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Abstract: In this short note, we present two results about KLT relations discussed in recent several

papers. Our first result is the re-derivation of Mason-Skinner MHV amplitude by applying the Sn−3 per-

mutation symmetric KLT relations directly to MHV amplitude. Our second result is the equivalence proof

of the newly discovered Sn−2 permutation symmetric KLT relations and the well-known Sn−3 permutation

symmetric KLT relations. Although both formulas have been shown to be correct by BCFW recursion

relations, our result is the first direct check using the regularized definition of the new formula.
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1. Introduction

S-matrix program [1] is a program to study properties of quantum field theory based on some general

principles, like the Lorentz invariance, Locality, Causality, Gauge symmetry as well as Analytic property.

Because it does not use specific information like Lagrangian, result obtained by this method is quite general.

Also exactly because its generality with very few assumptions, study along this line is very challenging.

One of the most important recent progresses in S-matrix program is the derivation of BCFW recursion

relations in gauge theories [2, 3] and gravity [4], which relies only on basic analytic properties of tree

amplitudes if there is no boundary contributions1. Furthermore, in [7], by assuming the applicability

of BCFW recursion relations in gauge theories and gravity, many well-known (but difficult to prove)

fundamental facts about S-matrix, such as non-Abelian structure for gauge theory and all matters couple

to gravity with same coupling constant, has been re-derived from S-matrix viewpoint2.

Based on these developments, non-trivial relations among tree-level color-ordered gauge theory am-

plitudes, including the recently proposed Bern-Carrasco-Johansson(BCJ) relations [9] (see also some ap-

plications [13]), have been proved using BCFW recursion relations in [10], thus providing the first field-

theoretical, S-matrix proof of these relations3. Using similar ideas for gravity, new forms of Kawai-Lewellen-

Tye(KLT) type relations [14] (for a good review, see [15]), which express gravity tree amplitudes as square

of gauge theory amplitudes, have been found and proved in [16, 17, 18, 19].

1The boundary behavior is one important subject to study. In [5], background field method has been applied to the study.

In [6], the situation with nonzero boundary contributions has also been discussed. It will be interesting to study the boundary

behavior in the frame of S-matrix program.
2Gauge theory three-point amplitudes are uniquely determined by Poincare symmetry, in [8] it has been proved that,

through BCFW recursion relations, any higher-point tree amplitudes can be consistently constructed if and only if there exists

a non-Abelian gauge group.
3The BCJ relations have also been proved in string theory [11, 12].
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There are two forms of KLT relations. The form with manifest Sn−2 permutation symmetry is proposed

and proved in [16]. It is mostly suitable for a BCFW(purely S-matrix) proof, but needs regularization to be

well-defined. The most general expression of the minimal, manifestly Sn−3 permutation symmetric form,

is proposed and proved in [19], which has included the well-known ansatz for KLT relations conjectured

in [20] as a special case. This Sn−3 symmetric form is most natural from string perspective, as originally

proposed and proved in string theory [14]. Both Sn−2 and Sn−3 symmetric forms have been generalized to

N = 8 SUGRA case with similar S-matrix proofs in [18], which naturally produce new identities among

N = 4 SYM amplitudes, including all ’flipped identities’ for gluon amplitudes [17](see also [21]). Through

string theory or BCFW recursion relation, the equivalence relation between Sn−2 and Sn−3 symmetric

forms has been established. However, both methods are indirect, thus a direct algebraic manipulation is

desired. As a major result of this note, in the second part we will show that there is a direct derivation

from Sn−2 symmetric form to the minimal, Sn−3 symmetric form.

Although KLT relations give graviton amplitudes in terms of gluon amplitudes no matter what the

helicity configuration is, there are not much explicit expressions available for graviton amplitudes unlike

the case of gluon amplitudes. Among all helicity configurations, one of them is exceptional, i.e., the

so-called MHV (maximally-helicity-violating) amplitudes. In Yang-Mills case, the famous Parke-Taylor

formula [22] for gluon MHV tree amplitudes is astonishingly simple. On the other hand, the case for

gravity amplitudes is much more complicated, even in the MHV sector. Various explicit formulas of MHV

gravity amplitudes have been proposed [23, 20, 24, 25, 26, 27, 28], which fall into two categories: those with

manifest Sn−2 permutation symmetry, such as the formula given by Elvang-Freedman [26], and those with

Sn−3 symmetry, such as the original BGK formula [23] and the equivalent Mason-Skinner formula [27].

