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Abstract

The role of duality symmetries in the construction of counterterms for maximal supergravity
theories is discussed in a field-theoretic context from different points of view. These are: dimen-
sional reduction, the question of whether appropriate superspace measures exist and information
about non-linear invariants that can be gleaned from linearised ones. In D = 4, N = 8 super-
gravity we find that all three of these arguments suggest that F-term counterterms cannot be
E7(7)-invariant and that the theory should be finite up to seven loops as a consequence. We also
argue that N = 6 supergravity is finite at three and four loops and that N = 5 supergravity
should be three-loop finite.
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Introduction

It has now been established that D = 4, N = 8 supergravity is finite at three loops [1], despite
the existence of a linearised R4 counterterm [2, 3], and that maximal supergravity is finite at
four loops in D = 5 [4]. The only other candidate linearised short counterterms (i.e. F or BPS
terms) in D = 4 occur at the five and six loop orders and are four-point terms of the form
∂2kR4 for k = 2, 3 [5, 6, 7]. The absence of the R4 divergence can be seen from field-theoretic
arguments [8, 9], including algebraic renormalisation theory, results that generalise those for
the finiteness of one-half BPS counterterms in maximal super Yang-Mills theories in various
dimensions [9]. However, even in the Yang-Mills case it does not seem easy to extend these
results to the double-trace ∂2F 4 invariant [10, 11] which is known to be finite at three loops in
D = 6 [12]. String theory provides an alternative approach to discussing field-theoretic finiteness
issues and has been used to give arguments in favour of the known Yang-Mills results and also
suggesting that D = 4, N = 8 supergravity should be finite at least up to six loops [13].

A key feature of supergravity theories which has no analogue in SYM is the existence of duality
symmetries. It has recently been shown [14] that E7(7) can be maintained in perturbation
theory in D = 4 (at the cost of manifest Lorentz invariance), and this suggests that these
duality symmetries should be taken seriously in providing additional constraints on possible
counterterms which might not be visible from a linearised analysis. For R4 a scattering amplitude
analysis supporting the idea that the full invariant is not compatible with E7(7) was given in
[15], while in a recent paper this violation of E7(7) invariance was demonstrated by means of an
argument based on dimensional reduction from type II string theory [16].

In this note we investigate this issue for D = 4, N = 8 supergravity in a field theory setting from
three different points of view: dimensional reduction of higher-dimensional counterterms, the
(non)-existence of appropriate superspace measures that generalise the linearised ones, and the
use of the so-called ectoplasm formalism which allows one to write super-invariants in terms of
closed superforms. Although our discussion is not completely rigourous, we find that it strongly
suggests that E7(7) invariance would postpone the onset of UV divergences until at least seven
loops.

Dimensional reduction

One way of stating the problem with duality invariance is to start from the R4 counterterm in
D = 11 and to reduce it to D = 4. This reduced invariant will only have the natural SO(7)
symmetry of a standard Kaluza-Klein reduction on T 7. However, the invariant may be promoted
to a full SU(8) invariant by first performing the necessary dualisations of higher form fields and
then averaging, i.e. parametrising the embedding of SO(7) into SU(8) and integrating over the
SU(8)/SO(7) coset in a fashion similar to that employed in harmonic superspace constructions.
Letting the volume modulus of a T 11−D reduction be −(D−2)~α·~φ, where ~φ are the Kaluza-Klein
scalars emerging from the metric, the Kaluza-Klein reduction ansatz from 11 to D dimensions

for the metric is ds211 = e2~α·
~φds2D + . . . . For the Einstein action, the T 11−D volume factor

e−(D−2)~α·~φ cancels against a factor eD~α·~φe−2~α·~φ coming from
√−gDgµνD . However, for the R4

invariant in D = 11, the Einstein-frame reduction produces an extra factor of e−6~α·~φ arising from
the three additional inverse metrics present in the R4 term as compared to the Einstein-Hilbert
action. This dilatonic factor will then be promoted to an SU(8) invariant by the SU(8)/SO(7)
integration. If we expand the exponentials in power series, the terms linear in the scalars
vanish in such an averaging, but SU(8) invariant quadratic terms survive. Such non-vanishing

1



quadratic terms have been worked out explicitly for the 10 → 4 reduction of string/supergravity
R4 corrections in Ref. [16].

Such dilaton factors in front of purely gravitational terms containing only curvatures and their
covariant derivatives prevent such terms from being constituent parts of duality invariants, since
the lowest-order part of a duality transformation always involves a constant shift of the scalar
fields. Of course, were there additional invariants arising in the lower dimension, without Kaluza-
Klein origins, combinations of invariants could be capable of erasing the problematic dilatonic
scalar prefactors and thus permitting a duality-invariant construction. This is precisely what
must happen in D = 8, where an R4 divergence in maximal supergravity occurs at the one-
loop order. However, in D = 4, the available 1/2 BPS SU(8) invariant R4 counterterm [3] is
unique at the 4-point level [5]. This counterterm develops a higher-point structure which is
not currently known, but this higher-point structure must, once again, be unique. Were there
alternative higher-point structures extending the 4-point linearised supersymmetry invariant,
their differences would have to constitute new D = 4 invariants under SU(8)-covariant linearised
supersymmetry, and these also do not exist [5]. Thus, the uniqueness of the SU(8)-symmetric
R4 invariant in D = 4 maximal supergravity shows that the SU(8)-symmetrised dimensional
reduction of the D = 11 R4 invariant is the only such supersymmetric candidate. Its ineligibility
as an E7(7) duality invariant thus rules out this D = 4 R4 candidate counterterm.

