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SUPERCONFORMAL INDICES OF

N = 4 DUAL FIELD THEORIES

V. P. SPIRIDONOV AND G. S. VARTANOV

Abstract. Using the superconformal indices techniques, we construct new
interesting conjectures for the elliptic hypergeometric integral identities based
on the exceptional groups G2 and F4. These identities arise from S-dualities
for N = 4 supersymmetric Yang-Mills theories with G2 and F4 gauge groups.

1. Introduction

The question of strong-weak duality ofN = 4 supersymmetric Yang-Mills (SYM)
theory is a quite old area of research [1, 2, 3]. This duality (called also S-duality)
states the equivalence of the theory with an (electric) gauge group Gc with a similar
theory with a (magnetic) gauge group G∨

c and the inverse coupling constant. If one
introduces the coupling constant as

τ =
θ

2π
+ i

4π

g2
, (1)

then the S-duality transformation of the theory maps τ for the simply-laced gauge
group1 to the coupling constant −1/τ ,

S : τ → − 1

τ
. (2)

Together with the symmetry transformation

T : τ → τ + 1 (3)

the strong-weak duality becomes equivalent to the SL(2,Z) group of transforma-
tions

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ Z. (4)

For N = 4 SYM theories with non-simply laced gauge groups one has the fol-
lowing realization of S-duality

S̃ : τ → − 1

mτ
, (5)

where m is the ratio of the lengths-squared of long and short roots of the corre-
sponding root system (m = 2 for SO(2N + 1), SP (2N), F4 and m = 3 for G2). In
[4] N = 4 theories with G2 and F4 gauge groups were analyzed from the algebraic
point of view and the action of S-duality on the moduli space was described. Here
we would like to provide another approach for testing validity of this conjectural
duality between field theories.

1A simply laced group is a Lie group whose Dynkin diagram contains only simple links, and
therefore all nonzero roots of the corresponding Lie algebra have the same length. These groups
are SU(N), SO(2N), E6, E7 and E8.
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For this purpose we use the technique based on the calculation of the superconfor-
mal indices for N = 4 theories suggested by Kinney et al in [5] (for the definition of
indices inN = 1 theories, see [6, 7]). N = 4 SYM theory has the PSU(2, 2|4) space-
time symmetry group which is generated by Ja, Ja, a = 1, 2, 3, representing SU(2)
subgroups (Lorentz rotations), Pµ, Qi,α, Qi,α̇ (supertranslations) with i = 1, 2, 3, 4

and α, α̇ = 1, 2; Kµ, S
i,α, S

i,α̇
(special superconformal transformations), H (dila-

tions) with the state eigenvalues given by conformal dimensions, and R1, R2, R3

(SU(4)R R-symmetry subgroup) [8]. For a distinguished pair of supercharges, say,
Q ≡ Q1,1 and Q† ≡ S1,1, one has

{Q,Q†} = H − 2J3 − 2
3∑

k=1

(
1− k

4

)
Rk ≡ ∆, (6)

and the superconformal index is defined by the matrix integral [5]

I(t, y, v, w) =

∫

Gc

[dU ] exp

{
∞∑

m=1

1

m
f(tm, ym, vm, wm)Tr(U †)mTrUm

}
, (7)

where [dU ] is the Gc-invariant measure and f(t, y, v, w) is the so-called single-
particle states index. The integrand in (7) is given by the following expression

Tr
(
(−1)Ft2(H+J3)y2J3vR2wR3e−β∆

)
, (8)

where F is the fermion number operator and t, y, v, w are group parameters (chem-
ical potentials). The trace is taken over the states corresponding to zero modes
of the operator ∆ because relation (6) is preserved by operators in (8) (the con-
tributions from other states cancel together with the dependence on β). All the
fields in N = 4 supermultiplet lie in the same representation of the gauge group
Gc. It means that, in comparison with the superconformal indices in N = 1, 2
SYM theories, the contribution from the fields will be given by the adjoint repre-
sentation only. The problem of counting various BPS states in N = 4 theories and
computation of the related characters was discussed in [9, 10].