However, most of these formulas have been derived from approaches other than KLT relations, and it is

non-trivial to show that they are equivalent to each other[29]. In the following, we will show that one

particularly simple formula, the Mason-Skinner formula, directly follows from the Sn−3 symmetric KLT

relations, given the Parke-Taylor formula for gauge theory MHV amplitudes as the input. In addition,

we will discuss the relation between Elvang-Freedman formula and the Sn−2 symmetric form of KLT

relations. As a byproduct, we will obtain an infinite number of new formulas for gravity MHV amplitudes.

The equivalence of all these formulas are ensured by our derivation of Sn−3 symmetric form from Sn−2

symmetric form.

The outline of the note is the following. In section two we will derive Mason-Skinner formula for

MHV gravity amplitudes from the recently proposed Sn−3 permutation symmetric form of KLT relations.

In section three, we will show the equivalence of Sn−2 symmetric form and Sn−3 symmetric form of KLT

relations, and as an application, we derive from the Sn−2 symmetric form an infinite number of new formulas

for MHV gravity amplitudes, which are equivalent to BGK formula and Elvang-Freedman formula. In the

Appendix we give another regularization procedure for Sn−2 symmetric KLT formula.
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2. From new KLT to Mason-Skinner MHV gravity amplitude

As we have mentioned in the introduction, although we have had general KLT relations and in principle all

graviton amplitudes can be obtained through results of gluon amplitudes, so far most explicit formulas for

general graviton amplitudes are constrained to MHV-graviton amplitudes4. Expressions for these MHV

amplitudes are also very different and it takes efforts to show the equivalence among them[29]. One of

these expression is the following expression given by Mason and Skinner5[27]

MMHV
MS = (−)n−3

∑

P (2,...,n−2)

AMHV (1, 2, . . . , n)

〈1|n − 1〉 〈n− 1|n〉 〈n|1〉

n−2∏

k=2

[k|Pk+1 + · · · + Pn−1|n〉

〈k|n〉
, (2.1)

where the sum is over all Sn−3 permutations of labels (2, ..., n− 2). In this section, we will show that how

we can start from the general KLT formula and apply it to the MHV case to get the Mason and Skinner

formula.

Since the formula is with the sum over Sn−3 permutations, it is natural to start with following Sn−3

permutation symmetric KLT formula [17, 19]

MKLT
n = (−)n+1

∑

α,β∈Sn−3

A(1, α, n − 1, n)S[β|α]P1 Ã(n, β, 1, n − 1), (2.2)

where the function S is defined as [16, 17, 19]

S[i1, ..., ik |j1, j2, ..., jk ]P1 =
k∏

t=1

(sit1 +
k∑

q>t

θ(it, iq)sitiq) (2.3)

with θ(it, iq) to be zero when pair (it, iq) has same ordering at both sets I,J and otherwise, to be one.

Function S defined above has some properties which will be useful for our discussions. The first one

is the reversed property

S[i1, ..., ik|j1, j2, ..., jk]P1 = S[jk, ..., j1|ik, .., i1]P1 . (2.4)

The second property is about the sum over permutations. First we observe that

Pij(S[β|α]P1) = S[Pij(β)|Pij(α)]P1 , (2.5)

where Pij is the permutation of label i and label j while all other labels unchanged. Using this property

we can see that

∑

β

S[β|Pij(α)] =
∑

β

Pij(S[Pij(β)|α]) = Pij(
∑

β

S[Pij(β)|α]) = Pij(
∑

β

S[β|α]), (2.6)

4There are also some results for NMHV amplitudes and the general algorithm for N = 8 SUSY-Gravity[30, 31].
5We have written results in the QCD convention, which is different from the twistor convention by [ ] → − [ ].
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where at the third equal sign we have used the property that sum over all permutations
∑

β is commutative

with particular permutation Pij . Thus we have our second properties

∑

αβ

F (β)S[β|α]G(α) =
∑

P (2,...,n−2)

(
∑

β

F (β)S[β|2, . . . , n− 2]G({2, 3, ..., n − 2})) . (2.7)

This property shows that although term by term at the left and right hand sides they are different with

given permutations α, β, the sum of all terms is same.

