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Abstract. We present a comprehensive numerical study of the dynamics of magnetized relativistic
axisymmetric tori orbiting in the background spacetime of a Schwarzschild black hole. The tori are
modeled as having a purely toroidal magnetic field and a constant distribution of the specific angular
momentum. Following previous investigations of tori in a purely hydrodynamical context, the dynamics of
these objects has been studied upon the introduction of a perturbation which, for the values of the magnetic
field considered here, triggers quasi-periodic oscillations (QPOs) lasting tens of orbital periods. As in the
hydrodynamical case, the spectral distribution of the eigenfrequencies shows the presence of a fundamental
p-mode and of overtones in a harmonic ratio: 2 : 3 : . . .. We comment on the implications of these
results on the phenomenology observed for the QPOs in low-mass X-ray binaries containing a black hole
candidate.

1. Introduction
Magnetic fields are thought to play an important role on the dynamics of accretion discs orbiting
around black holes. They can be the source of viscous processes within the disc and of the so called
magnetorotational instability (MRI) (Balbus & Hawley [1]) that self-regulates the accretion process by
transferring angular momentum outwards. In addition to this, the development and collimation of strong
relativistic outflows or jets is closely related to the presence of magnetic fields (Blandford & Znajek [2]).

General relativistic magnetohydrodynamic (GRMHD) numerical simulations are probably the most
accurate approach for the investigation of the dynamics of relativistic, magnetized accretion discs.
Recently, there has been a major step forward in the modeling of such systems, implementation of the
GRMHD equations in numerical codes developed by a number of groups (De Villiers & Hawley [3];
Gammie et al. [4]; Antón et al. [5]) that have been applied to the investigation of the MRI in accretion
discs. Moreover, Komissarov [6] has derived an analytic solution for an axisymmetric and stationary
torus with a toroidal magnetic field which may be used as a code test or as initial data for studies of the
dynamics of tori with a toroidal magnetic field.

In a purely hydrodynamical context, Zanotti et al. [7] found through fully nonlinear hydrodynamic
numerical simulations that relativistic tori may undergo a persistent phase of oscillations when subject
to perturbations. Here, we aim to investigate further this type of mode of oscillation of accretion tori by
taking into account the effect of a toroidal magnetic field. Thus, we present a study of the axisymmetric
p-mode oscillations of tori with a toroidal magnetic field and its implications on the high-frequency
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quasi-periodic oscillations (HFQPOs) observed in low-mass X-ray binaries (LMXBs) with a black hole
candidate.

The paper is organized as follows: In Section 2 we briefly review the mathematical framework we
use for the implementation of the GRMHD equations in our numerical code. Next, in Section 3, we
present the initial models, while in Section 4, we describe the techniques for the numerical solution of
the GRMHD equations. Section 5, contains the discussion of the results, and finally, Section 6 is devoted
to the conclusions. Throughout the paper we use geometrized units with G = c = 1. Greek indeces run
from 0 to 3 and Latin indeces from 1 to 3.

2. Mathematical framework
The nonlinear, axisymmetric, GRMHD code used to carry out the simulations we report solves
numerically the GRMHD equations within the framework of the 3+1 formalism as presented by Antón et
al. [5]. We write the evolution equations for the matter fields and the induction equation for the evolution
of the magnetic field as measured by an Eulerian observer in a conservative form. Writing the system of
evolution equations in this form allows us to exploit their hyperbolic character and to make use of high
resolution shock capturing (HRSC) methods.

Following the procedure laid out in Antón et al. [5], the GRMHD equations are cast in flux-
conservative hyperbolic form:
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and we have used the following definitions

D = ρW, (3)
Sj = ρ(h + b2/ρ)W 2vj − αb0bj , (4)
τ = ρ(h + b2/ρ)W 2 − (p + b2/2)− α2(b0)2 −D, (5)

where ρ is the rest-mass density of the fluid, W is the Lorentz factor, h is the specific enthalpy of the
fluid, p the isotropic pressure, vi the components of the spatial velocity, α is the lapse function, and the
four components of the magnetic field in the comoving frame are given by bµ. Correspondingly, the
fluxes Fi are given by
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Dṽi

Sj ṽ
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with ṽi = vi − βi

α , βi being the shift vector, and the corresponding source terms S are given by
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where 0k ≡ (0, 0, 0)T , and Tµν and Γµ
νδ are the stress-energy tensor and the Christoffel symbols

respectively. Note that the following fundamental relations hold between the four components of the
magnetic field in the comoving frame, bµ, and the three vector components Bi measured by the Eulerian
observer associated to the 3+1 splitting of the metric:

b0 =
WBivi

α
, (8)

bi =
Bi + αb0ui

W
. (9)

Finally, the modulus of the magnetic field can be written as

b2 =
B2 + α2(b0)2

W 2
, (10)

where B2 = BiBi.