The above argument is a variant of the one given in Ref. [16] (where it was framed in terms of
reduction from D = 10 type 2A superstring/supergravity amplitudes). It also gives a way to see
that the maximal supergravity 1/4 BPS ∂4R4 candidate counterterm at 5 loops and the 1/8 BPS
∂6R4 candidate counterterm at 6 loops cannot be E7(7) duality invariants either. Once again,
the argument hangs upon the uniqueness of the corresponding D = 4 SU(8) symmetric BPS
invariants, together with the inevitable dilaton factors that arise from dimensional reduction in
front of the purely gravitational parts of the invariants.

In fact, it is precisely the known existence of the 1/2 BPS R4 one-loop divergence of maximal
supergravity in D = 8, the 1/4 BPS ∂4R4 two-loop divergence in D = 7 and the 1/8 BPS ∂6R4

three-loop divergence in D = 6 that permits us to rule out the descendants of these counterterms
as E7(7) invariants in D = 4. The existence of these higher-dimensional divergences indicates the
presence of counterterms without dilaton factors in the purely gravitational parts of the higher-
dimensional versions of these counterterms. Indeed, the demonstration that E7(7) symmetry
is preserved in perturbative theory for N = 8 supergravity [14], generalises straightforwardly
to higher dimensions, provided there are no Lorentz × R-symmetry one-loop anomaly. The
absence of such anomaly is trivial in odd dimensions, and there is none in six dimensions [17].
The SL(2,R) symmetry is anomalous at one-loop in eight dimensions, however the latter does
not affect the consequence of the tree level Ward identities for the one-loop divergence, and this
one must therefore be associated to a duality invariant R4 counterterm. Coupled with the D = 4
uniqueness of all these BPS counterterms [5], the inevitable appearance of dilaton factors in the
corresponding D = 4 versions then rules out E7(7) invariance.

Consequently, the first D = 4 candidate counterterm with E7(7) invariance will be the non-BPS
∂8R4 candidate at seven loops [18]. In superspace language, this first E7(7) invariant candidate
is simply the volume of superspace,

∫
d4xd32θ detE. It remains to be verified whether this

invariant is non-vanishing subject to the classical field equations of the N = 8 theory.
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Harmonic measures

Another aspect of the difficulty in constructing non-linear invariants in maximal supergravity
is that the necessary measures that generalise the linearised ones do not always exist. Here we
discuss this issue in the case of D = 4, N = 8 supergravity. At the linearised level, there are
three short invariants that can be written as integrals over certain harmonic superspaces [5].
We briefly review these and then discuss how one might try to generalise these integrals to the
non-linear case.

We recall that harmonic superspace is the product of ordinary superspace with a coset of the
R-symmetry group G which is always chosen to be a compact complex manifold, K [19, 20, 21].
Instead of working on K directly, it is convenient to work with fields that are defined on G and
then demanding that their dependence on the isotropy group P defining K, K = P\G, be fixed
in such a way that they are equivalent to tensor fields on K [20]. We shall denote an element
of G by uI

i where G (P ) acts to the right (left) on the small (capital) index, and its inverse by
vi

I . In flat D = 4 superspace the derivatives are (∂a,DαiD̄
i
α̇), i = 1, . . . N . The introduction of

the new variables allows us to define subsets of the odd derivatives that mutually anticommute
without breaking the R-symmetry. Such a subset with p Ds and q D̄s is called a Grassmann
(G)-analytic structure of type (p, q), and a G-analytic field of type (p, q) is one that is annihilated
by all of these derivatives.

For N = 8 we can take P = S(U(p) × U(8 − (p + q))× U(q) and set uI
i = (ur

i, uR
i, ur′

i). The
(p, q) mutually anticommuting derivatives are

Dαr := ur
iDαi and D̄r′

α̇ := D̄i
α̇vi

r′ , (1)

for r = 1, · · · p and r′ = (N − q), · · ·N . As the superfields will also depend on u we need to
introduce derivatives on SU(8); they are the right-invariant vector fields DI

J and they satisfy
the Lie algebra relations of su(8). Their action on the u, v variables is given by

DI
JuK

k = δK
JuI

k − 1

8
δI

JuK
k; DI

Jvk
K = −δIKvkJ +

1

8
δI

Jvk
K . (2)

The derivatives split into subsets: (Dr
s,DR

S ,Dr′
s′) correspond to the isotropy subalgebra while

(Dr
S,Dr

s′ ,DR
s′) can be thought of as the components of the ∂̄-operator on the complex manifold

K. The remaining derivatives are the complex conjugates of these. This means that we can
have superfields that are G-analytic (annihilated by (Dαr, D̄

r′

α̇ )), superfields that are harmonic,
or H-analytic (annihilated by (Dr

S ,Dr
s′ ,DR

s′), and superfields that are annihilated by both
sets since they are compatible in the sense that they are closed under graded commutation. We
shall call such superfields analytic. They are the integrands for the short invariants. The fact
that they are H-analytic implies that they have short expansions in u, because K is compact as
well as complex, and the fact that they are G-analytic means that they can be integrated over
32− 2(p + q) odd coordinates rather than the full 32.