Using the observation (2.7) to formula (2.2) we get

MKLT−MHV
n = (−)n+1

∑

P (2,...,n−2)

AMHV (1, 2, . . . , n− 1, n)
∑

β

S[β|2, . . . , n− 2]ÃMHV (n, β, 1, n − 1).(2.8)

Thus comparing (2.1) with (2.8), we see that we need to prove following identity

1

〈1|n− 1〉 〈n− 1|n〉 〈n|1〉

n−2∏

k=2

[k|Pk+1 + · · ·+ Pn−1|n〉

〈k|n〉

=
∑

β

S[β|2, 3, . . . , n − 2]ÃMHV (n, β, 1, n − 1) . (2.9)

To show this identity, let us notice that label (n−2) at the right hand part of function S is at the most right

position, which is very special. Thus we can divide permutations β ∈ Sn−3 into groups of permutations

γ ∈ Sn−4 plus label (n− 2) inserted at all possible positions in sequence fixed by γ. Using this observation

we can write down

∑

β

S[β|2, 3, . . . , n− 2]P1A(n, β, 1, n − 1)

=
∑

γ∈P (2,...,n−3)

∑

σ∈OP{n−2}∪{γ}

S[σ|2, . . . , n − 2]P1A(n, σ, 1, n − 1)

=
∑

γ

S[γ|2, . . . , n− 3]P1sn−2,n−1A(n− 2, n, γ, 1, n − 1)

= sn−2,n−1

∑

γ∈Sn−4

S[γ|2, . . . , n − 3]P1A(n− 2, n, γ, 1, n − 1) , (2.10)

where from the second line to the third line we have used the level one BCJ relation(see [?]), which can

be easily seen with the moving of label (n − 2). It is also worth to mention that at the second line, the

function S has (n− 3) labels while at the third line, only (n− 4) labels left in the function S.

We want to continue our simplification from the second line to the third line. However, with the form

given in (2.10) it seems to be impossible. This is true if amplitudes are general, but for MHV amplitudes,

there is ”inverse soft factor”[32] to relate (n − 1)-point MHV amplitude to n-point MHV amplitude as

following (it can be easily seen from Parke-Taylor formula [22]),

AMHV (n− 1, n − 2, n, γ, 1) =
〈n− 1|n〉

〈n− 1|n − 2〉 〈n− 2|n〉
AMHV (ñ− 1, ñ, γ, 1, ), (2.11)
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where to preserve the momentum conservation, i.e., P
ñ−1

+ Pñ = Pn−1 + Pn−2 + Pn, spinor components

have been modified as

|ñ− 1] =
|Pn−2 + Pn−1|n >

〈n− 1|n〉
, |ñ− 1 >= |n− 1 >,

|ñ] =
|Pn−2 + Pn|n− 1 >

〈n|n− 1〉
, |ñ >= |n >, (2.12)

It is worth to notice that for (2.11) to be true we have assumed that the helicity of label (n−2) is positive.

This choice can always be made for graviton MHV amplitudes where we can fix, for example, label 1, n

to be negative helicities. Also, only anti-spinor parts of momenta P
ñ−1

, Pñ have been changed while the

spinor parts are untouched. This observation will be very useful for our late manipulation.

Putting the eq.(2.11) back into (2.10) we obtain

∑

β∈Sn−3

S[β|2, 3, . . . , n− 2]P1A
MHV
n (n, β, 1, n − 1)

= sn−2,n−1
〈n− 1|n〉

〈n− 1|n− 2〉 〈n− 2|n〉

∑

γ∈Sn−4

S[γ|2, . . . , n − 3]P1A
MHV
n−1 (ñ, γ, 1, ñ − 1) (2.13)

where the last part of the second line is similar to the first line except the sum changing from Sn−3 to

Sn−4. Now we can iterate the procedure like the one did in (2.10) and reach

∑

β

S[β|2, 3, . . . , n− 2]AMHV (n, β, 1, n − 1)

= sn−2,n−1
〈n− 1|n〉

〈n− 1|n − 2〉 〈n− 2|n〉
s
n−3,ñ−1

〈n− 1|n〉

〈n− 1|n− 3〉 〈n− 3|n〉
×

∑

γ′∈P (2,...,n−4)

S[γ′|2, . . . , n− 4]AMHV (˜̃n, γ′, 1,
˜̃
n − 1)

· · ·

= S[2|2]AMHV (ñ(n−4), 2, 1, ñ − 1
(n−4)

)

n−2∏

k=3

s
k,ñ−1

(n−2−k)

〈n− 1|n〉

〈n− 1|k〉 〈k|n〉
, (2.14)

where the notation ñ(i) means that there are i-th changing of momentum Pn. Using (2.12) it is easy to

find the anti-spinor part of ñ(i) to be

|ñ− 1
(i)
] =

|Pn−1−i + P
ñ−1

(i−1) |n >

〈n− 1|n〉
=

|Pn−1−i + Pn−i + P
ñ−1

(i−2) |n >

〈n− 1|n〉

= · · · =
|Pn−1−i + Pn−i + · · · + Pn−2 + Pn−1|n >

〈n− 1|n〉
. (2.15)

– 5 –



Putting (2.15) back to eq.(2.14) we get

S[2|2]AMHV (ñ(n−4), 2, 1, ñ − 1
(n−4)

