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Abstract

Assuming that the space-time is close to isotropic in the sense that the shear

parameter is small and that the maximal velocity of the particles is bounded, we

have been able to show that for non-diagonal Bianchi I-symmetric spacetimes with

collisionless matter the asymptotic behaviour at late times is close to the special case

of dust. We also have been able to show that all the Kasner exponents converge to
1

3
and an asymptotic expression for the induced metric has been obtained. The key

was a bootstrap argument.

The sign conventions of [10] are used. In particular, we use metric signature – + +
+ and geometrized units, i.e. the gravitational constant G and the speed of light c are
set equal to one. Also the Einstein summation convention that repeated indices are to be
summed over is used. Latin indices run from one to three. C will be an arbitrary constant
and ǫ will denote a small and strictly positive constant. They both may appear several
times in different equations or inequalities without being the same constant. A dot above
a letter will denote a derivative with respect to the cosmological (Gaussian) time t.

1 Introduction

For both mathematical and physical reasons one would like to be able to understand
anisotropic and inhomogeneous cosmological models in general. As a first step spatially
homogeneous spacetimes can be studied. For the case where the matter model is a perfect
fluid a lot of results have been already obtained which are summarized in [11], see also [3]
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for a critical discussion. Usually in observational cosmology it is assumed that there exists
an Era which is “matter-dominated” where the matter model is a perfect fluid with zero
pressure, i.e. the dust model. A kinetic description via collisionless matter enables to
study the stability of this model in the following sense. Suppose we have an expanding
universe where the particles have certain velocity dispersion. One might think that due to
the expansion the velocity dispersion will decay. That this is true has been shown in [7], [8]
and [9] for locally rotationally symmetric (LRS) models in the cases of Bianchi I, II and
III. These results have been generalized (in a different direction) to LRS Bianchi IX and
in a context which also goes beyond collisionless matter in [1] and [2].
The LRS models can be diagonalized in a suitable frame where they then stay diagonal
if one makes some extra assumptions on the distribution function. A natural question
is, what happens if the model is not diagonal? In this paper we will treat the late time
dynamics of the non-diagonal Bianchi I case assuming small data. That this makes sense
was established in [5] where it was shown that geodesic completeness holds for the general
Bianchi I-Vlasov case. In a sense which will be specified later, we assume that the universe
is close to isotropic and that the velocity dispersion of the particles is bounded. Then we
conclude that the universe will isotropize and have a dust-like behaviour asymptotically. In
fact these two properties are intimately linked in the proof, something which is not expected
to happen in other Bianchi types, except in the case of a positive cosmological constant
where it has been shown [4] that isotropization and asymptotic dust-like behaviour occurs
in all Bianchi models except Bianchi IX and without the LRS assumption.
We hope to be able to extend this result in the near future a) to other Bianchi types, where
the spacetime does not (necessarily) isotropize, but some other solution still may act as an
’attractor’ b) to remove the small data assumption(s).

2 Bianchi I spacetimes with collisionless matter

A Bianchi spacetime is defined to be a spatially homogeneous spacetime whose isometry
group possesses a three-dimensional subgroup G that acts simply transitively on the space-
like orbits. They can be classified by the structure constants of the Lie algebra associated
to the Lie group. We will only consider the simplest case where the structure constants
vanish, i.e. the case of Bianchi I with the abelian group of translations in R3 as the Lie
group, where the metric has the following form using Gauss coordinates:

4g = −dt2 + gab(t)dx
adxb. (1)

We will use the 3+1 decomposition of the Einstein equations as made in [10]. We use
Gauss coordinates, which implies that the lapse function is the identity and the shift vector
vanishes, so comparing our metric with (2.28) of [10] we have that α = 1 and βa = 0. The
only non-trivial Christoffel symbols are the following (See (2.44)-(2.49) of [10]):

Γ0

ab = −kab (2)

Γa
0b = −ka

b (3)
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In terms of coordinate expressions we have then that (n0 = −1)