The N = 8 field strength superfield Wijkl is in the 70 of SU(8); it is totally antisymmetric and
self-dual on its SU(8) indices and satisfies

DαiWjklm = Dα[iWjklm]

D̄i
α̇Wjklm = −4

5
δi[jD̄

n
α̇Wklm]n . (3)
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The R4 invariant can be written in (4, 4) superspace. The field W := 1
4!ε

rstuur
i . . . uu

lWijkl is
easily seen to be G-analytic and is also obviously H-analytic on the coset S(U(4)×U(4))\SU(8).
It is preferable to write W as W1234 as this exhibits the charges explicitly. The R4 invariant is

I =

∫
d4x du [D5 . . . D8D̄

1 . . . D̄4]2 (W1234)
4 (4)

where du denotes the standard measure on the coset and the theta-integration is represented
as differentiation with respect to all of the spinorial derivatives that do not annihilate W . It
is easily seen to be unique as it makes use of the only dimension-zero analytic integrand with
the right charges. The other two short invariants ∂4R4 and ∂6R4 can be written in a similarly
unique fashion as integrals over (2, 2) and (1, 1) harmonic superspaces respectively.

We now want to try to generalise this picture to curved superspace.1 In superspace the tangent
spaces split invariantly into even and odd sectors (there is no supersymmetry in the tangent
space) and for N = 8 the structure group is SL(2,C) × SU(8). Because of the split structure,
it is always best to work in a preferred basis. The preferred basis one-forms are related to the
coordinate one-forms by the supervielbein, EA = dzMEM

A; their duals are denoted EA. We
set EA = (Ea, Eαi, Ēα̇

i ), where a is a vector index. SL(2,C) acts on the spinor indices α, α̇ and
also on the vector index a via the corresponding element of the Lorentz group, while the local
SU(8) acts on i, j, etc. We also have a set of connection one-forms ΩA

B with

Ωαi
βj = δα

βΩi
j + δi

jΩα
β

Ωab → Ω
αα̇,ββ̇

= ε
α̇β̇

Ωαβ + εαβΩ̄α̇β̇
, (5)

where we have used the usual relation between vector indices and pairs of spinor indices. Ωiβ̇
α̇j is

the complex conjugate of Ωαi
βj and the off-diagonal elements of ΩA

B are zero. The torsion and
curvature tensors are defined in the usual way, using the covariant exterior derivative D, by

TA = DEA; RA
B = dΩA

B +ΩA
CΩC

B . (6)

In N = 8 supergravity, the scalars are described by an element V of the group E7(7) [24], where
the local SU(8) acts from the left and the rigid E7(7) acts from the right. The Maurer-Cartan
form Φ is

Φ = dVV−1 = P +Q , (7)

where P is in the 70 of SU(8) and Q is the su(8) connection which is to be identified with
Ωi

j above. In the geometrical quantities, the scalars only appear through the vector part of
the one-form P , i.e. Pa, which one can think of as a suitably defined pullback of the covariant
derivative for the scalar target manifold.

The constraints on the various tensors that need to be imposed in order to describe on-shell
N = 8 supergravity can be found in [25, 26]. At dimension zero, the only non-vanishing torsion
is

1N = 2 curved harmonic superspace was first studied in [22]; the sort of analysis given here was described for
N ≤ 4 conformal supergravity theories in [23].
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T j c

αi,β̇
= −iδij(σc)αβ̇ , (8)

and the only non-vanishing dimension one-half torsion is

T γ̇
αi,βj,k = εαβΛ̄

γ̇
ijk (9)

and its conjugate, where Λijk
α is the superfield whose leading component is the physical spinor

field that transforms under the 56 of SU(8).

This brief outline is enough to enable us to discuss whether there can be harmonic superspace
measures of the required type in the non-linear theory where the SU(8) R-symmetry becomes
local. We need to enlarge the superspace by adjoining some group variables u; in fact, the
resulting space is the principal bundle associated with the SU(8) part of the structure group.
The idea is to search for appropriate CR structures, that is, complex, involutive distributions
which involve 2(p+q) odd directions and the accompanying holomorphic structures in the bundle
coordinates. The way to do this is to introduce the horizontal lift basis in the total space of the
bundle corresponding to a preferred basis in the base manifold. We have

ẼA := EA − ΩAI
JDJ

I , (10)

where one switches to an I index from an i index by means of uI
i and its inverse, as in the flat

case. We then have

[ẼαI , ẼβJ ] = −TαIβJCẼC +RαIβJK
LDL

K + . . . , (11)

where the additional terms are irrelevant for this discussion, and similarly for the dotted and
mixed commutators of the spinorial lifted bases. Now suppose that we require the CR structure
to include Ẽαr, r = 1 . . . p and Ẽs′

β̇
, s′ = N − q, . . . N . We can see immediately that this leads

to consistency conditions on the dimension one-half torsion, namely

Tαr,βs,γ̇t = Tαr,βs,γ̇T = 0 , (12)

since otherwise these derivatives would not close among themselves. From the explicit form of
the dimension one-half torsion (9) we can see that the only possibility is that r can only take
on one value. A similar result holds for the dotted indices, and so we conclude that we can only
have Grassmann analyticity of type (1, 1) in the full theory. (There are also conditions on the
curvature but they are compatible with this.) As a CR structure is necessary in order that we
can have harmonic superspaces with fewer odd coordinates (also called analytic superspaces)
it follows that harmonic measures do not exist for (p, q) = (4, 4) and (2, 2) G-analyticity, and
therefore that there can be no straightforward generalisation of the R4 and ∂4R4 invariants,
expressed as harmonic superspace integrals, to the full non-linear theory that are compatible
with local SU(8) symmetry.

