
ar
X

iv
:1

00
7.

49
99

v1
 [

he
p-

th
]

 2
8

Ju
l 2

01
0

AEI 2010-127

PSS: A FORM Program to Evaluate Pure Spinor Superspace Expressions

Carlos R. Mafra1

Max-Planck-Institut für Gravitationsphysik

Albert-Einstein-Institut, 14476 Golm, Germany

A FORM program which is used to efficiently expand in components pure spinor su-

perfield expressions of kinematic factors is presented and comments on how it works are

made. It is highly customizable using the standard features of FORM and can be used to

help obtaining superstring effective actions from the scattering amplitudes computed with

the pure spinor formalism.

July 2010

1 email: crmafra@aei.mpg.de

http://arxiv.org/abs/1007.4999v1

1. Introduction

Since the discovery of the pure spinor formalism [1] the computation of manifestly

supersymmetric superstring scattering amplitudes became possible2. At first the results

were limited to tree-level, where it was shown that amplitudes with an arbitrary number

of bosonic and up to four fermionic states were equivalent to the standard results from

the Ramond-Neveu-Schwarz (RNS) and Green-Schwarz (GS) formulations [5]. Explicit

four-point tree computations were first performed in [6], while in [7] those results were

streamlined in a superspace derivation which also made manifest its relation with one-

and two-loop amplitudes. The five-point amplitude was computed in [8], providing a

compact superspace representation which contrasts with the bosonic-only result from [9].

In addition, an OPE identity related to the Bern-Carrasco-Johansson kinematic relations

[10] was uncovered3, which led to further developments discussed in [13]. Furthermore,

it was shown in [14] that there is a BRST-equivalent superspace expression for the field

theory limit of the superstring amplitude from [8] which provides hints of a direct mapping

between Feynman diagrams with cubic vertices and pure spinor superspace expressions.

After being extended in [15,16], higher-loop amplitude computations using the pure

spinor formalism also became a reality. At one-loop, the massless four-point [15,17], five-

point [18] and the gauge variation of the six-point amplitude [19] were obtained. At

two-loops, the massless four-point amplitude was computed in [20,21]. Using formulæ for

integration over pure spinor space, the overall coefficients of the one-loop [22] and two-loop

[23] were also computed and shown to agree with S-duality conjecture expectations [24].

Besides streamlining amplitude computations avoiding supermoduli spaces and sums

over spins structures altogether, the pure spinor formalism naturally gives rise to manifestly

supersymmetric kinematic factors in pure spinor superspace.

Pure spinor superspace expressions are correlation functions written in terms of ten-

dimensional super-Yang-Mills superfields [25] and three pure spinors λα normalized as4

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1. (1.1)

The simplest example of a pure spinor superspace expression is provided by the massless

three-point scattering amplitude [1]

K
(0)
3 = 〈(λA1)(λA2)(λA3)〉. (1.2)

2 For reviews see [2,3,4].
3 See also [11,12] for string theory monodromy explanations of the BCJ relations.
4 The precise overall coefficients of [22,23] will not be needed here.

1

The four-point kinematic factors are given by

K
(0)
4 = 〈(λA1)(λγmW 2)(λγnW 3)F4

mn〉, (1.3)

K
(1)
4 = 〈(λA1)(λγmW 2)(λγnW 3)F4

mn〉, (1.4)

K
(2)
4 = 〈(λγmnpqrλ)(λγsW 4)F1

mnF
2
pqF

3
rs〉 (1.5)

for the tree-level [7], one- [15] and two-loop (1.5) amplitudes, respectively. Another example

is provided by the one-loop five-point kinematic factor of [18], whose expression for the

(12) and (25) “channels” read

L12 = 〈
[

(λA1)(k1 ·A2) + A1
p(λγ

pW 2)
]

(λγmW 5)(λγnW 3)F4
mn〉

K25 = 〈(λA1)
[

(λγmW 2)(k2 ·A5)−
1

4
(λγmγrsW 5)F2

rs

]

(λγnW 3)F4
mn

〉

− (2 ↔ 5).

The above pure spinor superspace representations provide compact information about

the amplitudes, but it may be convenient to evaluate those expressions in terms of familiar

component expansions. These component expansions are written in terms of polarization

vectors eIm and spinors χα
I with momenta kIm, where I = 1, . . ., N are the particle labels and

m = 0, . . ., 9 α = 1, . . ., 16 are the Lorentz and Weyl indices of ten dimensional Minkowski

space.

The general method to evaluate these expressions in components was explained in the

appendix of [19]. One uses the θ-expansions [26,6] of the SYM superfields

Aα(x, θ) =
1

2
am(γmθ)α −

1

3
(ξγmθ)(γmθ)α −

1

32
Fmn(γpθ)α(θγ

mnpθ) + . . .

Am(x, θ) = am − (ξγmθ)−
1

8
(θγmγpqθ)Fpq +

1

12
(θγmγpqθ)(∂pξγqθ) + . . .

Wα(x, θ) = ξα −
1

4
(γmnθ)αFmn +

1

4
(γmnθ)α(∂mξγnθ) +

1

48
(γmnθ)α(θγnγ

pqθ)∂mFpq + . . .