ρ = T 00

ja = T 0

a

Sab = Tab

where ρ, ja and Tµν are the energy density, matter current and energy momentum tensor
respectively. In the 3+1 formulation the second fundamental form kab is used and rewriting
its definition as in (2.29) of [10] we have:

ġab = −2kab. (4)

Using the Einstein equations as in (2.34) of [10] and the fact that gab does not depend on
the spatial variables, we have:

k̇ab = Hkab − 2kack
c
b − 8π(Sab −

1

2
gab trS)− 4πρgab (5)

where we have used the notations trS = gabSab, H = tr k. It has been assumed that the
cosmological constant vanishes. From the constraint equations (2.26)-(2.27) of [10]:

− kabk
ab +H2 = 16πρ (6)

and we see that no matter current is present since the “spatial” Christoffel symbols vanish:

T0a = 0. (7)

From (6) we see that H never vanishes except for the Minkowski spacetime. We exclude
this case and assume now without loss of generality that H < 0 for all time. If this is not
true for a given solution it may be arranged by doing the transformation t 7→ −t.

For the matter model we will take the point of view of kinetic theory. This means
that we have a collection of particles (in a cosmological context the particles are galaxies
or clusters of galaxies) which are described statistically by a non-negative distribution
function f(xα, pα) which is the density of particles at a given spacetime point with given
four-momentum. We will assume that all the particles have equal mass (one can relax this
condition if necessary, see [1]). We want that our matter model is compatible with our
symmetry assumption, so we will also assume that f does not depend on xa. In addition
to that we will assume that there are no collisions between the particles. In this case the
distribution function satisfies the Vlasov equation (See (3.38) of [10]):

∂f

∂t
+ 2ka

b p
b ∂f

∂pa
= 0. (8)

where f is defined on the set determined by the equation

−(p0)2 + gabp
apb = −m2
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called the mass shell. The energy momentum tensor is (compare with (3.37) of [10]):

ρ =

∫
f(t, p)(m2 + gabp

apb)
1

2 (det g)
1

2dp (9)

Sab =

∫
f(t, p)papb(m

2 + gabp
apb)−

1

2 (det g)
1

2dp (10)

T0a =

∫
f(t, p)pa(det g)

1

2dp (11)

Here p := (p1, p2, p3) and dp := dp1dp2dp3. For this kind of matter all the energy conditions
hold. In particular ρ ≥ trS ≥ 0. Our system of equations consists of the equations (4)-
(11). For a given Bianchi I geometry the Vlasov equation can be solved explicitly with the
result that if f is expressed in terms of the covariant components pi then it is independent
of time. This has the consequence that if t0 is some fixed time and f0(pi) = f(t, pi) then
we can express the non-trivial components of the energy momentum tensor as follows:

ρ =

∫
f0(pi)(m

2 + gcdpcpd)
1

2 (det g)−
1

2dp1dp2dp3

Sab =

∫
f0(pi)papb(m

2 + gcdpcpd)
−

1

2 (det g)−
1

2dp1dp2dp3.

2.1 Other equations and new variables

A useful relation concerns the determinant of the metric ((2.30) of [10]):

d

dt
[log(det g)] = −2H (12)

Taking the trace of the mixed version of the second fundamental form (2.36 of [10]):

Ḣ = H2 + 4π trS − 12πρ (13)

With (6) one can eliminate the energy density and (13) reads:

Ḣ =
1

4
(H2 + 3kabk

ab) + 4π trS (14)

We can decompose the second fundamental form introducing σab as the trace-free part:

kab = σab +
H

3
gab (15)

Then

kabk
ab = σabσ

ab +
H2

3
(16)
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and (14) takes the following form:

Ḣ =
1

2
H2 +

3

4
σabσ

ab + 4π trS (17)

It is obvious that

Ḣ ≥ 1

2
H2 (18)

From the constraint equation (6) and (17) it also follows that

Ḣ ≤ H2 (19)

From (18) and (19) we conclude that

− (t+ C)−1 ≥ H(t) ≥ −2(t + C)−1. (20)

Let us use the following notation:

F =
σabσ

ab

H2
. (21)

This quantity is related to the so called shear parameter, which is bounded by the cosmic
microwave background radiation and is a dimensionless measure of the anisotropy of the
Universe (See Chapter 5.2.2 of [11]). Using this notation and with the help of (4), (5) and
(17) we have

Ḟ = H [F (1− 3

2
F − 8π

H2
trS)− 16π

H3
Sabσ

ab] (22)

From the constraint equation (6)

F =
2

3
− 16π

ρ

H2
(23)

In general we see that 0 ≤ F ≤ 2

3
.