3. Stationary and axisymmetric fluid configurations with a toroidal magnetic field
The initial magneto-fluid configuration we use is an extension of the stationary solution of a thick disc
orbiting around a black hole described by Kozlowski et al. [8], Abramowicz et al. [9] and more recently
by Font & Daigne [10]. This new solution of a magnetized relativistic torus has been recently proposed by
Komissarov [6], where the basic equations that are solved to construct the initial models in equilibrium
are the continuity equation ∇µ(ρuµ) = 0, the conservation of energy-momentum ∇µTµν = 0 and
Maxwell’s equation ∇µ(∗Fµν) = 0 where the symbol ∇µ refers to the covariant derivative with respect
to the four-metric and ∗Fµν is the dual of the Faraday tensor defined as ∗Fµν = uµbν − uνbµ, uµ being
the fluid four-velocity. As usual in ideal relativistic MHD the stress-energy tensor Tµν is expressed as

Tµν ≡ (ρh + b2)uµuν +

(
p +

b2

2

)
gµν − bµbν , (11)

where gµν is the metric tensor.
We solve the equilibrium equations and build stationary and axisymmetric fluid configurations with

a toroidal magnetic field orbiting around a Schwarzschild black hole and obeying a constant distribution
of the specific angular momentum in the equatorial plane. The difference of the solution we use with
that of Komissarov [6] is that we employ a polytropic equation of state of the form p = κργ for the
fluid, where κ is the polytropic constant and γ is the adiabatic index, instead of p = Kωq, where ω is
the fluid enthalpy, and K and q are constants . The magnetized relativistic tori fill their outermost closed
equipotential surface and thus their inner radii coincide with the position of the cusp, i.e. rin = rcusp.
The various models differ in the strength of the toroidal magnetic field which is parametrized by the ratio
of the magnetic-to-gas pressure (βc) at the centre of the disc. All models are built with an adiabatic index
γ = 4/3 and the polytropic constant κ is fixed such that the ratio Mt/M of the torus-to-black hole mass
is approximately 0.1. Since the mass of the torus is at most a 10% of that of the black hole we can neglect
the effect of the self gravity of the torus which renders justifiable our assumption of studying the disc
dynamics in a fixed background spacetime. Moreover, this disc-to-hole mass ratio is in agreement with
the outcomes from existing simulations of binary neutron star merger (e.g., Shibata et al. [11,12]).

As we are interested in the study of the oscillation properties of magnetized tori we perturb the
models reported in Table 1 by adding a small radial velocity to the initial conditions. This perturbation
is parametrized in terms of a dimensionless coefficient η expressing the fraction of the radial velocity
to that of the spherically symmetric accretion flow onto a Schwarzschild black hole (Michel [13]), i.e.
vr = η(vr)sph.
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Table 1. From left to right the columns report the name of the model, the spin of the black hole, the
torus-to-hole mass ratio, the specific angular momentum, the adiabatic index, the polytropic constant,
the inner and outer radius of the torus, the orbital period at the point of maximum rest-mass density, the
maximum rest-mass density and the magnetic-to-gas pressure at the maximum of the rest-mass density.

Model a Mt/M `0 γ κ rin rout torb ρmax (βc)
(cgs) (cgs) (ms) (cgs)

A1.1 0.0 0.1 3.8 4/3 9.33×1013 4.57 15.88 1.86 1.25×1013 0.00
A1.2 0.0 0.1 3.8 4/3 9.21×1013 4.57 15.88 1.86 1.26×1013 0.01
A1.3 0.0 0.1 3.8 4/3 9.10×1013 4.57 15.88 1.86 1.27×1013 0.02
A1.4 0.0 0.1 3.8 4/3 8.90×1013 4.57 15.88 1.86 1.28×1013 0.04
A1.5 0.0 0.1 3.8 4/3 8.40×1013 4.57 15.88 1.86 1.29×1013 0.1
A1.6 0.0 0.1 3.8 4/3 7.60×1013 4.57 15.88 1.86 1.34×1013 0.2
A1.7 0.0 0.1 3.8 4/3 6.00×1013 4.57 15.88 1.86 1.39×1013 0.5
A1.8 0.0 0.1 3.8 4/3 4.49×1013 4.57 15.88 1.86 1.40×1013 1.0

4. Numerical solution
The system of GRMHD equations, Eq.(1), is solved using a HRSC scheme based on the HLLE solver,
except for the induction equation for which we use the constraint transport method designed by Evans &
Hawley [14] and Ryu et al. [15]. Second-order accuracy in both space and time is achieved by adopting
a piecewise-linear cell reconstruction procedure and a second order, conservative Runge-Kutta scheme,
respectively.