Fmn(x, θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγpqθ)∂n]Fpq + . . . (1.6)

where am(x) = emeikx and ξα(x) = χαeikx. After that, only terms containing five θ’s are

kept. Using symmetry alone it is possible to rewrite arbitrary combinations of 〈λ3θ5〉 in

terms of Kronecker deltas and epsilon tensors [21,27]. For example

〈(λγmθ)(λγnθ)(λγpθ)(θγqrsθ)〉 =
1

120
δmnp
qrs . (1.7)

2

Substituting the various correlators by their corresponding tensors as above, the component

expansion of pure spinor superspace expressions is obtained.

Several different computer-aided procedures were used along the past years for the

above steps in superspace derivations of scattering amplitudes. At first, those pure spinor

correlators of [19] were obtained with the help5 of the GAMMA package [28]. With some effort,

the superspace expressions were expanded in θ’s by hand, the corresponding correlators

identified from a catalog composed of entries like (1.7) and the resulting tensors were typed

in Mathematica or FORM [29]. When the scattering involved fermionic states, various Fierz

identities were usually necessary at intermediate stages. After all these steps, the output

consisted of several terms composed of Kronecker deltas and Levi-Civita epsilon tensors

contracted with momenta and polarizations. Those terms constituted the final answer.

However the semi-automated method described above does not scale very well for

higher-point amplitudes or when there are many expressions to evaluate in sequence. This

fact provided the motivation to write the program presented here. It was developed mainly

to help the author’s own workflow during computations, and therefore it reflects his pri-

orities (and it is a continuous work in progress). It is called PSS and it is written in the

interesting language of FORM [29].

2. How PSS works

The goal is to be able to obtain component expansions in a fully automated process –

all that is required is the pure spinor superspace expression to be expanded and whether

the external states are bosonic or fermionic. The rest must be done by the computer.

For example, the superspace expression for [17] is typed in PSS as

Local [4-pts_one-loop] = la*A1*la*ga(m)*W2*la*ga(n)*W3*cF4(m,n);

5 A small C program was also written to deal with anti-symmetrization of huge tensors during

consistency checks.

3

Choosing all fields to be bosonic results in the following ipsis litteris output,

[4-pts_one-loop] =

- 1/5760*k1.e2*k1.e3*e1.e4*t

+ 1/5760*k1.e2*k1.e4*e1.e3*t

+ 1/5760*k1.e2*k2.e3*e1.e4*u

+ 1/5760*k1.e2*k2.e4*e1.e3*t

+ 1/5760*k1.e2*k3.e1*e3.e4*t

+ 1/5760*k1.e3*k2.e1*e2.e4*t

- 1/5760*k1.e3*k2.e4*e1.e2*t

- 1/5760*k1.e3*k3.e2*e1.e4*u

- 1/5760*k1.e3*k3.e2*e1.e4*t

+ 1/5760*k1.e4*k2.e1*e2.e3*u

- 1/5760*k1.e4*k2.e3*e1.e2*u

+ 1/5760*k1.e4*k3.e2*e1.e3*u

+ 1/5760*k1.e4*k3.e2*e1.e3*t

- 1/5760*k2.e1*k2.e3*e2.e4*u

+ 1/5760*k2.e1*k2.e4*e2.e3*u

+ 1/5760*k2.e1*k3.e2*e3.e4*u

- 1/5760*k2.e3*k3.e1*e2.e4*u

- 1/5760*k2.e3*k3.e1*e2.e4*t

+ 1/5760*k2.e4*k3.e1*e2.e3*u

+ 1/5760*k2.e4*k3.e1*e2.e3*t

+ 1/5760*k3.e1*k3.e2*e3.e4*u

+ 1/5760*k3.e1*k3.e2*e3.e4*t

+ 1/11520*e1.e2*e3.e4*t*u

- 1/11520*e1.e3*e2.e4*t*u

- 1/11520*e1.e3*e2.e4*t^2

- 1/11520*e1.e4*e2.e3*u^2

- 1/11520*e1.e4*e2.e3*t*u

;

Momentum conservation: k4 eliminated

Gauge invariance: not tested

0.05 sec + 0.08 sec: 0.13 sec out of 0.15 sec

4

which is the result obtained in [17]. One should notice in the final statistics displayed by

FORM how quickly the answer is obtained.

The program is composed of one main FORM script called pss.frm and four header

files: pss header.h, kin factor.h, pss.h and ps tensors.h. They contain the defi-

nitions of indices, vectors, tensors, superfields etc (pss header.h), the pure spinor su-

perspace expressions to be evaluated (kin factor.h) and the procedures which actually

do the computations (pss.h). The database of pure spinor correlators is contained in

ps tensors.h. There is also a small sed script (FORM2tex.sed) to help translating the

result into TEX .

To use the program one has to write down the kinematic factor in kin factor.h. In

the beginning of the main file pss.frm, the number of points must be defined (e.g. #define

Npts ‘‘4’’) and whether the external states are bosonic or fermionic (#define field1

‘‘0’’ and so forth). After that one executes pss.frm using either form or tform (for multi-

processor computers) and a result like the one written above is obtained. Optionally one

can select which momentum to be eliminated by setting the dollar variable $kn and test

for gauge invariance by uncommenting the line containing id e1 = k1; #gauge = e1;

close to the end of the file. Several other things can be done, depending on the problem

at hand and how one chooses to manipulate it. There are also a few debug options (-d

psonly, sfexpand, nofierz) which help in case something goes wrong and one has to check

where. They will be explained below.