)

n−2∏

k=3

s
k,ñ−1

(n−2−k)

〈n− 1|n〉

〈n− 1|k〉 〈k|n〉

=
1

〈1|n − 1〉 〈n− 1|n〉 〈n|1〉

− [2|1|n〉

〈2|n〉

n−2∏

k=3

〈n− 1|n〉 [k|ñ− 1
(n−2−k)

]

〈k|n〉

=
1

〈1|n − 1〉 〈n− 1|n〉 〈n|1〉

− [2|1|n〉

〈2|n〉

n−2∏

k=3

[k|Pk+1 + Pk+2 + · · · + Pn−1|n〉

〈k|n〉

=
1

〈1|n − 1〉 〈n− 1|n〉 〈n|1〉

n−2∏

k=2

[k|Pk+1 + Pk+2 + · · ·+ Pn−1|n〉

〈k|n〉
, (2.16)

which is nothing, but the eq.(2.9) .

Before we end this section, there is one application of above derivation we want to remark. In [16, 17,

18, 21], new quadratic vanishing identities have been found and using them, we can reduce the independent

helicity basis from Sn−3 down further. For example, if we chose A to be non-MHV and Ã to be MHV, we

will have

0 = (−)n+1
∑

α,β∈Sn−3

Anon−MHV (1, α, n − 1, n)S[β|α]P1 Ã
MHV (n, β, 1, n − 1) . (2.17)

Using the observation that identity (2.9) is true as long as Ã is MHV, we obtain immediately

0 =
∑

α∈Sn−3(2,..,n−2)

Anon−MHV (1, {2, 3, .., n − 2}, n − 1, n)

〈1|n− 1〉 〈n− 1|n〉 〈n|1〉

n−2∏

k=2

[k|Pk+1 + · · · + Pn−1|n〉

〈k|n〉
(2.18)

as long as A is not MHV-amplitudes. This result has been presented in [18] where many other identities

can be written down too.

3. From Sn−2 KLT to Sn−3 KLT

One important result of recent study of KLT relations is the manifest Sn−2 permutation symmetric KLT

formula presented in [16]

Mnew
n = (−1)n

∑

γ,β∈Sn−2

Ãn(n, γ, 1)S[γ|β]P1An(1, β, n)

s123...(n−1)
. (3.1)

Formula (3.1) is hard to imagine starting from the familiar KLT relations presented in [20], even with the

new discovered BCJ relations [9]. However, as shown in [19], this formula is the consistent requirement

of the pure field understanding of Sn−3 permutation symmetric KLT relation under the BCFW expansion

and in fact, it is found by this way. Comparing to the formula given in [20], formula (3.1) is much easy to
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prove using BCFW recursion relations in field theory while its stringy derivation is still missing. Although

we know formulas (2.2) and (3.1) are equivalent to each other by the BCFW recursion relations, in this

section we will try to establish more direct relation between them.

3.1 The direct derivation

As emphasized in [16, 19], naively (3.1) seems to be ill-defined since s123...(n−1) vanishes on-shell. However,

there is a specific regularization so (3.1) is a well-defined finite expression. The regularization is given by

starting with following off-shell regularization with an arbitrary momentum q [16, 19]

p1 → p1 − xq, pn → pn + xq . (3.2)

To have the on-shell condition for p1, we need to impose p1 · q = 0 and q2 = 0, but q · pn 6= 0, thus we will

have p2
1̂
= 0 and p2n̂ = s1̂23...(n−1) 6= 0. Then the more accurate definition of eq.(3.1) is following limit

Mnew
n = (−1)n lim

x→0

∑

γ,β∈Sn−2

Ãn(n̂, γ, 1̂)S[γ|β]P̂1
An(1̂, β, n̂)

s1̂23...(n−1)

, (3.3)

where we have used ”ˆ” to remind us the off-shell regularization scheme, especially now the denominator

becomes

s1̂23...(n−1) = p2n̂ = (pn + xq)2 = x · snq 6= 0, (3.4)

which means when taking the limit we only need to consider the linear coefficient of x in the numerator.

