor product of n= 2q 70’s. With increasing q there
is a (swiftly) increasing number of singlets, as illustrated
by the explicit multiplicities up to n = 16 in Table I.
Consequently, there is an infinite ‘tower’ of independent
7-loop operators that are potential counterterms. Opera-
tors corresponding to their SSL are also listed in Table I.
Their construction is similar, and their multiplicities is
the number of 70’s in a product of (2q−1) 70’s.

E7(7) violation of higher-point 7-loop operators

Consider the leading n-point matrix elements of a local
counterterm C. If non-vanishing, the SSL produces a
local (n− 1)-matrix element, which can be generated by
an (n − 1)-point local operator dC in the 70. Locality
of C ensures that the SSL operation C → dC commutes
with the SUSY generators Q and Q̃. For a long-multiplet
(L ≥ 7) counterterm C = Q16Q̃16C0 we can therefore
write

dC = Q16Q̃16dC0. (28)

E7(7) requires that the SSL vanishes. Now there are two
ways to obtain dC = 0: either the single-soft limit of
C0 vanishes (dC0 = 0), or dC0 is annihilated by Q16Q̃16.
At the seven-loop level, C0 = ϕ2q consists of only scalars
with no derivatives, and consequently dC0 6= 0. C0 is also
not annihilated by Q16Q̃16 because dC0 = ϕ2q−1 in a 70
satisfies a shortening condition only for n = 2q ≤ 4 [24].
Therefore, all 7-loop linearized counterterms with n > 4
have non-vanishing single-soft scalar limits and thus vio-
late E7(7). (This was also observed in [28].) These oper-
ators may, however, play an important role as dependent
terms in the non-linear completion of the D8R4 operator,
as we demonstrated above at the 6-point level.

SSL STRUCTURE: 7-, 8- AND 9-LOOPS

We now show that all our findings on E7(7)-
(in)compatibility of operators have a natural explanation
in terms of the multiplicities of SSL operators in the 70
that is displayed in Table I.4 Let us first revisit the case
of D4R4 and D6R4. At the 5- and 6-loop level, there are
no potential 3-point or 4-point SSL operators available.
Therefore the matrix elements of D4R4 and D6R4 must
have vanishing soft limits at 4- and 5-points, and this is
indeed the case. There exists, however, one potential 5-
point SSL operator at L = 5 and L = 6. Generically, one

4 Throughout this section we are only concerned with the lowest-
point non-vanishing SSL’s of an operator. If an operator has
non-vanishing SSL’s at n-point, its higher-point matrix elements
will generically have non-local SSL’s, which are not classified by
our analysis.

expects the soft-limits of the 6-point matrix elements of
D4R4 and D6R4 to be proportional to this operator with
some non-vanishing coefficient. This is precisely what
happens.

At 7 loops with n > 4 points, the number nS of SSL op-
erators D16ϕn−1 is always at least as large as the number
nC of potential counterterms D16ϕn. Generically, one
therefore expects the soft limits of the potential coun-
terterms to span an nC-dimensional subspace in the nS-
dimensional space of SSL operators. It would follow that
all potential counterterms with n > 4 violate E7(7). In-
deed, this is what we explicitly proved above for the 7-
loop case.

By the same logic, it is not at all surprising that there
is a non-linear supersymmetrization of D8R4 that pre-
serves E7(7) at the 6-point level. The number of 5-point
SSL operators precisely matches the number of D4R6 op-
erators. Therefore, the 6-point soft limit of D8R4 can be
made to vanish after adding an appropriate combination
of the two D4R6 operators, just as we found above. For
the 8-point soft limits of D8R4, however, there are 4 SSL
operators available; more than the 3 potential 8-point
counterterms R8. If the 8-point soft limits of D8R4 take
a generic value in the 4-dimensional space of SSL op-
erators, no linear combination of R8 operators can be
chosen to give an E7(7)-preserving supersymmetrization
of D8R4; a remarkable cancellation is thus required for
D8R4 to be compatible with E7(7).

As Table I illustrates, E7(7) becomes more and more
constraining as we increase the number of points and
loops. For example, the 14-point soft limits of D10R4

have to lie in a specific 153-dimensional subspace of the
1033-dimensional space of SSL operators in order for
D10R4 to satisfy E7(7) after an appropriate addition of
independent 14-point operators. It follows that E7(7) is
a very constraining symmetry even for L = 7 and be-
yond. Although there is an infinite tower of independent
counterterms at each of loop L ≥ 7, we cannot expect
any of these operators to preserve E7(7) ‘accidentally’.
There may, however, be a very good reason for the can-
cellations of terms that is needed for E7(7)-invariant op-
erators to exist for L ≥ 7; namely, when there is a con-
struction of a manifestly E7(7)-invariant supersymmetric
operator [29, 30]. At the 7-loop level, for example, we can
only expect the 8-point single-soft limits of D8R4 to van-
ish after an appropriate addition of R8, if the manifestly
E7(7)-invariant superspace integral that was proposed as
a candidate counterterm in [29] is indeed non-vanishing.

One new feature that emerges at L = 8, 9 is the exis-
tence of n > 4 operators that have vanishing soft-limits
at the linearized level. This holds for the MHV operators
D8R5, D10R5 and 2 ×D8R6 as well as for at least 7 of
the 12×D8R6 NMHV operators. The latter follows from
the multiplicity 5 of 5-point SSL operators at 9 loops.
E7(7)-invariance beyond the linearized level, however, is
a highly non-trivial constraint on all of these operators.
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