2.2 Special cases

2.2.1 Vacuum

We see that in the vacuum case F = 2

3
and Ḟ = 0. Actually in this case one can write

explicitly the solution known as Kasner solution:

4g = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2
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where the constants pi are called the Kasner exponents which satisfy the two Kasner

relations given by:

p1 + p2 + p3 = 1

(p1)
2 + (p2)

2 + (p3)
2 = 1

The mean curvature in this case is

H = −t−1

Let λi be the eigenvalues of kij with respect to gij , i.e., the solutions of

det(ki
j − λδij) = 0 (24)

We define

pi =
λi

H
(25)

as the generalized Kasner exponents. They satisfy the first but not in general not the
second Kasner relation.

2.2.2 Flat Friedmann with dust

A special case of Bianchi I is the Friedmann model with flat spatial geometry. The metric
in this case is:

4g = −dt2 + a2(dx2 + dy2 + dz2)

where a is the scale factor. In this case σab = 0 which means that F = 0 and also that
Ḟ = 0.
Moreover in the dust case Sab = 0 and we can solve (17) obtaining:

H = −2t−1

We can also write down the explicit solution of the metric in this case:

4g = −dt2 + t
4

3 (dx2 + dy2 + dz2).

This is also called the Einstein-de Sitter model.

2.2.3 Bianchi I: the dust case (with small data)

Let us look at the dust case not necessarily isotropic. This is also a special case, but a
very important one, since we will show that the general case behaves asymptotically like
it assuming small data. In the dust case:

Ḟ = HF (1− 3

2
F ) ≤ 0 (26)
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We are interested in the asymptotic behaviour at late times and will assume that F is
small, i.e.: F < ǫ. Then it follows from (17):

Ḣ = (
1

2
+

3

4
F )H2 ≤ (

1

2
+ ǫ)H2 (27)

Integration leads to

H ≤ − 2− ǫ

t + C

Using this inequality in (26) and integrating:

F = O(t−2+ǫ). (28)

We can put the equality (27) in the following form:

−H−1 = −H(t0)
−1 +

1

2
(t− t0) + ID (29)

where ID is

ID =

∫ t

t0

3

4
F (30)

Now we will use the fact that we can choose freely the time origin setting t0 = −2H(t0)
−1.

Note that for the general Bianchi I symmetric Einstein-Vlasov-system we know that H

takes all values in the range (−∞, 0) (Lemma 2.1 of [6]) We then obtain

H + 2t−1 ≤ 4IDt
−2 (31)

Using (28) it is clear that ID ≤ C(t0). Note that with our time origin choice C = 0 in (20),
so

H ≥ −2t−1 (32)

Our result for H is the following:

H = −2t−1[1 +O(t−1)] (33)

This equation in (26) leads after integration to:

F = O(t−2) (34)

From (32) and (34) we can conclude that:

σabσ
ab = O(t−4) (35)
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Now from (15) we see that the eigenvalues (24) of the second fundamental form with
respect to the induced metric are also the solutions of

det(σi
j − [λ− 1

3
H ]δij)

Let us define the eigenvalues of σij with respect to gij by λ̂i, we have that:

λ̂i = λi −
1

3
H

Note that Σi(λ̂i)
2 = σabσ

ab. From (32) and (35) we can see that the spacetime isotropizes
at late times, in the sense that

pi =
1

3
+O(t−1)

where pi are the generalized Kasner exponents.
Now using (12) and (32) we have:

det g = O(t4)

So the hope would be to show that |gab t−
4

3 | can be bounded by a constant. Let us define

ḡab = t−
4

3gab

ḡab = t+
4

3gab.