The technique based on the calculation of superconformal indices has already
found many applications in supersymmetric field theories. In [7] the Seiberg duality
for N = 1 SYM theories was conjectured to lead to the equality of superconformal
indices of dual theories. Later on Dolan and Osborn explicitly confirmed this con-
jecture for a number of examples in [11]. It appears that superconformal indices are
expressed in terms of elliptic hypergeometric integrals whose theory was developed
earlier in [12, 13] (see also [14] for a general survey). Moreover, equality of indices
in dual theories happened to be equivalent either to exact computability of elliptic
beta integrals discovered in [12] or to nontrivial Weyl group symmetry transfor-
mations for higher order elliptic hypergeometric functions [13, 15]. In the series
of papers [16, 17, 18] we applied this technique for analyzing all previously known
Seiberg dualities and suggested many new similar dualities on the basis of known
identities for superconformal indices.As a payback to mathematics, it happened
that many known dualities lead to new still unproven highly nontrivial relations for
elliptic hypergeometric integrals [17].

This line of thoughts was further developed in beautiful papers by Gadde et al
[19, 20]. In [19], a fresh identity from [21] describing W (F4) Weyl group transfor-
mation for a particular one dimensional elliptic hypergeometric integral was used
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for confirming S-duality for N = 2 SYM theory with SU(2) gauge group and four
hypermultiplets [22, 23] and for ensuring associativity of the operator algebra of
2D theories behind that duality. In [20], using the inversion of an elliptic hyperge-
ometric integral transform from [24], they suggested new mathematical identities
following from known dualities [25] for superconformal N = 2 SYM theory with
Gc = SU(N).

The main purpose of our paper consists in the consideration of S-duality for
N = 4 SYM theories with G2 and F4 gauge groups [1, 4] from the superconformal
indices point of view. Such a consideration was performed already by Gadde et al
in [19] in the case of Gc = SP (2N) and G∨

c = SO(2N + 1) groups duality. We
give here a new sufficiently strong mathematical argument in favor of the equality
of the corresponding indices in all three cases.

2. N = 4 SYM theory with G2 gauge group

Let us start from the S-duality conjecture for N = 4 SYM theory with G2 gauge
group following from the considerations of [1], which was made more explicit in [2, 3]
and discussed in detail in [4]. We give two forms of the superconformal indices: the
short version, where we use definition (8) with the chemical potentials w = v = 1,
and the long one with arbitrary parameters w and v.2 Then the short “electric”
index is

IE = κ2

∫

T2

∏

1≤i<j≤3

Γ3(t2z±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

2∏

j=1

dzj
2πizj

(9)

and the “magnetic” index is

IM = κ2

∫

T2

∏

1≤i<j≤3

Γ3(t2(yiyj)
±1, t2(yiy

−1
j )±3; p, q)

Γ((yiyj)±1, (yiy
−1
j )±3; p, q)

2∏

j=1

dyj
2πiyj

. (10)

Here T denotes the unit circle with positive orientation and we use conventions
Γ(a, b; p, q) ≡ Γ(a; p, q)Γ(b; p, q), Γ(az±1; p, q) ≡ Γ(az; p, q)Γ(az−1; p, q), where

Γ(z; p, q) =

∞∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj
, |p|, |q| < 1,

is the elliptic gamma function. The coefficient in front of the integrals is

κ2 =
(p; p)2∞(q; q)2∞

223
Γ6(t2; p, q)

with (a; q)∞ =
∏∞

k=0(1 − aqk), and also

p = t3y, q =
t3

y
, z1z2z3 = 1, y1y2y3 = 1.

The constraint t6 = pq plays the role of balancing condition for the integrals [14].
G2 has two dimensional maximal torus parametrized by z1,2, but it is convenient

to introduce the third group variable z3 = z−1
1 z−1

2 as described above.

2We denote as IE and IM superconformal indices with v = w = 1 and as JE and JM the
indices for arbitrary v, w.
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The group SU(4)R has different commuting R-symmetry charges, R2 and R3,
that is why one can introduce two additional chemical potentials v and w into the
index. This extended index in the electric theory has the form

JE = χ2

∫

T2

∏

1≤i<j≤3

Γ(t2vz±1
i z±1

j , t2 1
w
z±1
i z±1

j , t2w
v
z±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

2∏

j=1

dzj
2πizj

, (11)

and for the magnetic theory we obtain

JM = χ2

∫

T2

∏

1≤i<j≤3

Γ(t2v(yiyj)
±1, t2 1

w
(yiyj)

±1, t2w
v
(yiyj)

±1; p, q)

Γ((yiyj)±1, (yiy
−1
j )±3; p, q)

× Γ(t2v(yiy
−1
j )±3, t2

1

w
(yiy

−1
j )±3, t2

w

v
(yiy

−1
j )±3; p, q)