In the case of (1, 1) analyticity, relevant to the ∂6R4 invariant, the measure should exist, which
suggests that this invariant can be written as an harmonic superspace integral. However, the
harmonic measure is definitely not R-symmetric, which implies that the integrand must be a
non-trivial function of the scalars V. In the formulation with gauged SU(8) and linearly realised
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rigid E7(7), the measure will be E7(7) invariant whereas the integrand will necessarily transform
non-trivially with respect to E7(7). It would then follow that the ∂6R4 invariant is not E7(7)

invariant, in agreement with the conclusion of the preceding section.

Note that this is not in contradiction with the existence of BPS duality invariants in higher
dimensions (such as R4 in D = 8, ∂4R4 in D = 7 and ∂6R4 in D = 6), since the BPS invariants
are not unique in dimensions D > 5.

The non-existence of harmonic measures for the 1/2 and the 1/4 BPS invariants is not in
contradiction with the existence of these non-linear invariants in the full non-linear theory.
Indeed as we will discuss in the next section, not all supersymmetry invariants can be written
as harmonic superspace integrals, and some are only described in terms of closed super-D-form.

Non-linear consequences of linear invariants

A more general approach to the construction of superinvariants is afforded by the ectoplasm
formalism [27, 28, 29]. In D-dimensional spacetime, consider a closed super-D-form, LD, in the
corresponding superspace. The integral of the purely bosonic part of this form over spacetime
is then guaranteed to be supersymmetric by virtue of the closure property. Moreover, if LD is
exact it will clearly give a total derivative so that we are really interested in the Dth superspace
cohomology group. As we have seen in the preceding section, one cannot define a harmonic
measure for every invariant, and in particular, not for the 1/2 and 1/4 BPS invariants in N = 8
supergravity. However, according to the algebraic Poincaré Lemma, any supersymmetry invari-
ant necessarily defines a closed super-D-form.

In order to analyse superspace cohomology, it is convenient to split forms into their even and odd
parts. Thus a (p, q)-form is a form with p even and q odd indices, totally antisymmetric on the
former and totally symmetric on the latter. The exterior derivative can likewise be decomposed
into parts with different bi-degrees,

d = d0 + d1 + t0 + t1 , (13)

where the bi-degrees are (1, 0), (0, 1), (−1, 2) and (2,−1) respectively. So d0 and d1 are basically
even and odd derivatives, while t0 and t1 are algebraic. The former acts by contracting an even
index with the vector index on the dimension-zero torsion and then by symmetrising over all of
the odd indices. The equation d2 = 0 also splits into various parts of which the most relevant
components are

t20 = 0; d1t0 + t0d1 = 0; d21 + t0d0 + d0t0 = 0 . (14)

The first of these equations allows us to define t0-cohomology groups, Hp,q
t [30], and the other two

allow us to introduce the spinorial derivative ds which mapsHp,q
t to Hp,q+1

t by ds[ωp,q] = [d1ωp,q],
where the brackets denote Ht cohomology classes, and which also squares to zero [31, 32].
The point of this is that one can often generate closed super-D-forms from elements of these
cohomology groups.

In the context of curved superspace it is important to note that the invariant is constructed
from the top component in a coordinate basis,

I =
1

D!

∫
dDx εmD ...m1 EmD

AD · · ·Em1

A1 LA1...AD
(x, θ = 0) . (15)
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One transforms to a preferred basis by means of the supervielbein EM
A. At θ = 0 we can

identify Ea
m with the spacetime vielbein em

a and Em
α with the gravitino field ψm

α (where α
includes both space-time α, α̇ and internal i indices for N = 8). In four dimensions, we therefore
have

I =
1

24

∫ (
ea
∧
eb
∧
ec
∧
ed Labcd + 4ea

∧
eb
∧
ec
∧
ψαLabcα + 6ea

∧
eb
∧
ψ
α
∧ψ

β Labαβ

+4ea
∧
ψ
α
∧ψ

β
∧ψ

γLaαβ γ + ψ
α
∧ψ

β
∧ψ

γ
∧ψ

δLαβ γδ

)
. (16)

By definition, each component Labcd, Labcα, Labαβ, Laαβ γ , Lαβ γδ is supercovariant at θ = 0.
This is a useful formula because one can directly read off the invariant in components in this
basis.

In N = 8 supergravity, all the non-trivial t0-cohomology classes lie in Ht
0,4. Invariants are

therefore completely determined by their (0, 4) components Lαβ γδ, and all non-trivial L0,4 sat-
isfying [d1L0,4] = 0 in t0-cohomology define non-trivial invariants. Ht

0,4 is the set of functions
of fields in the symmetric tensor product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8) without
SU(8) contractions (since such functions would then be t0-exact). Because of the reducibility of
the representation, it will be convenient to decompose Lαβ γδ into components of degree (0, p, q)
(p+ q = 4) with p 2× 8 and q 2× 8 symmetrised indices.

We will classify the elements of Ht
0,4 into three generations.2 The first generation corresponds

to elements that lie in the antisymmetric product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8),
and can therefore be directly related to the top component L4,0 through the action of the
superderivatives. We will write M0,p,q for the corresponding components of a given L0,4. They
lie in the following irreducible representations of SL(2,C)× SU(8):

M0,4,0 : [0, 0|0200000]
M0,3,1 : [1, 1|1100001]
M0,2,2 : [2, 0|2000010]

M̄0,0,4 : [0, 0|0000020]
M̄0,1,3 : [1, 1|1000011]
M̄0,2,2 : [0, 2|0100002] .