We have then with (4) that:

˙̄gab = −2

3
(2t−1 +H)ḡab − 2t−

4

3σab

Making similar computations as in [4] we arrive at:

‖ḡab(t)‖ ≤ ‖ḡab(t0)‖+
∫ t

t0

[
2

3
|2s−1 +H(s)|+ 2(σabσ

ab(s))
1

2 ]‖ḡab(s)‖

and with Gronwall’s inequality we obtain:

‖ḡab(t)‖ ≤ ‖ḡab(t0)‖ exp{
∫ t

t0

[
2

3
|2s−1 +H(s)|+ 2(σabσ

ab(s))
1

2 ]} ≤ C (36)

Therefore ḡab is bounded for all t ≥ t0. The same holds for ḡab by similar computations.
Thus:

|t− 4

3gab| ≤ C

|t+ 4

3 gab| ≤ C
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From this we can conclude that:

‖σab‖ ≤ Ct−
2

3

or

σab = O(t−
2

3 )

Looking again at the derivative of ḡab and putting the facts which have been obtained
together, we see that:

˙̄gab = O(t−2)

This is enough to conclude that:

gab = t+
4

3 [Gab +O(t−2)]

gab = t−
4

3 [Gab +O(t−2)]

where Gab is the limit of ḡab as t goes to infinity.

3 Bianchi I: the general case

For the general case the basic equations are (17), a modified version of (5) where γ is a
small and positive quantity which is introduced for technical reasons and (22)

∂t(−H−1) =
1

2
+

3

4
F + 4π

trS

H2
(37)

d

dt
(t−γ ḡab) = t−γ ḡab[

2

3
(2t−1 +H)− γt−1] + 2t−γ+ 4

3σab (38)

Ḟ = H [F (1− 3

2
F − 8π

H2
trS)− 16π

H3
Sabσ

ab] (39)

We have a number (different from zero) of particles at possibly different momenta and
we will define P as the supremum of the absolute value of these momenta at a given time
t:

P (t) = sup{|p| = (gabpapb)
1

2 |f(t, p) 6= 0} (40)

Theorem 1. Consider any C∞ solution of the Einstein-Vlasov system with Bianchi I-

symmetry and with C∞ initial data. Assume that F (t0) and P (t0) are sufficiently small.

Then at late times one can make the following estimates:

H(t) = −2t−1(1 +O(t−1)) (41)

P (t) = O(t−
2

3
+ǫ) (42)

F (t) = O(t−2) (43)
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Remark (42) implies that asymptotically there is a dust-like behaviour (see (47)).
Proof We will use a bootstrap argument. Let us look at the interval [t0, t1). Our bootstrap
assumptions are the following:

F (t) ≤ A(1 + t)−
3

2 (44)

P (t) ≤ B(1 + t)−
7

12 . (45)

where A and B are positive constants which we can choose as small as we want.

1. Estimate of H

Integrating (37) we obtain:

−H−1 = −H(t0)
−1 +

1

2
(t− t0) + IG (46)

with

IG =

∫ t

t0

(
3

4
F + 4π

trS

H2
)(s)ds ≤

∫ t

t0

3

4
A(1 + s)−

3

2 +
1

4

trS

ρ

where the inequality comes from (44) and (6). Consider now an orthonormal frame and
denote the components of the spatial part of the energy-momentum tensor in this frame
by Ŝab. The components can be bounded by

Ŝab ≤ P 2(t)ρ (47)

so we have that

tr Ŝ

ρ
≤ 3P 2 (48)

from which follows that:

IG ≤ 18

4
(A+B2)

Now returning back to (46) and setting as in the dust case t0 = −2H(t0)
−1 we have besides

H ≥ −2t−1 (49)

that

H + 2t−1 ≤ 18(A+B2)t−2 (50)

2. Estimate of P
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Now we will use the second equation (38) to obtain an estimate for the metric. One
can show that in the sense of quadratic forms the following is true:

σab ≤ (σabσ
ab)

1

2 gab.