The computational grid consists of Nr ×Nθ zones in the radial and angular directions, respectively.
The innermost zone of the radial grid is placed at rmin = rhorizon + 0.1rg, where rg is the gravitational
radius of the black hole and the outer boundary in the radial direction is at a distance about 30% larger
than the outer radius of the torus, rout. The radial grid is built by joining smoothly a first patch which
extends from rmin to the outer radius of the torus and is logarithmically spaced (with a maximum radial
resolution at the innermost grid zone, ∆r = 1 × 10−3) and a second patch with a uniform grid and
which extends up to rmax. Typically, we use Nr ' 300. On the other hand, the angular grid consists
of Nθ = 100 equally spaced zones and covers the domain from 0 to π. As we cannot handle vacuum
regions with our finite difference GRMHD code we introduce a low density “atmosphere” in those parts
of the numerical domain not occupied by the torus. We use the spherically symmetric accreting solution
described by Michel [13] with its maximum density being 5 − 6 orders of magnitude smaller than the
maximum rest-mass density of the torus.

5. Results
5.1. Dynamics of magnetized tori in a Schwarzschild background
We have first investigated equilibrium configurations of magnetized tori by performing numerical
evolutions of the unperturbed tori and checking the stationarity of the solution for the whole length
of the simulations. The dashed line in the left panel of Fig. 1 displays the evolution of the rest-mass
density of the unperturbed and weakly magnetized model A1.2. The evolution of the central rest-mass
density shows that after a short initial transient phase, it settles down to an stationary value within a
2% difference with respect to the initial value, thus making clear the ability of the code to keep the
torus in equilibrium for the full evolution. In addition, the evolution of the central rest-mass density
of the perturbed model (A1.2p) shows clearly that the initial perturbation induce a persistent phase of
oscillations around the equilibrium position marked by the unperturbed model.

Results from a representative model with higher magnetic field are shown in the right panel of Fig. 1
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Figure 1. Time evolution of the central rest-mass density normalized to its initial value for models A1.2
(left panel) and A1.8 (right panel). Both panels show evolutions for both the unperturbed (dashed lines)
and the perturbed models (solid lines).

that plots the time evolution of the normalized central density for both perturbed and unperturbed model
A1.8, with matched magnetic-to-gas pressure ratio at the centre (i.e., βc = 1). Overall the dynamics is
very similar to model A1.2p shown in the left panel, and the p-mode oscillations are persistent during the
entire evolution, the oscillations showing almost no damping even when βc = 1. It is important to note
that for tori with βc > 1 the initial solution degrades over time as a significant accretion flux is induced
in these cases and increases with the strength of the magnetic field.

5.2. Power Spectrum
Through a Fourier analysis of the time evolution of the hydrodynamic variables it is possible to
obtain further information on the quasi-periodic behavior of the tori. For this purpose we Fourier
transform the time evolution of the L2 norm of the rest-mass density for all models, defined as
||ρ||2 ≡ ∑Nr

i=1

∑Nθ
j=1 ρ2

ij . An important feature of axisymmetric p-mode oscillations of tori is that the
lowest-order eigenfrequencies appear in a sequence 2 : 3. This feature was first discovered in the
nonlinear purely hydrodynamical numerical simulations of Zanotti et al. [7] and subsequently confirmed
through a perturbative analysis in a Schwarzschild spacetime (Rezzolla et al. [16]) which was later
extended to a Kerr spacetime and more general distributions of the specific angular momentum by Zanotti
et al. [17] and Montero et al. [18]. Overall, it was found that the 2 : 3 harmonic sequence was present with
a good accuracy, within 10% error for tori with a constant distribution of specific angular momentum and
within 20% error for tori with a power law distribution of angular momentum. Since the 2 : 3 harmonic
sequence is the result of the global mode of oscillation, it depends on a number of different elements
that contribute to those deviations from an exact relation among the integers. In particular, the size of
the disc, the location of the rest-mass density maximum, the black hole spin, the distribution of specific
angular momentum, or the equation of state considered, can all influence this departure.

In Fig. 2 we plot the power spectrum obtained from the L2 norm of the rest-mass density for models
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Figure 2. Power spectrum of the L-2 norm of the rest-mass density evolution for models A1.2p (left
panel) and A1.8p (right panel).