One important observation is that we only need to regularize either kind of these two amplitudes,

because in the numerator the combination
∑

β S[γ|β]An(1, β, n) or
∑

γ Ãn(n, γ, 1)S[γ|β] vanishe due to

the level one BCJ relation. If we call, after regularization, either combination to be f(x), remaining

amplitude to be g(x) and the denominator to be h(x), then we have6





lim
x→0

f(x) = 0, lim
x→0

h(x) = 0, lim
x→0

f(x)

h(x)
= const.

lim
x→0

g(x) 6= 0

=⇒ lim
x→0

g(x)f(x)

h(x)
= g(0) · lim

x→0

f(x)

h(x)
= lim

x→0
g(0)

f(x)

h(x)
, (3.5)

which shows that only one kind of the amplitudes is needed to be regularized. Without loss of generality

we choose to regularize An(1, β, n), which simplifies eq.(3.3) to

Mnew
n = (−1)n lim

x→0

∑

γβ

Ãn(n, γ, 1)S[γ|β]P̂1
An(1̂, β, n̂)

s1̂23...(n−1)

. (3.6)

6We would like to thank T. Sondergaard for discussions on this point.
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Now we want to simplify (3.6) further. As we have seen in previous section, last label in the sequence

given by β, which we will denote by βn−2, will have a good property. With this observation, we regroup

the two summation over γ, β as following

∑

γ,β∈Sn−2

Ãn(n, γ, 1)S[γ|β]P̂1
An(1̂, β, n̂)

=
∑

β∈Sn−2

An(1̂, β, n̂)
∑

γ∈Sn−2

Ãn(n, γ, 1)S[γ|β1, ..., βn−3, βn−2]P̂1

=
∑

β

An(1̂, β, n̂)
∑

γ(βn−2)∈Sn−3

∑

βn−2 insertion

Ãn(n,OP (γ(βn−2)
⋃

βn−2), 1)

S[OP (γ(βn−2)
⋃

βn−2)|β1, ..., βn−3, βn−2]P̂1
, (3.7)

where we have divided the permutation sum γ ∈ Sn−2 into the permutation sum γ(βn−2) ∈ Sn−3
7 plus all

possible insertions of βn−2. With the fixed β-ordering, we will have

S[OP (γ(βn−2)
⋃

βn−2)|β1, ..., βn−3, βn−2]P̂1
= S[γ(βn−2)|β1, ..., βn−3]P̂1

f1̂(βn−2) (3.8)

where f1̂(βn−2) is the kinematic factor provided by element βn−2. In other words, the dependence of

insertion positions of βn−2 is given completely by the factor f1̂(βn−2). The dependence of deformed

momentum 1̂ inside factor f1̂(βn−2) is given by sβn−21̂
, thus we have

f1̂(βn−2) = f1(βn−2)− xsβn−2q . (3.9)

The key point we want to use is that

∑

βn−2 insertion

Ãn(n,OP (γ(βn−2)
⋃

βn−2), 1)f1(βn−2) = 0 (3.10)

by level-one BCJ relation since the Ã are un-deformed amplitudes. Putting all together we finally have

∑

γ,β∈Sn−2

Ãn(n, γ, 1)S[γ|β]P̂1
An(1̂, β, n̂)

=
∑

β

An(1̂, β, n̂)
∑

γ∈Sn−2

Ãn(n, γ, 1)(−xsβn−2q)S[γ(βn−2)|β1, ..., βn−3]P̂1
,

=
∑

β

An(1̂, β, n̂)
∑

γ(βn−2)∈Sn−3

(−Ãn(n, γ(βn−2), 1, βn−2))(−xsβn−2q)S[γ(βn−2)|β1, ..., βn−3]P̂1
(3.11)

where in the third line we have again divided the permutation of γ ∈ Sn−2 into permutation γ(βn−2) ∈ Sn−3

plus all possible insertions of βn−2 and then used the U(1)-decoupling relation for the label βn−2, i.e.,

∑

βn−2 insertion

Ãn(n,OP (γ(βn−2)
⋃

βn−2), 1) = −Ãn(n, γ(βn−2), 1, βn−2)) . (3.12)

7γ(βn−2) means the element βn−2 having been excluded.
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With the expression (3.11) we can take the limit

Mnew
n = (−1)n lim

x→0

∑

γβ

Ãn(n, γ, 1)S[γ|β]P̂1
An(1̂, β, n̂)

s1̂23...(n−1)

= (−1)n lim
x→0

∑
β An(1̂, β, n̂)sβn−2q

∑
γ(βn−2)∈Sn−3

Ãn(n, γ(βn−2), 1, βn−2)S[γ(βn−2)|β1, ..., βn−3]P̂1

snq

= (−1)n
∑

β An(1, β, n)sβn−2q

∑
γ(βn−2)∈Sn−3

Ãn(n, γ(βn−2), 1, βn−2)S[γ(βn−2)|β1, ..., βn−3]P1

snq
,(3.13)

where in the last step we have taken the x → 0 limit so momenta p1, pn in A are the un-deformed ones.