Then with the definitions of ḡab and F and the estimates (44) and (49) we have: :

2t−γ+ 4

3σab ≤ 2t−γ+ 4

3 (σabσ
ab)

1

2 gab = 2F
1

2 |H|t−γḡab ≤ 4A
1

2 (1 + t)−
3

4 t−1t−γ ḡab

Now from the last inequality of the first step (50) equation (38) leads to:

d

dt
(t−γ ḡab) ≤ t−γ ḡab[12(A+ B2)t0 + 4A

1

2 (1 + t0)
−

3

4 − γ]t−1 = −ηt−γ ḡabt−1

A and B have to be chosen in such a way that η is positive, then

d

dt
(t−γ ḡab) ≤ 0 (51)

from which follows that

ḡab = O(tγ)

or

gab = O(t−
4

3
+γ)

Now from (51) we have:

t−γ+ 4

3gab(t) ≤ t
−γ+ 4

3

0 gab(t0)

Using the fact that pa is constant along the geodesics we can conclude that:

P (t) ≤ t0
−

γ

2
+

2

3P (t0)t
γ

2
−

2

3 ≤ Bt
γ

2
−

2

3 (52)

since we can choose P (t0) and B independently as small as we want. In order to improve
(45) γ has to be smaller then 1

6
. Using the notation ζ = γ

2
the last inequality can be

expressed as

P (t) ≤ Bt−
2

3
+ζ (53)

where ζ < 1

12
.

3. Estimate of F

Until now we have an estimate for H and for P in the interval [t0, t1). Now we have
to improve the estimate for F coming from the bootstrap assumption. The desired esti-
mate is F (t1) ≤ A(1+ t1)

−2+ǫ. If this is the case (case I) the bootstrap argument will work
and there is nothing more to do.
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t
t t0 1

Desired estimate

Bootstrap assumption

F

Case I

Let us suppose now the opposite, that F (t1) > A(1 + t1)
−2+ǫ. Then define t2 as the

smallest number not smaller than t0 with the property that F (t1) ≥ A(1 + t1)
−2+ǫ. In this

case, we have to distinguish between the case that t2 = t0 (Case IIa) and t2 > t0 (Case
IIb). Let us look now at (39), in particular at the terms in square brackets. By using (44)

3

2
F ≤ 3

2
A(1 + t)−

3

2 ≤ 3

2
A(1 + t0)

−
3

2 ≤ δ

2

where δ is a positive small constant. Using (6), (45) and (48):

8π
tr Ŝ

H2
≤ 3

2
P 2 ≤ 3

2
B2(1 + t)−

7

6 ≤ 3

2
B2(1 + t0)

−
7

6 ≤ δ

4

With the Cauchy-Schwarz inequality, (6), (47) and supposing that F > A(1+ t)−2+ǫ in the
interval [t2, t1]:

|16πσabŜ
ab

H3
| ≤ F

1

2

(ŜabŜab)
1

2

ρ
≤

√
3FF−

1

2P 2 ≤
√
3A−

1

2B2(1 + t)−
1

6
−

ǫ

2F ≤ δ

4
F

Note that although A−
1

2 may be a big quantity, since A and B are independent we can
make B smaller to “correct” this. Using (50) and the last three inequalities in (39) leads
to:

Ḟ ≤ (−2 + ε)(1− δ)Ft−1

where ε = 18(A+B2)t−1

0 . Now setting ξ = ε+ 2δ − εδ we end up with:

Ḟ ≤ (−2 + ξ)Ft−1

which means that

F (t1) ≤ F (t2)t2
2−ξt1

−2+ξ (54)
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Case IIa. In this case t2 = t0, so (54) means

F (t1) ≤ F (t0)t0
2−ξt1

−2+ξ ≤ At1
−2+ξ

since we can choose F (t0) as small as we want. So it follows that in this case:

At1
−2+ǫ ≤ F (t1) ≤ At1

−2+ξ.