(17)

In order to understand the constraints that these functions must satisfy in order for L0,4 to
satisfy the descent equation

[d1L0,4] = 0 , (18)

it is useful to look at the possible representations of d1L0,4 which defineHt
0,5 cohomology classes

in general, without assuming any à priori constraint. We will split d1 = d1,0 + d0,1 according to
the irreducible representations of SL(2,C)× SU(8). One computes that

[d1,0M0,4,0] : [1, 0|1200000]
[d0,1M0,4,0] : [0, 1|0200001]
[d1,0M0,3,1] : [0, 1|0200001] ⊕ [2, 0|2100001]
[d0,1M0,3,1] : [1, 0|1100010] ⊕ [1, 2|1100002]
[d1,0M0,2,2] : [1, 0|1100010] ⊕ [3, 0|3000010]
[d0,1M0,2,2] : [2, 1|2000011]

[d0,1M̄0,0,4] : [0, 1|0000021]
[d1,0M̄0,0,4] : [1, 0|1000020]
[d0,1M̄0,1,3] : [1, 0|1000020] ⊕ [0, 2|1000012]
[d1,0M̄0,3,1] : [0, 1|0100011] ⊕ [2, 1|2000011]
[d0,1M̄0,2,2] : [0, 1|0100011] ⊕ [0, 3|0100003]
[d1,0M̄0,2,2] : [1, 2|1100002] .

(19)

2We will avoid discussing the elements of Ht
0,4 of degree (0, 2, 2) in the [0, 0|0200020] representation, which do

not play any role.
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In order for the component

L0,4 =

2∑

p=0

(
M0,4−p,p + M̄0,p,4−p

)
(20)

to satisfy the descent equation (18), the components d1M0,p,q must individually vanish in the
[1, 0|1200000], [2, 0|2100001], [3, 0|3000010] representations and their complex conjugates, and
their components in the [0, 1|0200001], [1, 0|1100010], [1, 2|1100002] and their complex conju-
gates must cancel each other. This will indeed be the case if the invariant in question can be
defined as a superaction and all the components of L0,4 descend from a primary operator satis-
fying the appropriate constraint. However, as we have seen in the preceding section, there is no
harmonic measure for the 1/2 and 1/4 BPS invariants, and this situation is therefore not the
most general.

What will happen for these invariants is that, although the components of d1M0,p,q in the
[0, 1|0200001], [1, 0|1100010] and their complex conjugate representations cancel each other,
the components in the [1, 0|1200000], [2, 0|2100001], [3, 0|3000010], [1, 2|1100002] and the cor-
responding complex conjugates will not vanish. The latter will nevertheless be cancelled by the
d1 variation of a second generation of functions N0,p,q in Ht

0,4,

N0,4,0 : [2, 0|2100000]
N0,3,1 : [3, 1|3000001]

N̄0,0,4 : [0, 2|0000012]
N̄0,1,3 : [1, 3|1000003]

N0,2,2 : [2, 2|2000002] . (21)

Indeed, one computes that the components of [d1N0,p,q] lie in the following representations

[d1,0N0,4,0] : [1, 0|1200000] ⊕ [3, 0|3100000]
[d0,1N0,4,0] : [2, 0|2100001]
[d1,0N0,3,1] : [2, 0|2100001] ⊕ [4, 1|4000001]
[d0,1N0,3,1] : [3, 0|3000010] ⊕ [3, 2|3000002]
[d1,0N0,2,2] : [1, 2|1100002] ⊕ [3, 2|3000002]

[d0,1N̄0,0,4] : [0, 1|0000021] ⊕ [0, 3|0000013]
[d1,0N̄0,0,4] : [0, 2|1000012]
[d0,1N̄0,1,3] : [0, 2|1000012] ⊕ [1, 4|1000004]
[d1,0N̄0,3,1] : [0, 3|0100003] ⊕ [2, 3|2000003]
[d0,1N0,2,2] : [2, 1|2000011] ⊕ [2, 3|2000003] .

(22)

In addition to cancelling the components [d1M0,p,q], the components [d1Np,q] must cancel each
other in the [3, 2|3000002] representation and its complex conjugate. Then there are two possibil-
ities: either the components of [d1Np,q] identically vanish in the [3, 0|3100000], the [4, 1|4000001]
and their complex conjugates, or a third generation of O0,4,0 functions and their Ō0,0,4 complex
conjugates in Ht

0,4 is required to cancel them,

O0,4,0 : [4, 0|4000000] Ō0,0,4 : [0, 4|0000004] . (23)

Now, [d1O0,4,0] lies in the following representations of Ht
0,5

[d1,0O0,4,0] : [3, 0|3100000] ⊕ [5, 0|5000000]
[d0,1O0,4,0] : [4, 1|4000001]

[d0,1Ō0,0,4] : [0, 3|0000013] ⊕ [0, 5|0000005]
[d1,0Ō0,0,4] : [1, 4|1000004] ,

(24)

and in addition to cancelling [d1Np,q] in the [3, 0|3100000], the [4, 1|4000001] and their complex
conjugates, the components of d1,0O0,4,0 in the [5, 0|5000000] must identically vanish.
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To conclude this discussion, we have seen from the t0-cohomology analysis that there exist more
general cocycle structures than those associated to invariants that can be written as (harmonic)
superspace integrals. The absence of harmonic measures for the 1/2 and 1/4 BPS invariants
is therefore not in contradiction with the existence of such invariants. However, their cocycle
structures involve two or three supermultiplets instead of only one, corresponding to the second
generation of operators N0,p,q, and possibly the third O0,4,0. The expectation is that the 1/2
BPS invariant will admit a cocycle involving three generations,