To continue further, we write the sum
∑

β∈Sn−2
=

∑n−1
βn−2=2

∑
β(βn−2)∈Sn−3

, thus we have

Mnew
n = −

n−1∑

βn−2=2

sβn−2q

snq
Tn(1, βn−2, n) (3.14)

with

Tn(1, βn−2, n) = (−)n+1
∑

β,γ

An(1, β(βn−2), βn−2, n)S[γ(βn−2)|β(βn−2)]P1Ãn(n, γ(βn−2), 1, βn−2) .(3.15)

It is straightforward to see that Tn(1, βn−2, n) is nothing, but the graviton amplitude expression given in

(2.2) with fixed labels 1, n, βn−2. Thus if we use the total symmetric property of graviton amplitudes, we

obtain immediately

Mnew
n = −

n−1∑

βn−2=2

sβn−2q

snq
Tn(1, βn−2, n) = −MKLT

n

n−1∑

βn−2=2

sβn−2

snq
= MKLT

n (3.16)

where in the last step we have used the momentum conservation and s1q = 0.

There is one thing we want to discuss before we end this part. In our proof, to show that the new KLT

formula with manifest Sn−2 permutation symmetry is equivalent to the old KLT formula with manifest

Sn−3 permutation symmetry, we have used the total symmetric property of old KLT formula or at least the

Sn−2 permutation symmetry. This total symmetric property can be seen from the string theory, however

it is not so obvious from the field theory. To show that is true in field theory, one way is to use the BCJ

relations to do algebraic manipulations. However, with a few examples, it can be seen that calculations

are very complicated with the increasing of the number of gravitons.

There is an indirect way to prove the total symmetric property of KLT relations. The idea is to use the

induction and BCFW recursion relations. The three-point amplitudes are obviously total symmetric by

Lorentz symmetry and spin. Since we know the graviton amplitudes can be calculated by BCFW recursion

relations, we can build up higher point amplitudes from lower point amplitudes, which have been assumed

to be symmetric. Since all different KLT expressions give same physical quantity, they must be equivalent

to each other, thus the total symmetric property is obtained. This idea has already been used in [19].
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3.2 Application

One obvious consequence of our proof is that if we do not use the symmetry argument to pull out T in

(3.14), we will have a new KLT formula with manifest Sn−2 permutation symmetry like (3.1), but without

the singular denominator. This formula depends on an arbitrary auxiliary momentum q as long as q ·p1 = 0.

Applying (2.9) to (3.14), with some manipulations we obtain

Mnew−MHV
n =

∑

β∈Sn−2

〈n|1〉 〈n− 1|n− 2〉 s(n−1)q

〈1|n− 1〉 〈n|n− 2〉 snq
F (1, {2, .., n − 1}, n) (3.17)

where we have defined following function

F (1, 2, .., n) = A(1, 2, .., n)
〈n|n− 2〉

〈1|n〉2 〈n|n− 1〉 〈n− 1|n − 2〉

n−2∏

s=2

〈
n|K(n−1)s|s

]

〈n|s〉
(3.18)

with K(n−1)s = pn−1 + pn−2 + ...+ ps. If we continue algebraic manipulation like from (3.14) to (3.16) we

obtain

MBGK
n =

∑

β∈Sn−3

〈1|n〉 〈n− 1|n− 2〉

〈1|n− 1〉 〈n|n− 2〉
F (1, {2, .., n − 2}, n − 1, n) , (3.19)

which is nothing, but the BGK expression [23] rewritten by Elvang and Freedman in [26]. Using same

function F , in [26] a manifest Sn−2 permutation symmetric MHV amplitude is given by8

MEF
n =

∑

α∈Sn−2

F (1, α{2, 3, ..., n − 1}, n) . (3.20)

Thus it is interesting to discuss what is the relation between (3.17) and (3.20).

We can simplify (3.17) by taking q = |1〉 |q] to have q · p1 = 0, thus we obtain

MMHV
n = −

∑

β∈Sn−2

〈n− 1|n− 2〉 [n− 1|q]

〈n|n− 2〉 [n|q]
F (1, {2, .., n − 1}, n) (3.21)

Formula (3.21) is different from the (3.20) and (3.19), but it can be checked that all of them are equivalent

to each other by BCFW recursion relations. A few examples maybe useful to demonstrate the relation

between (3.21) and (3.20). The case n = 3 will be − 〈1|2|q]
〈1|3|q]F (1, 2, 3) = F (1, 2, 3) by momentum conservation.

For n = 4 we have

−F (1, 2, 3, 4)
〈2|3|q]

〈2|4|q]
− F (1, 3, 2, 4)

〈3|2|q]

〈3|4|q]
.