Situation which is schematically depicted in the following figure.

t

F

t  =t0 2 t1

Bootstrap assumption

Obtained estimate

Desired estimate

Case IIa

Case IIb. In the case IIb we can use the fact that by continuity F (t2) ≤ A(1 + t2)
−2+ǫ

holds and then

F (t1) ≤ A(1 + t2)
−2+ǫt2

2−ξt1
−2+ξ ≤ A(1 + t2)

ǫ−ξt1
−2+ξ

The ǫ here is also a quantity which we can choose as small as we want and then it follows
that in this case

F (t1) ≤ A(1 + t0)
ǫ−ξt1

−2+ξ

We can choose ǫ to be smaller then ξ, so

F (t1) ≤ At1
−2+ξ

t

Bootstrap assumption

Obtained estimate

Desired estimate

t               t                         t

F

0                         2                                          1 Case IIb
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4. Results of the Bootstrap argument

We have arrived at the statement that at least for a small interval [t0, t1) and assuming
(44)-(45) we obtain the estimates:

F (t) ≤ At−2+ξ (55)

P (t) ≤ Bt−
2

3
+ζ (56)

Using now a bootstrap argument we know that the estimates obtained are valid for t1 = ∞
assuming small data. (50) can be expressed as:

H = −2t−1(1 +O(t−1)) (57)

and is then also valid for the whole interval.

5. Improving the estimate of F

We want to improve (55), but before that we need an inequality in the other direction.
From (39) we have:

Ḟ ≥ H(F +
√
3F

1

2P 2)

Implementing now (55)-(56) in this inequality, in particular having in mind the ’B’-dependence
of the estimate of P (52):

Ḟ ≥ HF +HC(t0)B
2t−

7

3
+ǫ

Using now (49):

Ḟ ≥ −2t−1F − C(t0)B
2t−

10

3
+ǫ

from which follows

t2F (t) ≥ t20F (t0)−
∫ t

t0

C(t0)B
2s−

4

3
+ǫds

and

F (t) ≥ t−2(F (t0)t
2

0 − B2C(t0)t0
−

1

3
+ǫ + C(t0)B

2t−
1

3
+ǫ) ≥ t−2(F (t0)t

2

0 −B2C(t0)t0
−

1

3
+ǫ)

F (t0) is strictly positive. Choosing now B small enough we have the following estimate:

F (t) ≥ C(t0)t
−2 (58)
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Putting the last term of (39) with the help of (56) and (58) in the following manner:

|16πσabŜ
ab

H3
| ≤ CF (F−

1

2P 2) = FO(t−
1

3
+γ)

we can improve (55) implementing (55)-(57) in (39) with the result:

F = O(t−2) (59)

With these results we obtain the following theorem.

Theorem 2. Consider the same assumptions as in the previous theorem. Then

pi =
1

3
+O(t−1) (60)

and

gab = t+
4

3 [Gab +O(t−2)] (61)

gab = t−
4

3 [Gab +O(t−2)] (62)

where Gab and Gab are independent of t.

Proof The conclusions made in the dust case after (34) only depend on the estimate of F
and H and apply directly to the general case.

4 Conclusions

As already mentioned in the introduction there exist several results concerning the Bianchi
I-symmetric Einstein-Vlasov system (without cosmological constant). All of them assume
additional symmetries namely the LRS and the reflection symmetry condition (see [6] for a
precise definition of these symmetries). However there exists a result where only the reflec-
tion symmetry is assumed at least in the result concerning the expanding direction which
is theorem 5.4 of [6]. Our theorems can be seen as a generalization of that theorem since
we obtain the same the result, but a) we also obtain how fast the expressions converge b)
we obtain an asymptotic expression for the spatial metric c) we do not assume any of the
additional symmetries mentioned. However we used a different kind of restriction namely
the small data assumptions. In any case we think it interesting to study the non-diagonal
case because although this time there was not an essential difference in the result with
respect to the diagonal case, we do not expect that this will always be the case, especially
when analyzing the initial singularity.
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