L1/2

0,4 =

2∑

p=0

(
M 1/2

0,4−p,p + M̄ 1/2

0,p,4−p

)
+

1∑

p=0

(
N 1/2

0,4−p,p + N̄ 1/2

0,p,4−p

)
+N 1/2

0,2,2 +O1/2

0,4,0 + Ō1/2

0,0,4 , (25)

and the 1/4 BPS invariant will admit a cocycle involving two generations,

L1/4

0,4 =
2∑

p=0

(
M 1/4

0,4−p,p + M̄ 1/4

0,p,4−p

)
+

1∑

p=0

(
N 1/4

0,4−p,p + N̄ 1/4

0,p,4−p

)
+N 1/4

0,2,2 . (26)

We have not derived the explicit functions which define these cocycles, but we would like to
point out that the F 4 invariants in super Yang–Mills theory in ten dimensions define explicit
example of such cocycles involving several generations of t0-cohomology classes [11]. From this
perspective, it seems that a careful study of the implications of supersymmetry Ward identities
within the algebraic approach should rule out the possibility of both the 3 and 5-loop logarithmic
divergences in N = 8 supergravity. (We recall also that the 4-loop divergence has no available
on-shell nonvanishing counterterm [5].) However, the existence of a 1/8 BPS harmonic measure
suggests that the 1/8 BPS cocycle has the same structure as the cocycle associated to full
superspace integral invariants, and therefore that the supersymmetry Ward identities alone
will be unable to rule out the corresponding 6-loop divergence within the algebraic approach.
However, as we have discussed in the preceding section, the integrand in that case must be a
function of the scalar superfield, which implies that it cannot be E7(7) invariant, and therefore
that the E7(7) Ward identities nonetheless rule out this divergence.

The non-existence of a 1/2 BPS measure does not permit one to conclude directly that the
R4 invariant cannot be E7(7) invariant, without relying on the dimensional reduction argu-
ment outlined in the first section. Nevertheless, it follows from the structure of the invariant
(16), that knowledge of the cocycle L1/2

4 in the quartic field approximation provides informa-
tion about terms of orders up to 8 in the invariant. If I1/2 were invariant with respect to
E7(7), then it would follow from the representation of E7(7) on the fields that each component

L1/2

abcd, L
1/2

abcα, L
1/2

abαβ, L
1/2

aαβ γ , L
1/2

αβ γδ would independently have to be E7(7) invariant. In the lin-
earised approximation, this means that each component would be invariant at lowest order with
respect to a constant shift of the scalar superfield W ijkl. It was pointed out in [3] that Labcd is
shift invariant, but we shall see that the last component L1/2

αβ γδ is not, hence establishing that

I1/2 is not fully E7(7) invariant.

To start with, note that the 1/2 BPS invariant admits a superaction form in the linearised
approximation. It follows that the second and third generations of (0, 4) components are not
required in this approximation, and that N 1/2

0,p,q and O1/2

0,4,0 are at least quintic in fields. In order

to establish the non-shift-invariance of L1/2

0,4 in the quartic field approximation, it will be enough

to consider its M 1/2

0,4,0 component. The latter can be obtained by acting on the 1/2 BPS primary

operator defined by W 4 in the [0004000] of SU(8) with the D8 in the [0, 0|0002000], and D̄4 in

9



the [0, 0|0000020]. With the conventional notation

DαpW
ijkl = δ[ipχ

jkl]
α , Dαlχ

ijk
β = δ

[i
l F

jk]
αβ , DαkF

ij
βγ = δ

[i
k ρ

j]
αβγ , Dαjρ

i
βγδ = δijCαβγδ , (27)

one obtains that D8W 4 in the [0, 0|0002000] has the form

D8W 4 ∼W 2C2 +WχρC +WF 2C +WFρ2 + χ2FC + χF 2ρ+ F 4 , (28)

where the index contractions and symmetrisations are unambiguously determined by the rep-
resentation. Since we are interested in the shift invariance of M 1/2

0,4,0, we can already disregard

the three last terms. Applying finally D̄4 to (28), one obtains various terms linear in W, terms
in W 3C, W 2F 2, W 2χρ and Wχ2F involving four derivatives, terms in χ̄WχC and χ̄WFρ in-
volving three derivatives, and terms in F̄Wρ2 and WF̄FC involving two derivatives. They are
clearly all independent, taking into account the equations of motion, and one can discuss them
separately. The term in W 3C is, for example, of the form

Wpqij∂
a∂bW pqrs∂c∂dWklrsCac,bd . (29)

Although its shift variation is a total derivative, it is clearly non-vanishing. Similarly, the terms
in W 2F 2 take the form

1

2
W 2∂2F∂2F +W∂W∂F∂2F +W∂

(
∂2W∂F∂F

)
, (30)

where the three terms involve one product of W 2 in the [0002000] with F 2 in the [0000020], one
product of W 2 in the [0010100] with F 2 in the [0000101], while the third term moreover involves
a product ofW 2 in the [0100010] with F 2 in the [0001000]. Once again, the shift variation of this
set of terms is a non-vanishing total derivative. Hence, the shift variation ofM 1/2

0,4,0 can be shown
to be a non-vanishing total derivative, whereas E7(7) invariance of the 1/2 BPS invariant would
have required its strict invariance (total derivatives included). Moreover, the structure of the
1/2 BPS supermultiplet implies that M 1/2

0,4,0 is uniquely determined from the primary operator

W 4, and the 1/2 BPS cocycle does not admit other representatives.