2.1. User input and notation

The superspace expression is written in terms of the super-Yang-Mills superfields

AI
α(θ, x), A

I
m(θ, x), Wα

I (θ, x) and FI
mn(θ, x) [25]. Their definitions are contained in the file

pss header.h and they correspond to,

A1, B1, W1, cF1(m, n)

The pure spinor λα and θα are denoted by la and th. Note that PSS does not know

about spinor indices, but that does not cause problems as long as one writes down correct

superspace expressions. However, that also means one has to take care whether a fermionic

superfield is contracted from the left or right, because the θ-expansions to be used differ

5

in this case6. For this situation one has to use the “left” version of the superfields, AL1

and WL1 etc. For example, the factor (W 1γmnpW
2) must be written as

WL1 ∗ ga(m, n, p) ∗ W2

The 16× 16 gamma matrices γm, γmn, γmnp, . . . are denoted by

ga(m), ga(m, n), ga(m, n, p), ...

Another convention to be followed is to write the pure spinor λα to the left of fermionic

bilinears, so (λγmW 2) or (W 2γmλ) must be written as

la ∗ ga(m) ∗ W2

and not

WL2 ∗ ga(m) ∗ la

although PSS can be easily modified to accept the latter version. Of course, there is no

problem to write the factor (λγmnpqrλ) and the procedure to identify correlators is aware

of it. The generalized Kronecker delta is defined by7

N !δm1...mN

n1...nN
= da(m1, . . ., mN , n1, . . ., nN)

2.2. The computation

It is important to understand how PSS actually obtains the component expansions,

so that modifications can be easily done. All the action happens inside pss.frm, where it

calls the procedures from pss.h. Let us now follow some of the steps8.

When PSS is executed it loads the headers and the kinematic factors. The kinematic

factors are local variables which will be manipulated by the FORM program. The first

part of the manipulations transform the superspace input into an expression suitable for

6 This is an artifact of how PSS was designed and this distinction is meaningless in real life.
7 Unfortunately FORM has no notion of a generalized Kronecker delta, so it had to be defined

by PSS. Note that the usual Kronecker delta is defined by FORM as δ
m

n
= d (m,n).

8 One should also read the source code, as some details will be skipped.

6

identifying the required pure spinor correlators in terms of tensors to arrive at the final

answer. The (slightly simplified) sequence of procedures is the following:

#call chooseMomentum()

#call superfieldExpand()

#call keep5thetas()

#call gammaExpand()

#call deltaExpand()

#call onShell()

#call orderFermions()

#call PSordering()

#call Fierz()

#call earlySimplify()

#call identifyCorrelators()

#call deltaExpand()

#call dualizeGammas()

#call fieldStrength()

#call onShell()

#call gammaExpand()

#call orderFermions()

#call diracEquation()

#call momentumConservation()

These steps are almost self-explanatory, and they correspond to what one would actually

do in a computation with pen and paper.

The procedure chooseMomentum() is called to choose which momentum to eliminate.

Although the result does not depend on the choice, there are differences in the number

of intermediate terms and computing time. For example, when there are fermionic fields

it is convenient to eliminate one momentum whose label is not one of the labels of the

fermionic particles. The reason is the increased chance of applying the Dirac equation on

fermion bilinears to reduce the rank of the gamma matrix. For example, (χ1γmnpχ2)k1m =

2(χ1γ[nχ2)k
p]
1 .

Then the procedure superfieldExpand() is called, which expands the SYM super-

fields in their θ components using (1.6) and selects the terms according to whether the

7

particles are bosonic or fermionic. The assignment of particles to each label of the super-

fields is done at the beginning of pss.frm with

#define field1 ‘‘0’’

#define field2 ‘‘0’’

...

where 0 (1) means bosonic (fermionic). Terms which do not contain five θs are then

discarded with keep5thetas(). At this point, one of the terms in (1.4) looks like

- 1/256*la*ga(e1)*th*la*ga(k4)*ga(m2,n2)*th*la*ga(n)*ga(m3,n3)*th*

th*ga(n,m4,n4)*th*F2(m2,n2)*F3(m3,n3)*F4(m4,n4)

which is the FORM output for

−
1

256
〈(λγmθ)(λγpγm2n2θ)(λγnγm3n3θ)(θγnm4n4

θ)〉k4pe
1
mF 2

m2n2
F 3
m3n3

F 4
m4n4

(2.1)

in the schoonschip notation. The gamma matrices in (2.1) are expanded using gammaEx-

pand(),

γnγm3n3 = γnm3n3 + ηm3nγn3 − ηn3nγm3 .

More complicated expansions may introduce generalized Kronecker deltas, which are then

expanded with deltaExpand(), e.g., δmn
pq = 1

2
(δmp δnq − δmq δnp). The procedure onShell()

kills any term which may have been generated at this point containing (ki · ki) or (ki · ei).

When there are fermionic external states, the procedure orderFermions() rewrites

the fermionic bilinears (χiγm1...mnχj) such that i < j. This procedure keeps track of

overall minus signs which may be needed due to the Grassmanian nature of χ’s and the

symmetry properties of the gamma matrices. For example (χ3γmχ1) → −(χ1γmχ3) or

(χ3γmnpχ1) → +(χ1γmnpχ3).