2∏

j=1

dyj
2πiyj

, (12)

where |t2v|, |t2/w|, |t2w/v| < 1,

χ2 =
(p; p)2∞(q; q)2∞

223
Γ2(t2v, t2

1

w
, t2

w

v
; p, q),

and, again, z1z2z3 = 1, y1y2y3 = 1.
S-duality for this theory leads thus to a nice conjecture for the equality of elliptic

hypergeometric integrals based on the G2 group:

JE = JM (13)

in the indicated domain of values of parameters. We rewrite this equality as

∫

T2

∆E(z, v, w)

2∏

j=1

dzj
2πizj

=

∫

T2

∆M (y, v, w)

2∏

j=1

dyj
2πiyj

, (14)

where the kernels ∆E(z, v, w) and ∆M (y, v, w) are read from the integrals (11) and
(12). Then we compose the function

ρ(z, y, v, w) =
∆E(z, v, w)

∆M (y, v, w)
. (15)

We have verified that this function represents the so-called totally elliptic hyperge-
ometric term [26, 17]. This is a rather rich mathematical statement giving a strong
evidence on the validity of the stated equality of integrals. It means that all the
functions

h
(z)
i =

ρ(. . . qzi . . . , y, v, w)

ρ(z, y, v, w)
, h

(y)
i =

ρ(z, . . . qyi . . . , v, w)

ρ(z, y, v, w)
, i = 1, 2,

h(v) =
ρ(z, y, qv, w)

ρ(z, y, v, w)
, h(w) =

ρ(z, y, v, qw)

ρ(z, y, v, w)
,

where we assume that z3 = z−1
1 z−1

2 , y3 = y−1
1 , y−1

2 , are elliptic functions of all their
arguments zi, yi, v, w and q. For instance,

h
(z)
i (. . . pzk . . . , y, v, w; q; p) = h

(z)
i (z, . . . pyk . . . , v, w; q; p) = h

(z)
i (z, y, pv, w; q; p)

= h
(z)
i (z, y, v, pw; q; p) = h

(z)
i (z, y, v, w; p3q; p) = h

(z)
i (z, y, v, w; q; p).

For further consequences of the total ellipticity and various technical details of such
computations, we refer to papers [14, 26, 17].
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3. N = 4 SYM theory with F4 gauge group

Now we discuss S-duality for N = 4 SYM theory with F4 gauge group [1, 2, 3, 4].
“Short” versions of the corresponding superconformal indices are

IE = κ4

∫

T4

∏

1≤i<j≤4

Γ3(t2z±2
i z±2

j ; p, q)

Γ(z±2
i z±2

j ; p, q)

×
4∏

j=1

Γ3(t2z±2
j ; p, q)

Γ(z±2
i ; p, q)

Γ3(t2z±1
1 z±1

2 z±1
3 z±1

4 ; p, q)

Γ(z±1
1 z±1

2 z±1
3 z±1

4 ; p, q)

4∏

j=1

dzj
2πizj

, (16)

and

IM = κ4

∫

T4

∏

1≤i<j≤4

Γ3(t2y±1
i y±1

j ; p, q)

Γ(y±1
i y±1

j ; p, q)

×
4∏

j=1

Γ3(t2y±2
j ; p, q)

Γ(y±2
i ; p, q)

Γ3(t2y±1
1 y±1

2 y±1
3 y±1

4 ; p, q)

Γ(y±1
1 y±1

2 y±1
3 y±1

4 ; p, q)

4∏

j=1

dyj
2πiyj

, (17)

where t6 = pq and

κ4 =
(p; p)4∞(q; q)4∞

21132
Γ12(t2; p, q).

The long versions of the superconformal indices have the forms, in electric case,

JE = χ4

∫

T4

∏

1≤i<j≤4

Γ(t2vz±2
i z±2

j , t2 1
w
z±2
i z±2

j , t2w
v
z±2
i z±2

j ; p, q)

Γ(z±2
i z±2

j ; p, q)

×
4∏

j=1

Γ(t2vz±2
j , t2 1

w
z±2
j , t2w

v
z±2
j ; p, q)

Γ(z±2
i ; p, q)

(18)

× Γ(t2vz±1
1 z±1

2 z±1
3 z±1

4 , t2 1
w
z±1
1 z±1

2 z±1
3 z±1

4 , t2w
v
z±1
1 z±1

2 z±1
3 z±1

4 ; p, q)

Γ(z±1
1 z±1

2 z±1
3 z±1

4 ; p, q)