We conclude that linearised analysis permits one to establish the E7(7) noninvariance of the full
1/2 BPS R4 counterterm. However, this argument does not apply to the full 1/4 BPS ∂4R4

counterterm. Indeed, one can define the 1/4 BPS counterterm in the linear approximation by
acting with the 1/2 BPS measure on the non-primary 1/2 BPS quartic term ∂aW∂bW∂aW∂bW
in the [0004000] of SU(8), which is manifestly shift invariant. But, of course, the shift invariance
of the cocycle is a necessary but not sufficient condition for establishing E7(7) invariance of the
corresponding supersymmetry invariant, and the dimensional reduction argument of the first
section shows indeed that it is not E7(7) invariant.

N = 5, 6 supergravity

Note that the demonstration that E7(7) symmetry is preserved in perturbative theory for N = 8
supergravity [14], generalises straightforwardly to the N = 5 and N = 6 cases for the duality
symmetries SU(5, 1) and SO∗(12) respectively, because all the one-loop SL(2,C)×U(N) anoma-
lies vanish [17]. Moreover, the linearised superalgebra in flat space can be embedded consistently
into the corresponding superconformal algebra su(2, 2|N) similarly to the N = 8 supergravity
case, and one can again rely on superconformal representation analysis to prove that the BPS
invariants are unique in these theories [5]. In this section, we will show that analysis of the lin-
earised super 4-form associated to the corresponding R4 invariants demonstrate that they also
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are not duality invariants, as in the N = 8 supergravity case. We will correspondingly prove the
absence of logarithmic divergences at three loops in these theories.

In N = 6 supergravity, the complex scalar superfield Wij and its complex conjugate W ij define
the following multiplets by the recursive action of Dαi:

DαkWij =
1

6
εijklmnχ

lmn
α , Dαlχ

ijk
β = δ

[i
l F

jk]
αβ , DαkF

ij
βγ = δ

[i
k ρ

j]
αβγ , Dαjρ

i
βγδ = δijCαβγδ ,

DαkW
ij = δ

[i
kχ

j]
α , Dαjχ

i
β = δijFαβ . (31)

The linearised R4 invariant can be obtained by acting with D̄8D8 in the [0, 0|02020] repre-
sentation of SL(2,C) × SU(6) on the 1/3 BPS operator WijWklW

pqWmn in the [0, 0|02020]
representation.3 As for N = 8 supergravity, the cocycle’s last components are M0,p,q with

M0,4,0 : [0, 0|02000]
M0,3,1 : [1, 1|11001]
M0,2,2 : [2, 0|20010]

M̄0,0,4 : [0, 0|00020]
M̄0,1,3 : [1, 1|10011]
M̄0,2,2 : [0, 2|01002] ,

(32)

and we will consider in particular the shift invariance of the M0,4,0 component. The latter can
be obtained by acting with D̄4 in the [0, 0|00020] and D8 in the [0, 0|00020] onWijWklW

pqWmn.
D8W 2W̄ 2 gives the [0, 0|00020] combination

W ijW klC2 +W ijχ[kρl]C +W ijFF klC +W ijFρ[kρl] + . . . (33)

where the dots stand for terms that are shift invariant. Applying then D̄4 to this expression,
one obtains again various terms, including a single term in W 3C coming from WF 2C which
reads

εijpqrsW
pq∂2W rs∂2WklC , (34)

projected into the [0, 0|02000] representation. Similarly, one obtains various terms inW ijW klFmnF pq

which appear in combinations similar to (30) in N = 8; as well as one term in W ijWklFF
pq

coming from W ijFF klC,
εijpqrsW

pqF∂2Wkl∂
2F rs (35)

projected into the [0, 0|02000] representation. It follows that the result of a shift of the scalar
field W ij in M0,4,0 is non-vanishing, and not even a total derivative. We therefore conclude that
the unique R4 invariant in N = 6 supergravity is not SO∗(12) invariant.

The ∂2R4 counterterm can be obtained in a similar way from the 1/6 BPS operatorW ipW jqWkpWlq

in the [0, 0|20002] representation, or from the non-primary 1/3 BPS operatorWijW
pq∂aWkl∂aW

mn

in the [0, 0|02020]. Note that any combination with two derivatives would necessarily be a to-
tal derivative in N = 8 because the scalar field is then real, which explains why there is no
∂2R4 invariant in that case. All the possible ways of adding two derivatives to WijWklW

pqWmn

are in fact equivalent, up to a total derivative. One can easily see that one cannot adjust the
derivatives such that bothM0,4,0 and M̄0,0,4 are shift invariant. However, one must also consider
the possibility of defining the cocycle directly from the 1/6 BPS operator W ipW jqWkpWlq. In
that case M0,4,0 is obtained by acting with D̄6 in the [0, 0|00200] and D10 in the [0, 0|00002] on
W ipW jqWkpWlq. Applying D10, one already obtains an operator that does not depend on the
scalars, so M0,4,0 will be trivially shift invariant in this case. We have not checked if the other
components are actually shift invariant as well, but they might well be.