The procedure PSordering() follows a set of conventions on the ordering of fermionic

bilinears to minimize the number of pattern matching when trying to identify the pure

spinor correlators needed for one particular computation. For example, if the expression

(λγmθ)(θγqrsθ)(λγ
nθ)(λγpθ) is encountered in the middle of the computations, it is first

rewritten by PSordering() as (λγmθ)(λγnθ)(λγpθ)(θγqrsθ). Later on there will be only

one pattern to match in order to identify the correlator (in identifyCorrelators()) and

replace it with 1
720da(m,n,p,q,r,s). For the same reason, the ordering “inside” gamma

8

matrix bilinears is such that the fields appear as (λγm...θ), (λγm...χ) and (χγm...θ), and

not for example as (θγm...λ) etc.

When the computation involves fermionic particles, after processing the expressions

with PSordering() there may be factors such as (χ1γmθ)(χ2γnθ), which will be rewritten

by the procedure Fierz() as

−
1

96
(χ1γmγqrsγ

nχ2)(θγqrsθ)

again in order to minimize the number of pattern matching to identify correlators. This

procedure takes care of various bilinears combinations, and the pair of fermions chosen to

be expanded depend on the particular combination being considered, for which the user

should read the source code for more information. The general expansions are done with

the formula

λαχβ =
1

16
(λγmχ)γαβ

m +
1

96
(λγmnpχ)γαβ

mnp +
1

3840
(λγmnpqrχ)γαβ

mnpqr. (2.2)

If the procedure Fierz() takes effect, then there will be more gamma matrices to expand,

like in the example above (χ1γmγqrsγ
nχ2). If that is the case, then the extra calling of

gammaExpand() and deltaExpand(), followed by PSordering() and orderFermions()

will let the expressions ready for being identified.

Using the example of the one-loop kinematic factor, at this point one of the terms

being dealt with by PSS is

- 1/512*la*ga(N1_?,N2_?,N3_?)*th*la*ga(N4_?,N5_?,N6_?)*th*

la*ga(N7_?)*th*th*ga(N7_?,N8_?,N9_?)*th*F1(N8_?,N9_?)*

F2(N1_?,N2_?)*F3(N4_?,N5_?)*F4(N3_?,N6_?)

which is

−
1

512
(λγn1n2n3θ)(λγn4n5n6θ)(λγn7θ)(θγn7n8n9θ)F 1

n8n9
F 2
n1n2

F 3
n4n5

F 4
n3n6

. (2.3)

The next step is to call the procedure which identifies the pure spinor correlator from a

catalog of known tensors. This is done with identifyCorrelators(), after which the

above term is given by

- 1/512*F1(N1_?,N2_?)*F2(N3_?,N4_?)*F3(N5_?,N6_?)*F4(N7_?,N8_?)*

ps331(N3_?,N4_?,N7_?,N5_?,N6_?,N8_?,N9_?,N9_?,N1_?,N2_?)

9

That is, PSS identifies the pure spinor correlator (λγn1n2n3θ)(λγn4n5n6θ)(λγn7θ)(θγn7n8n9θ)

with the tensor ps331(n1, n2, n3, n4, n5, n6, n7, n7, n8, n9). Looking at the appendix of [19],

this tensor is expanded in terms of Kronecker deltas as

〈(λγmnpθ)(λγqrsθ)(λγtθ)(θγijkθ)〉 =
1

8400
ǫijkmnpqrst+ (2.4)

+
1

140

[

δ
[m
t δn[iη

p][qδrj δ
s]
k]− δ

[q
t δr[iη

s][mδnj δ
p]
k]

]

−
1

280

[

ηt[iη
v[qδrj η

s][mδnk]δ
p]
v − ηt[iη

v[mδnj η
p][qδrk]δ

s]
v

]

and this is one of the correlators included in the catalog ps tensors.h. So the purpose of

identifyCorrelators() is to transform an input containing correlators with 〈λ3θ5〉 into

an expression written in terms of tensors like ps331(m,n,p,q,r,s,t,u,v,x), which are later

substituted by Kronecker deltas and epsilon tensors as in (2.4) using the catalog.

The list of correlators identified by identifyCorrelators() is

〈(λγt1...t5λ)(λγmθ)(θγr1...r3θ)(θγs1...s3θ)〉 = uind(t1, ..., t5, m, r1, ..., r3, s1, ..., s3)

〈(λγt1...t5λ)(λγm1...m3θ)(θγr1...r3θ)(θγs1...s3θ)〉 = tind(t1, ..., t5, m1, ..., m3, r1, ..., r3, s1, ..., s3)

〈(λγt1...t5λ)(λγm1...m5θ)(θγr1...r3θ)(θγs1...s3θ)〉 = cind(t1, ..., t5, m1, ..., m5, r1, ..., r3, s1, ..., s3)

〈(λγmθ)(λγnθ)(λγpθ)(θγabcθ)〉 = ps111(m,n, p, a, b, c)

〈(λγmθ)(λγnθ)(λγpθ)(θγr1...r7θ)〉 = ps111eps(m,n, p, r1, ..., r7)

〈(λγt1...t3θ)(λγmθ)(λγnθ)(θγr1...r3θ)〉 = ps311(t1, ..., t3, m, n, r1, ..., r3)