We can take the special case to set q = k2, thus the second term is zero and we obtain −F (1, 2, 3, 4) 〈2|3|2]〈2|4|2] .

The BGK formula (3.19) will be F (1, 2, 3, 4) 〈1|4〉〈3|2〉〈1|3〉〈4|2〉 . To show above two results are consistent we check

following

〈2|3|2]
〈2|4|2]

〈1|4〉〈3|2〉
〈1|3〉〈4|2〉

=
〈1|4|2]

〈1|3|2]
= −1

8Using the bonus relation[29], it has been proved that (3.20) is equivalent to (3.19).
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by momentum conservation.

The lesson from different expressions (3.21) and (3.20) is that the Sn−2 permutation symmetric form

has some redundancy since by BCJ relations, the rubiginous basis is (n− 3)!.

Although in this note, we are not able to directly change form (3.21) to form (3.20) by algebraic

manipulations, their equivalence tells us some identities about the function F . If we use 〈1|n] BCFW-

deformation

λ1(z) = λ1 + zλn, λ̃n(z) = λ̃n − zλ̃1 , (3.22)

F (1, 2, 3, .., n) depends on z only through factor 1
〈1|2〉 from A(1, 2, ..., n), i.e., F (1, 2, ..., n) contributes to

the pole s12(z) only. Now let us consider the residue given by this pole from various MHV formulas. The

formula (3.20) gives

Res(MEF
s12

) =
〈1|2〉

〈n|2〉

∑

σ∈Sn−3

F (1, 2, σ(3, ...n − 1), n) , (3.23)

while the formula (3.21) gives

Res(Mnew−MHV
s12

) = −
〈1|2〉

〈n|2〉

∑

β∈Sn−3

〈n− 1|n − 2〉 [n− 1|1]

〈n|n− 2〉 [n|1]
F (1, 2, {3, .., n − 1}, n) (3.24)

where we have taken |q] = |1]. The BGK formula gives

Res(MBGK−1
s12

) =
〈1|2〉

〈n|2〉

∑

P (3,..,n−2)

〈2|n〉 〈n− 1|n− 2〉

〈2|n− 1〉 〈n|n− 2〉
F (1, 2, {3, ..., n − 2}, n − 1, n) (3.25)

and finally if we exchange 2 ↔ (n− 1) in BGK formula and take the residue, we obtain

Res(MBGK−2
s12

) =
n−2∑

k=3

〈2|n − 2〉 〈1|k〉

〈k|2〉 〈n|n− 2〉

∑

σ

F (1, k, σ, 2, n) (3.26)

Since the residue is unique, above four expressions must be equal to each other. It is worth to see that each

expression has (n − 3)! terms, thus we obtain relations between these (n − 3)! terms. This is consistent

with the new discovered relations given in [16, 17, 18, 21].
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A. The symmetry of graviton amplitude

In section three, we have used the regularization procedure to show the equivalence of new KLT formula

given in [16] with the ones given in [20, 17, 19]. There is also a direct, but much more complicated way to

check this. The good point of this way is that we can see how the singular denominator s12...(n−1) appears

in the algebraic manipulation, thus in this appendix we provide some details of this calculation. Before

given explicit example, let us write down following procedure of calculations:

• Step one: Write down the expression (3.1).

• Step two: Choose a minimal basis for An and Ãn. These two basis (for A and for Ã) can be different,

but when the choice has been made, it must be kept in following calculations.

• Step three: Using BCJ-relations to express all remaining amplitudes of A-type and Ã-type in terms

of the chosen basis.

• Step four: Using momentum conservation (sin = −
∑n−1

j=1 sij) to get rid of all pn’s that might be

in the BCJ-relations. In other word, we have used pn = −
∑n−1

i=1 pi. But remember we can not use

s1n = s23..(n−1).

• Step five: Plugging the sin-free BCJ-relations into the expression obtained from (3.1) and collecting

corresponding coefficients of each basis. Every coefficient must have factor s12...n−1 in numerator,

thus we can cancel the same singular factor in denominator.

• Step six: After the pole is canceled we can go on-shell again and use whatever known relations we

want to reduce the expression into the familiar one, such as (2.2) etc.