3We will not write explicitly the U(1) weight, which is zero for both the measure and the integrand.
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In N = 5 supergravity, the complex scalar superfield Wi and its complex conjugate W i define
the following multiplets by the recursive action of Dαi :

DαiWj = χαij , Dαkχβij =
1

6
εijklpF

lp
αβ , DαkF

ij
βγ = δ

[i
k ρ

j]
αβγ , Dαjρ

i
βγδ = δijCαβγδ ,

DαjW
i = δijχα . (36)

The linearised R4 invariant can be obtained by acting with D̄8D8 in the [0, 0|2002] representation
of SL(2,C)× SU(5) on the 1/5 BPS operator WiWjW

kW l in the [0, 0|2002] representation. As
for N = 8 supergravity, the cocycle’s last components are M0,p,q with

M0,4,0 : [0, 0|0200]
M0,3,1 : [1, 1|1101]
M0,2,2 : [2, 0|2010]

M̄0,0,4 : [0, 0|0020]
M̄0,1,3 : [1, 1|1011]
M̄0,2,2 : [0, 2|0102] ,

(37)

and we will consider in particular the shift invariance of the M0,4,0 component. The latter
can be obtained by acting with D̄4 in the [0, 0|0020] and D8 in the [0, 0|0002] on WiWjW

kW l.
D8W 2W̄ 2 gives the [0, 0|0002] combination

W iW jC2 +W (iχρj)C + . . . (38)

where the dots stand for terms that are shift invariant. Applying then D̄4 to this expression,
one again obtains various terms. Although there is no W 3C term, the terms in W 2F 2 combine
into

1

2
εijpqrεklstuW

pW s∂2F qr∂2F tu + εijpqrεklstuW
p∂W s∂F qr∂2F tu ,

plus a term
εijpqrεklstuW

p∂W q∂F rs∂2F tu ,

both being projected into the [0, 0|0200]. The term WχρC also produces a term

εijpqrW
pχ∂χkl∂

2F qr , (39)

projected into the [0, 0|0200]. Once again, the shift variation of M0,4,0 does not vanish, and
is not a total derivative either. We therefore conclude that the unique R4 invariant in N = 5
supergravity is not SU(5, 1) invariant.

To conclude this section, we have shown that duality invariance implies the absence of 3-loop
divergences in N = 5, 6 supergravity. It is likely that there is also a supersymmetry non-
renormalisation theorem for N = 6 supergravity, but further investigation would be required to
establish this. Indeed, one expects only measures corresponding to (1, 1) Grassmann-analyticity
to exist in N = 5 and N = 6. It is therefore likely that one could define the unique ∂2R4

invariant by a manifestly SO∗(12) noninvariant harmonic superspace integral, which would
imply the finiteness of N = 6 supergravity at four loops.

Concluding remarks

In this note, we have advanced field-theoretic arguments in favour of the idea that the short
BPS invariants in N = 8 supergravity fail to be E7(7) invariant. From this, one concludes that
the onset of divergences should be postponed to at least seven loops, where there is a candidate
E7(7) invariant counterterm, namely the volume of superspace. For the short invariants, we have
presented arguments based on the impossibility of achieving a trivial scalar factor in front of
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the purely gravitational R4, ∂4R4 and ∂6R4 terms because a non-trivial scalar factor is required
by dimensional reduction and because the uniqueness of the linearised D = 4 counterterms at
the 3, 5 and 6 loop orders rules out the possibility of a cancellation between inequivalent terms
coming from higher dimensions. We have also demonstrated that the R4 invariant is indeed
not E7(7) invariant by establishing the non-invariance of the last component of the associated
linearised closed super four-form under constant shifts of the scalar fields, i.e. under linearised
e7 transformations. This comes about because this linearised term will affect the four-gravitino
term (an eight-point contribution) in the non-linear spacetime invariant.

In addition, we have investigated the question of whether appropriate measures exist in curved
N = 8 superspace. In two cases, corresponding to the R4 and ∂4R4 invariants, the answer
is no, whereas for the ∂6R4 invariant a measure seems to be available. However, even in this
case, there is no available integrand that could be E7(7) invariant as such an integrand would
have to be constructed from the undifferentiated scalars. We stress that the non-existence
of harmonic measures for the R4 and ∂4R4 invariants does not imply that there are no such
invariants in the full theory. Indeed, our analysis of the t0-cohomology in N = 8 supergravity
demonstrates that there exist in principle super-4-forms whose structure is incompatible with
the possibility of writing them as harmonic superspace integrals. This translates in components
into the property that such invariants admit terms quartic in undifferentiated gravitino fields
with a tensor structure that cannot appear in harmonic superspace integrals (at least without
introducing a prepotential). This suggests that the non-linear R4 and ∂4R4 invariants are
associated to super-4-forms with a structure different from that of the other invariants, so
that the supersymmetry Ward identities within the algebraic approach would by themselves be
sufficient to rule out the possibility of the corresponding logarithmic divergences at 3 or 5-loops.

A further aspect of this purely field-theoretic analysis is that there are UV divergence impli-
cations for supergravity theories with fewer supersymmetries. The R4 counterterm is a BPS
invariant for N = 5 and N = 6 and the superspace arguments given above adapt to these cases
straightforwardly. Indeed, we have shown that the closed super 4-forms associated to these
counterterms are not invariant under constant shifts of the scalar fields, hence establishing that
they are not duality invariant. Moreover, one only expects measures corresponding to (1, 1)
Grassmann-analyticity to exist in each of these cases. It therefore follows that there are non-
renormalisation theorems at three loops for N = 5, 6 and also at four loops for N = 6 (note that
there is a linearised four-loop invariant in N = 6, unlike the case of N = 8).
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