〈(λγt1...t3θ)(λγmθ)(λγnθ)(θγr1...r7θ)〉 = ps311eps(t1, ..., t3, m, n, r1, ..., r7)

〈(λγm1...m3θ)(λγn1...n3θ)(λγaθ)(θγr1...r3θ)〉 = ps331(m1, ..., m3, n1, ..., n3, a, r1, ..., r3)

〈(λγm1...m3θ)(λγn1...n3θ)(λγaθ)(θγr1...r7θ)〉 = ps331eps(m1, ..., m3, n1, ..., n3, a, r1, ..., r7)

〈(λγt1...t3θ)(λγm1...m3θ)(λγn1...n3θ)(θγr1...r3θ)〉 = ps333(t1, ., t3, m1, ., m3, n1, ., n3, r1, ., r3)

〈(λγt1...t3θ)(λγm1...m3θ)(λγn1...n3θ)(θγr1...r7θ)〉 = ps333eps(t1, ., t3, m1, ., m3, n1, ., n3, r1, ., r7)

〈(λγt1...t5θ)(λγmθ)(λγaθ)(θγr1...r3θ)〉 = ps511(t1, ., t5, m, a, r1, ., r3)

〈(λγt1...t5θ)(λγmθ)(λγaθ)(θγr1...r7θ)〉 = ps511eps(t1, ., t5, m, a, r1, ., r7)

〈(λγt1...t5θ)(λγm1...m3θ)(λγaθ)(θγr1...r3θ)〉 = ps531(t1, ., t5, m1, ., m3, a, r1, ., r3)

〈(λγt1...t5θ)(λγm1...m3θ)(λγaθ)(θγr1...r7θ)〉 = ps531eps(t1, ..., t5, m1, ..., m3, a, r1, ..., r7)

10

〈(λγt1...t5θ)(λγm1...m5θ)(λγaθ)(θγr1...r3θ)〉 = ps551(t1, ..., t5, m1, ..., m5, a, r1, ..., r3)

〈(λγt1...t5θ)(λγm1...m5θ)(λγaθ)(θγr1...r7θ)〉 = ps551eps(t1, ., t5, m1, ., m5, a, r1, ., r7)

〈(λγt1...t5θ)(λγm1...m5θ)(λγn1...n3θ)(θγr1...r3θ)〉 = ps553(t1, ., t5, m1, ., m5, n1, ., n3, r1, ., r3)

〈(λγt1...t5θ)(λγm1...m3θ)(λγn1...n3θ)(θγr1...r3θ)〉 = ps533(t1, ., t5, m1, ., m3, n1, ., n3, r1, ., r3)

It may happen that one particular computation requires a correlator not in the list. When

that happens PSS automatically detects the missing correlator and prints it before exiting.

For example

I do not identify a correlator for:

+ 1/983040*chi1*ga(N1_?,N2_?,N3_?,N4_?,N5_?,N6_?,N7_?)*chi2*

la*ga(N1_?,N2_?,N3_?,N4_?,N5_?)*th*la*ga(k1,N6_?,N8_?)*th*

la*ga(N9_?,N10_?,N11_?)*th*

th*ga(N7_?,N8_?,N9_?,N12_?,N13_?,N14_?,N15_?)*th*

F3(N10_?,N11_?)*F4(N12_?,N13_?)*F5(N14_?,N15_?)

Add it to the identifyCorrelators() procedure

In this case the missing correlator can be obtained from ps533() and its pattern matching

added to the procedure identifyCorrelators() and its tensor representation added to

the file ps tensors.h.

After calling identifyCorrelators() the tensors above are substituted by their ten-

sor representations. This is done by including the file ps tensors.h, which contains their

expansions in terms of generalized Kronecker deltas and Levi-Civita epsilons. The proce-

dure deltaExpand() expands the generalized Kronecker deltas in terms of the antisym-

metric combinations of the usual Kronecker delta. Gamma matrices with more than five

indices are manipulated with dualizeGammas(), where for example the following identity

is used

γm1...m7

αβ = −
1

3!
iǫm1...m7n1...n3

γn1...n3

αβ .

The cases where epsilon tensors are contracted with gamma matrices is also dealt with,

ǫm1...m3n1...n7(χ1γn1...n7
χ2) = 5040 i(χ1γm1m2m3χ2).

For completeness, the gamma matrix conventions [30] are such that9

γm1...m9

αβ = i ǫm1...m9n1(γn1
)αβ , (γm1...m8) β

α =
1

2!
i ǫm1...m8n1...n2(γn1...n2

) β
α

9 The signs change when both spinor indices of the matrix matrices change from Weyl to

anti-Weyl.

11

γm1...m7

αβ = −
1

3!
iǫm1...m7n1...n3γn1...n3

αβ , (γm1...m6) β
α =

1

4!
i ǫm1...m6n1...n4(γn1...n4

) β
α ,

γm1...m5

αβ =
1

5!
i ǫm1...m5n1...n5(γn1...n5

)αβ, γm1...m3

αβ = −
1

7!
i ǫm1...m3n1...n7(γn1...n7

)αβ

(2.5)

It is important to notice that FORM uses the convention that ǫm1...m10
ǫm1...m10 = 10! instead

of −10!, so that is why there are factors of i together with epsilon tensors in PSS.