4∏

j=1

dzj
2πizj

,

and, in the magnetic case,

JM = χ4

∫

T4

∏

1≤i<j≤4

Γ(t2vy±1
i y±1

j , t2 1
w
y±1
i y±1

j , t2w
v
y±1
i y±1

j ; p, q)

Γ(y±1
i y±1

j ; p, q)

×
4∏

j=1

Γ(t2vy±2
j , t2 1

w
y±2
j , t2w

v
y±2
j ; p, q)

Γ(y±2
i ; p, q)

(19)

× Γ(t2vy±1
1 y±1

2 y±1
3 y±1

4 , t2 1
w
y±1
1 y±1

2 y±1
3 y±1

4 , t2w
v
y±1
1 y±1

2 y±1
3 y±1

4 ; p, q)

Γ(y±1
1 y±1

2 y±1
3 y±1

4 ; p, q)

4∏

j=1

dyj
2πiyj

,

where |t2v|, |t2/w|, |t2w/v| < 1 and

χ4 =
(p; p)4∞(q; q)4∞

21132
Γ4(t2v, t2

1

w
, t2

w

v
; p, q).

Again, S-duality leads us to an interesting conjecture for the elliptic hypergeo-
metric integrals based on the F4 group:

JE = JM (20)
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in the indicated domain of values of parameters. We have checked that the ratio
of the kernels of integrals JE and JM define a totally elliptic hypergeometric term,
which gives a nice mathematical test of the equality of integrals. Note that the
described integrals are the first examples of multiple elliptic hypergeometric inte-
grals defined for the F4 root system (in [21] the integrals were defined on the SU(2)
group and W (F4) was emerging as a transformation symmetry in the parameter
space).

4. N = 4 SYM theories with SU(N) and SO(2N) gauge groups

For completeness, we present also the superconformal indices for N = 4 SYM
theories with SU(N) and SO(2N) gauge groups, which are S-self-dual [1].

The superconformal index for the SU(N) theory is

JSU(N) = χN

∫

TN−1

N−1∏

j=1

dzj
2πizj

(21)

×
∏

1≤i<j≤N

Γ(t2vz−1
i zj, t

2vziz
−1
j , t2 1

w
z−1
i zj , t

2 1
w
ziz

−1
j , t2w

v
z−1
i zj , t

2w
v
ziz

−1
j ; p, q)

Γ(z−1
i zj, ziz

−1
j ; p, q)

,

where
∏N

j=1 zj = 1, |t2v|, |t2/w|, |t2w/v| < 1, and

χN =
(p; p)N−1

∞ (q; q)N−1
∞

N !
ΓN−1(t2v, t2

1

w
, t2

w

v
; p, q).

Looking at the ratio of the kernel of this integral to itself with different integration
variables, one can get the totally elliptic hypergeometric term. However, conse-
quences of this statement are much less informative than in the previous cases
(trivial, in some sense).

The superconformal index for the SO(2N) theory is

JSO(2N) = χN

∫

TN

N∏

j=1

dzj
2πizj

(22)

×
∏

1≤i<j≤N

Γ(t2vz±1
i z±1

j , t2 1
w
z±1
i z±1

j , t2w
v
z±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)
,

where |t2v|, |t2/w|, |t2w/v| < 1 and

χN =
(p; p)N∞(q; q)N∞

2N−1N !
ΓN (t2v, t2

1

w
, t2

w

v
; p, q).

The situation with the total ellipticity condition is similar to the one for (21).

5. N = 4 SYM SO(2N + 1) ↔ SP (2N) duality integrals

Also for generality, we present formulas for superconformal indices coming from
the S-duality for N = 4 SYM theories with SP (2N) and SO(2N+1) gauge groups,
which were already described by Gadde et al in [19] (and discussed briefly in the
simplest case in [17]). The “short” electric superconformal index is

IE = κN

∫

TN

∏

1≤i<j≤N

Γ3(t2z±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

N∏

j=1

Γ3(t2z±2
j ; p, q)

Γ(z±2
j ; p, q)

N∏

j=1

dzj
2πizj

, (23)
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while the magnetic index is

IM = κN

∫

TN

∏

1≤i<j≤N

Γ3(t2y±1
i y±1

j ; p, q)

Γ(y±1
i y±1

j ; p, q)

N∏

j=1

Γ3(t2y±1
j ; p, q)

Γ(y±1
j ; p, q)

N∏

j=1

dyj
2πiyj

, (24)

where

κN =
(p; p)N∞(q; q)N∞

2NN !
Γ3N (t2; p, q).