A1.2p and A1.8p. In the left panel of this figure we show the power spectrum of model A1.2p while
the right panel displays the one computed for model A1.8p; we also show three dashed vertical lines
at the frequency of the fundamental mode, at 1.5f and at 2f . A first result that emerges from the
Fourier analysis is that the overall dynamics of magnetized tori with constant angular momentum shows
similar features to those found by Zanotti et al. [7,17] for unmagnetized accretion tori around black holes.
Namely, the spectra show a fundamental mode f and a series of overtones, where in particular the first
overtone o1 can be identified clearly. One of the most important features of the p-modes oscillations
found in relativistic tori was that the first overtone and the fundamental mode appear in a harmonic
sequence of 3 : 2 to a very good accuracy. Our GRMHD simulations show that this is also valid for
oscillations of magnetized tori where the o1/f ratio is close to 3/2. We report in Table 2 the frequency
of the fundamental mode, the first overtone and their o1/f ratio for four representative models of our
sample with varying strength for the magnetic field. The figures reported reflect that there is a small
shift in the peaks of the f and o1 modes toward higher frequencies as we increase the strength of the
magnetic field, but however the o1/f ratio is kept close to 3/2 to a good accuracy. Thus, it seems that for
magnetized torus the effect of a tororidal magnetic field on the p-mode oscillations is not very significant.

Among the several models proposed for the HFQPOs observed in LMXBs containing a black hole
candidate, the one suggested by Rezzolla et al. [19] is based on the assumption that the accretion disc
around the black hole terminates with a sub-Keplerian part, i.e a torus of small size. A key point of this
model is the evidence, both numerical and analytic, that in these objects the fundamental mode and the
first overtone are found to be in the 2 : 3 harmonic sequence to a good precision and in a very wide
parameter space. As shown by the simulations of magnetized tori presented here, it is clear that this 2 : 3
harmonic sequence is also present in magnetized tori with a good precision, which confirms the validity
of this model of HFQPOs based on quasi-periodic oscillations of tori in a more general context where
the toroidal magnetic field structure of the torus is taken into account.

As mentioned briefly above, another important feature in the disc dynamics is the presence of
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Table 2. From left to right, the columns report the name of the model, the frequency of the fundamental
mode, the frequency of the first overtone, their ratio, and the magnetic-to-gas pressure ratio at the centre
of the torus.

Model f (Hz) o1 (Hz) o1/f (βc)

A1.1 224 332 1.48 0.00
A1.2 224 332 1.48 0.01
A1.6 229 338 1.47 0.20
A1.8 235 341 1.45 1.00

nonlinear couplings between oscillation modes. This feature of the p-mode oscillations of relativistic tori
was first pointed out in Zanotti et al. [17] in their investigation of the dynamics of purely hydrodynamical
tori with nonconstant specific angular momentum in Kerr spacetime. Such nonlinear harmonics,
consequence of the nonlinear coupling among modes, appear in particular as combinations of f and
o1. Thus, from the spectra in Fig. 2, the peak at 2f can be interpreted as a result of this coupling effect.
We note that the presence of the nonlinear harmonics is insensitive to the values of the parameter βc

considered in those models and that the peak at 2f could be readily identified even in the model with
βc = 1.

6. Conclusions
We have studied the dynamics of magnetized relativistic axisymmetric tori orbiting in the background
spacetime of a Schwarzschild black hole. The tori are modeled as having a purely toroidal magnetic field
and a constant distribution of the specific angular momentum. We have neglected the self-gravity of the
disc and the accretion of mass and angular momentum has been assumed not to affect the Schwarzschild
background metric. The results presented in this paper have extended previous investigations of tori in a
purely hydrodynamical context (Zanotti et al. [7,17]).

Overall, we have found that the dynamics of the magnetized tori considered here is very similar to that
found in the purely hydrodynamical case by Zanotti et al. [7,17]: The introduction of a perturbation, for
the values of the magnetic field considered here, triggers quasi-periodic oscillations lasting tens of orbital
periods. As in the hydrodynamical case, the spectral distribution of the eigenfrequencies showed the
presence of a fundamental p-mode and of overtones in a harmonic ratio: 2 : 3 : . . .. We found that there
was a small shift in the peaks of the fundamental and first overtone modes towards higher frequencies as
we increased the strength for the magnetic field. In addition, nonlinear harmonics, consequence of the
nonlinear coupling among modes, appeared in particular, as combinations of f and o1.

The simulations of magnetized tori presented here confirmed the validity of the model of HFQPOs
proposed by Rezzolla et al. [19], based on quasi-periodic oscillations of tori, in a more general context
where the toroidal magnetic field structure of the torus is taken into account.
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