The procedure fieldStrength() substitutes F I
mn = kImeIn − kIne

I
m and onShell()

annihilates terms with (kI ·kI) and (kI ·eI). If there are fermionic particles, the procedure

diracEquation() uses the Dirac equation to reduce the rank of the gamma matrices when

there is a momentum of one of the particles in the fermionic bilinear being contracted with

one of its indices, for example

(χ1γmnk2
χ2) = k2m(χ1γnχ

2)− k2n(χ
1γmχ2).

Finally, the procedure momentumConservation() applies the conservation of momentum

to one of the labels, which can be manually chosen by setting the “dollar” variable $kn in

the beginning of pss.frm (if let at its default value of zero, then an automatic choice is

made).

After the above (simplified) sequence of steps the desired component expansion of the

superspace expression is printed on the screen.

If one chooses the particles 1 and 2 to be fermionic by using #define field1 1 etc,

rerunning the program results in,

[mafra@Pilar:pss] tform -q -w2 pss.frm

[4pts_one-loop] =

+ 1/11520*chi1*ga(k4,e3,e4)*chi2*u

+ 1/11520*chi1*ga(k4,e3,e4)*chi2*t

- 1/11520*chi1*ga(k4)*chi2*e3.e4*u

+ 1/11520*chi1*ga(k4)*chi2*e3.e4*t

+ 1/5760*chi1*ga(e3)*chi2*k1.e4*u

- 1/5760*chi1*ga(e3)*chi2*k2.e4*t

+ 1/11520*chi1*ga(e4)*chi2*k4.e3*u

- 1/11520*chi1*ga(e4)*chi2*k4.e3*t

;

Momentum conservation: k3 eliminated

Gauge invariance: not tested

0.08 sec + 0.42 sec: 0.50 sec out of 0.32 sec

12

2.3. Debug options

There are three pre-defined debug options which can be used to check intermediate

steps in the computation, sfexpand, psonly and nofierz. If sfexpand is invoked (using

the -d flag; see FORM’s manual), then only the superfield expansion in terms of θ’s is printed,

[mafra@Pilar:pss] tform -q -w2 -d sfexpand pss.frm

[4pts_one-loop] =

- 1/256*la*ga(e1)*th*la*ga(k4)*ga(m2,n2)*th*la*ga(n)*ga(m3,n3)*th*

th*ga(n,m4,n4)*th*F2(m2,n2)*F3(m3,n3)*F4(m4,n4)

- 1/384*la*ga(e1)*th*la*ga(m)*ga(k2,N1_?)*th*th*ga(m2,n2,N1_?)*th*

la*ga(n)*ga(m3,n3)*th*F2(m2,n2)*F3(m3,n3)*F4(m,n)

+ 1/256*la*ga(e1)*th*la*ga(m)*ga(m2,n2)*th*la*ga(k4)*ga(m3,n3)*th*

th*ga(m,m4,n4)*th*F2(m2,n2)*F3(m3,n3)*F4(m4,n4)

+ 1/384*la*ga(e1)*th*la*ga(m)*ga(m2,n2)*th*la*ga(n)*ga(k1,N1_?)*th*

th*ga(m3,n3,N1_?)*th*F2(m2,n2)*F3(m3,n3)*F4(m,n)

+ 1/384*la*ga(e1)*th*la*ga(m)*ga(m2,n2)*th*la*ga(n)*ga(k2,N1_?)*th*

th*ga(m3,n3,N1_?)*th*F2(m2,n2)*F3(m3,n3)*F4(m,n)

+ 1/384*la*ga(e1)*th*la*ga(m)*ga(m2,n2)*th*la*ga(n)*ga(k4,N1_?)*th*

th*ga(m3,n3,N1_?)*th*F2(m2,n2)*F3(m3,n3)*F4(m,n)

- 1/512*la*ga(N1_?)*th*th*ga(m1,n1,N1_?)*th*la*ga(m)*ga(m2,n2)*th*

la*ga(n)*ga(m3,n3)*th*F1(m1,n1)*F2(m2,n2)*F3(m3,n3)*F4(m,n)

;

which can be useful to check when something goes wrong. The debug option psonly prints

the expression after the correlators were identified, for example,

[mafra@Pilar:pss] tform -q -w2 -d psonly pss.frm

[4pts_one-loop] =

- 1/128*F1(N1_?,N2_?)*F2(N3_?,N4_?)*F3(N5_?,N6_?)*F4(N3_?,N5_?)*

ps111(N7_?,N4_?,N6_?,N7_?,N1_?,N2_?)

- 1/256*F1(N1_?,N2_?)*F2(N3_?,N4_?)*F3(N5_?,N6_?)*F4(N3_?,N7_?)*

ps311(N5_?,N6_?,N7_?,N8_?,N4_?,N8_?,N1_?,N2_?)

- 1/256*F1(N1_?,N2_?)*F2(N3_?,N4_?)*F3(N5_?,N6_?)*F4(N5_?,N7_?)*

ps311(N3_?,N4_?,N7_?,N8_?,N6_?,N8_?,N1_?,N2_?)

- 1/512*F1(N1_?,N2_?)*F2(N3_?,N4_?)*F3(N5_?,N6_?)*F4(N7_?,N8_?)*

ps331(N3_?,N4_?,N7_?,N5_?,N6_?,N8_?,N9_?,N9_?,N1_?,N2_?)

...