The example we will demonstrate is the n = 5 case

(−)5M5 = Ã(5, α(2, 3, 4), 1)
∑

α,β

S[α(2, 3, 4)|β(2, 3, 4)]A(1, β(2, 3, 4), 5) (A.1)

Choosing A(1, 2, 3, 4, 5) and A(1, 3, 2, 4, 5) as a basis, other four orderings are given as following[9]

A(1, 3, 4, 2, 5) =
s12A(1, 2, 3, 4, 5) + (s12 + s32)A(1, 3, 2, 4, 5)

s25

A(1, 4, 3, 2, 5) =
s12(s24 + s45)A(1, 2, 3, 4, 5) − s13s24A(1, 3, 2, 4, 5)

s14s25

A(1, 2, 4, 3, 5) =
(s23 + s13)A(1, 2, 3, 4, 5) + s13A(1, 3, 2, 4, 5)

s35

A(1, 4, 2, 3, 5) =
−s12s34A(1, 2, 3, 4, 5) − s13(s14 + s24)A(1, 3, 2, 4, 5)

s14s35
(A.2)
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It is worth to observe that the first and third one are the level one BCJ relation, i.e., the denominator

has only one sij, while the second and fourth one are level two (with two sij factors) BCJ relations9 . For

general n, this expansion need to use up to level (n − 3) BCJ relations. Having the result (A.2), we can

calculate various terms by our rule ( do not forget to write, for example, s35 = −s31 − s32 − s34). For

example, with α(2, 3, 4) = (2, 3, 4) we have

A(1, 2, 3, 4, 5)s21s31s41 +A(1, 2, 4, 3, 5)s21s41(s31 + s43)

+A(1, 3, 2, 4, 5)s31(s21 + s23)s41 +A(1, 4, 3, 2, 5)s41(s31 + s34)(s21 + s23 + s24)

+A(1, 3, 4, 2, 5)s31s41(s21 + s23 + s24) +A(1, 4, 2, 3, 5)s41(s21 + s24)(s31 + s34)

=
s1234

s35
(s31 + s34)[−s12s34A(1, 2, 3, 4, 5) − s13s24A(1, 3, 2, 4, 5)]

where the factor s1234 appears in numerator. Collecting all six permutations together and getting rid of

s1234 we obtain

[−s12s34A(1, 2, 3, 4, 5) − s13s24A(1, 3, 2, 4, 5)]
(s31 + s34)

s35
Ã(2, 3, 4, 1, 5)

+ [−s12s34A(1, 2, 3, 4, 5) − s13s24A(1, 3, 2, 4, 5)]
s13

s35
Ã(2, 4, 3, 1, 5)

+ [−s12s34A(1, 2, 3, 4, 5) − s13s24A(1, 3, 2, 4, 5)]
(s21 + s24)

s25
Ã(3, 2, 4, 1, 5)

+ [−s12s34A(1, 2, 3, 4, 5) − s13s24A(1, 3, 2, 4, 5)]
s12

s25
Ã(3, 4, 2, 1, 5)

+

[
−
s12s34s13

s35
A(1, 2, 3, 4, 5) −

s13s24(s21 + s23)

s25
A(1, 3, 2, 4, 5)

]
Ã(4, 2, 3, 1, 5)

+

[
−
s12s34(s13 + s32)

s35
A(1, 2, 3, 4, 5) −

s13s24s31

s25
A(1, 3, 2, 4, 5)

]
Ã(4, 3, 2, 1, 5) (A.3)

To continue, we add first four lines to get

[−s12s34A(1, 2, 3, 4, 5) − s13s24A(1, 3, 2, 4, 5)](Ã(3, 2, 4, 1, 5) + Ã(2, 3, 4, 1, 5)) , (A.4)

and then add last two lines to get

−s13s24A(1, 3, 2, 4, 5)Ã(2, 4, 3, 1, 5) − s12s34A(1, 2, 3, 4, 5)Ã(3, 4, 2, 1, 5) . (A.5)

Adding these two together we finally have

s13s24A(1, 3, 2, 4, 5)Ã(2, 4, 1, 3, 5) + s12s34A(1, 2, 3, 4, 5)Ã(3, 4, 1, 2, 5)

= −s13s24A(1, 3, 2, 4, 5)Ã(3, 1, 4, 2, 5) − s12s34A(1, 2, 3, 4, 5)Ã(2, 1, 4, 3, 5) (A.6)

9Here we call the order of BCJ relations by the number of denominator in formulas given in [9]. It is worth to notice that

while the level one BCJ relation has been proved in [11, 12, 10], higher order BCJ relations have not had a general proof

although one can explicit check it order by order recursively. It will be very interesting to have a general proof.
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which is the familiar KLT relations.

From this example, it can be seen that the direct method is very complicated because we need to

use various BCJ relations up to level (n − 3) and to sum up various terms to obtain an overall factor

s12..(n−1). After got rid of s12...(n−1) from the sum over A, we need to use BCJ relations again to sum over

Ã. Although case by case one can check, it is hard to observe the general patterns to give a rigorous proof,

thus it is better to use our regularization method to give the proof as we did in section three.
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