13

where the other terms are similar and were omitted. Furthermore, nofierz prints the

superspace expansions before any Fierz manipulation is done,

[mafra@Pilar:pss] tform -q -w2 -d nofierz pss.frm

[4pts_one-loop] =

+ 1/24*chi1*ga(N1_?)*th*chi2*ga(N2_?)*th*la*ga(k2,N2_?,N3_?)*th*

la*ga(N1_?)*th*la*ga(N4_?)*th*F3(N4_?,N5_?)*F4(N3_?,N5_?)

+ 1/48*chi1*ga(N1_?)*th*chi2*ga(N2_?)*th*la*ga(k2,N2_?,N3_?)*th*

la*ga(N4_?,N5_?,N6_?)*th*la*ga(N1_?)*th*F3(N5_?,N6_?)*F4(N3_?,N4_?)

+ 1/24*chi1*ga(N1_?)*th*chi2*ga(N2_?)*th*la*ga(N1_?)*th*la*ga(k2)*th*

la*ga(N3_?)*th*F3(N3_?,N4_?)*F4(N2_?,N4_?)

...

There are many possible extensions and optimizations which can be made to PSS, as

it is available to download at http://www.aei.mpg.de/~crmafra/pss.tar.gz under the

GPL license. In particular, dealing with four-fermion expansions is still not completely au-

tomated (nor guaranteed to be correct). It would be interesting to implement the fermionic

methods described in [27] for this purpose. Furthermore, it should be straightforward to

write procedures to translate the full ten-dimensional components to four dimensions using

the spinor helicity formalism, in order to compare with the results appearing in [31]. The

possibilities are many and it is hoped that PSS provides a framework for further work.

Acknowledgements: I want to thank Joost Hoogeveend for convincing me that PSS

may be useful to other people and encouraging me to release it. I also thank Jos Vermaseren

for his suggestions on how to deal with generalized Kronecker deltas. I acknowledge support

by the Deutsch-Israelische Projektkooperation (DIP H52).

14

http://www.aei.mpg.de/~crmafra/pss.tar.gz

References

[1] N. Berkovits, “Super-Poincare covariant quantization of the superstring,” JHEP 0004,

018 (2000) [arXiv:hep-th/0001035].

[2] N. Berkovits, “ICTP lectures on covariant quantization of the superstring,” arXiv:hep-

th/0209059.

[3] O. A. Bedoya and N. Berkovits, “GGI Lectures on the Pure Spinor Formalism of the

Superstring,” arXiv:0910.2254 [hep-th].

[4] C. R. Mafra, “Superstring Scattering Amplitudes with the Pure Spinor Formalism,”

arXiv:0902.1552 [hep-th].

[5] N. Berkovits and B. C. Vallilo, “Consistency of super-Poincare covariant superstring

tree amplitudes,” JHEP 0007, 015 (2000) [arXiv:hep-th/0004171].

[6] G. Policastro and D. Tsimpis, “R**4, purified,” [arXiv:hep-th/0603165].

[7] C. R. Mafra, “Pure Spinor Superspace Identities for Massless Four-point Kinematic

Factors,” JHEP 0804, 093 (2008) [arXiv:0801.0580 [hep-th]].

[8] C. R. Mafra, “Simplifying the Tree-level Superstring Massless Five-point Amplitude,”

JHEP 1001, 007 (2010) [arXiv:0909.5206 [hep-th]].

[9] R. Medina, F. T. Brandt and F. R. Machado, “The open superstring 5-point amplitude

revisited,” JHEP 0207, 071 (2002) [arXiv:hep-th/0208121]. ;

L. A. Barreiro and R. Medina, “5-field terms in the open superstring effective action,”

JHEP 0503, 055 (2005) [arXiv:hep-th/0503182].

[10] Z. Bern, J. J. M. Carrasco and H. Johansson, “New Relations for Gauge-Theory

Amplitudes,” Phys. Rev. D 78, 085011 (2008) [arXiv:0805.3993 [hep-ph]].

[11] N. E. J. Bjerrum-Bohr, P. H. Damgaard and P. Vanhove, “Minimal Basis for Gauge

Theory Amplitudes,” Phys. Rev. Lett. 103, 161602 (2009) [arXiv:0907.1425 [hep-th]].

[12] S. Stieberger, “Open & Closed vs. Pure Open String Disk Amplitudes,” arXiv:0907.2211

[13] N. E. J. Bjerrum-Bohr, P. H. Damgaard, T. Sondergaard and P. Vanhove, “Mon-

odromy and Jacobi-like Relations for Color-Ordered Amplitudes,” arXiv:1003.2403

[14] C. R. Mafra, “Towards Field Theory Amplitudes From the Cohomology of Pure Spinor

Superspace,” arXiv:1007.3639 [hep-th].

[15] N. Berkovits, “Multiloop amplitudes and vanishing theorems using the pure spinor

formalism for the superstring,” JHEP 0409, 047 (2004) [arXiv:hep-th/0406055].

[16] N. Berkovits, “Pure spinor formalism as an N = 2 topological string,” JHEP 0510,

089 (2005) [arXiv:hep-th/0509120].

[17] C. R. Mafra, “Four-point one-loop amplitude computation in the pure spinor formal-

ism,” JHEP 0601, 075 (2006) [arXiv:hep-th/0512052].

[18] C. R. Mafra and C. Stahn, “The One-loop Open Superstring Massless Five-point

Amplitude with the Non-Minimal Pure Spinor Formalism,” JHEP 0903, 126 (2009)

[arXiv:0902.1539 [hep-th]].

15

http://arxiv.org/abs/hep-th/0001035
http://arxiv.org/abs/hep-th/0209059
http://arxiv.org/abs/hep-th/0209059
http://arxiv.org/abs/0910.2254
http://arxiv.org/abs/0902.1552
http://arxiv.org/abs/hep-th/0004171
http://arxiv.org/abs/hep-th/0603165
http://arxiv.org/abs/0801.0580
http://arxiv.org/abs/0909.5206
http://arxiv.org/abs/hep-th/0208121
http://arxiv.org/abs/hep-th/0503182
http://arxiv.org/abs/0805.3993
http://arxiv.org/abs/0907.1425
http://arxiv.org/abs/0907.2211
http://arxiv.org/abs/1003.2403
http://arxiv.org/abs/1007.3639
http://arxiv.org/abs/hep-th/0406055
http://arxiv.org/abs/hep-th/0509120
http://arxiv.org/abs/hep-th/0512052
http://arxiv.org/abs/0902.1539

[19] N. Berkovits and C. R. Mafra, “Some superstring amplitude computations with the

non-minimal pure spinor formalism,” JHEP 0611, 079 (2006) [arXiv:hep-th/0607187].

[20] N. Berkovits, “Super-Poincare covariant two-loop superstring amplitudes,” JHEP

0601, 005 (2006) [arXiv:hep-th/0503197].

[21] N. Berkovits and C. R. Mafra, “Equivalence of two-loop superstring amplitudes in

the pure spinor and RNS formalisms,” Phys. Rev. Lett. 96, 011602 (2006) [arXiv:hep-

th/0509234].

[22] H. Gomez, “One-loop Superstring Amplitude From Integrals on Pure Spinors Space,”

JHEP 0912, 034 (2009) [arXiv:0910.3405 [hep-th]].

[23] H. Gomez and C. R. Mafra, “The Overall Coefficient of the Two-loop Superstring

Amplitude Using Pure Spinors,” JHEP 1005, 017 (2010) [arXiv:1003.0678 [hep-th]].

[24] E. D’Hoker, M. Gutperle and D. H. Phong, “Two-loop superstrings and S-duality,”

Nucl. Phys. B 722, 81 (2005) [arXiv:hep-th/0503180].

[25] E. Witten, “Twistor - Like Transform In Ten-Dimensions,” Nucl. Phys. B 266, 245

(1986).

[26] J. P. Harnad and S. Shnider, “Constraints And Field Equations For Ten-Dimensional

Superyang-Mills Theory,” Commun. Math. Phys. 106, 183 (1986). ;

P. A. Grassi and L. Tamassia, “Vertex operators for closed superstrings,” JHEP 0407,

071 (2004) [arXiv:hep-th/0405072].

[27] C. Stahn, “Fermionic superstring loop amplitudes in the pure spinor formalism,”

JHEP 0705, 034 (2007) [arXiv:0704.0015 [hep-th]].

[28] U. Gran, “GAMMA: A Mathematica package for performing Gamma-matrix algebra

and Fierz transformations in arbitrary dimensions,” arXiv:hep-th/0105086.

[29] J. A. M. Vermaseren, “New features of FORM,” [arXiv:math-ph/0010025] ;

M. Tentyukov and J. A. M. Vermaseren, “The multithreaded version of FORM,”

[arXiv:hep-ph/0702279].

[30] P. Mukhopadhyay, “On D-brane boundary state analysis in pure-spinor formalism,”

JHEP 0603, 066 (2006) [arXiv:hep-th/0505157].

[31] S. Stieberger and T. R. Taylor, “Amplitude for N-gluon superstring scattering,” Phys.

Rev. Lett. 97, 211601 (2006) [arXiv:hep-th/0607184]. ;

S. Stieberger and T. R. Taylor, “Multi-gluon scattering in open superstring theory,”

Phys. Rev. D 74, 126007 (2006) [arXiv:hep-th/0609175]. ;

S. Stieberger and T. R. Taylor, “Supersymmetry Relations and MHV Amplitudes in

Superstring Theory,” Nucl. Phys. B 793, 83 (2008) [arXiv:0708.0574 [hep-th]]. ;

S. Stieberger and T. R. Taylor, “Complete Six-Gluon Disk Amplitude in Superstring

Theory,” Nucl. Phys. B 801, 128 (2008) [arXiv:0711.4354 [hep-th]].

16

http://arxiv.org/abs/hep-th/0607187
http://arxiv.org/abs/hep-th/0503197
http://arxiv.org/abs/hep-th/0509234
http://arxiv.org/abs/hep-th/0509234
http://arxiv.org/abs/0910.3405
http://arxiv.org/abs/1003.0678
http://arxiv.org/abs/hep-th/0503180
http://arxiv.org/abs/hep-th/0405072
http://arxiv.org/abs/0704.0015
http://arxiv.org/abs/hep-th/0105086
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/hep-ph/0702279
http://arxiv.org/abs/hep-th/0505157
http://arxiv.org/abs/hep-th/0607184
http://arxiv.org/abs/hep-th/0609175
http://arxiv.org/abs/0708.0574
http://arxiv.org/abs/0711.4354