The long versions are, in the electric case,

JE = χN

∫

TN

∏

1≤i<j≤N

Γ(t2vz±1
i z±1

j , t2 1
w
z±1
i z±1

j , t2w
v
z±1
i z±1

j ; p, q)

Γ(z±1
i z±1

j ; p, q)

×
N∏

j=1

Γ(t2vz±2
j , t2 1

w
z±2
j , t2w

v
z±2
j ; p, q)

Γ(z±2
j ; p, q)

N∏

j=1

dzj
2πizj

, (25)

and, in the magnetic case,

JM = χN

∫

TN

∏

1≤i<j≤N

Γ(t2vy±1
i y±1

j , t2 1
w
y±1
i y±1

j , t2 w
v
y±1
i y±1

j ; p, q)

Γ(y±1
i y±1

j ; p, q)

×
N∏

j=1

Γ(t2vy±1
j , t2 1

w
y±1
j , t2w

v
y±1
j ; p, q)

Γ(y±1
j ; p, q)

N∏

j=1

dyj
2πiyj

, (26)

where |t2v|, |t2/w|, |t2w/v| < 1 and

χN =
(p; p)N∞(q; q)N∞

2NN !
ΓN (t2v, t2

1

w
, t2

w

v
; p, q).

Duality between the SYM theories leads to the conjecture representing a par-
ticular elliptic hypergeometric integrals identity: JE = JM . We have checked that
the ratio of kernels of two integrals in this equality defines a totally elliptic hyper-
geometric term, which an essential mathematical argument in favor of its validity.

6. Conclusion

In this short note we have described superconformal indices for N = 4 SYM
theories with all but E6, E7, E8 classical gauge groups and analyzed some of their
mathematical properties. In the case of G2 and F4 groups equality of indices lead
to new elliptic hypergeometric integral identities complementing the collection of
non-trivial relations listed in [14, 17, 19, 20]. The full rigorous proof of them would
provide another strong evidence on the validity of S-duality between the original
field theories. The integrals for the F4 gauge group are the first examples of multiple
elliptic hypergeometric integrals for the root system F4.

In order to stress once more importance of the technique based on the calcula-
tion of superconformal indices in relation to the theory of elliptic hypergeometric
integrals and duality questions, we would like to present the integral describing the



8 V. P. SPIRIDONOV AND G. S. VARTANOV

superconformal index of N = 2 SYM theory given in Fig. 9 of the paper [27]:

IE =
(p; p)6∞(q; q)6∞

8

∫

T

dx

2πix

∫

T

dy

2πiy

∫

T2

2∏

j=1

dzj
2πizj

∫

T

dr

2πir

∫

T

dw

2πiw

× Γ(t2vx±1; p, q)

Γ(x±1; p, q)

Γ(t2vy±2; p, q)

Γ(y±2; p, q)

Γ(t2vz±1
1 z±1

2 ; p, q)

Γ(z±1
1 z±1

2 ; p, q)

Γ(t2vr±2; p, q)

Γ(r±2; p, q)

× Γ(t2vw±1; p, q)

Γ(w±1; p, q)
Γ(

t2√
v
y±1,

t2√
v
r±1,

t2√
v
x±1y±1,

t2√
v
r±1w±1; p, q)

×
2∏

j=1

Γ(y±1z±1
j ,

t2√
v
r±1z±1

j ; p, q), (27)

where t is the same parameter as before and the parameter v is the chemical poten-
tial associated with some combination of the U(2)R-group R-charges. Introducing
the variables α2 = z1z2, β2 = z1/z2, γ2 = x and δ2 = w, one can rewrite the
integral as

IM =
(p; p)6∞(q; q)6∞

64

×
∫

T

dγ

2πiγ

∫

T

dy

2πiy

∫

T

dα

2πiα

∫

T

dβ

2πiβ

∫

T

dr

2πir

∫

T

dδ

2πiδ

Γ(t2vγ±2; p, q)

Γ(γ±2; p, q)

× Γ(t2vy±2; p, q)

Γ(y±2; p, q)

Γ(t2vα±2; p, q)

Γ(α±2; p, q)

Γ(t2vβ±2; p, q)

Γ(β±2; p, q)

Γ(t2vr±2; p, q)

Γ(r±2; p, q)

Γ(t2vδ±2; p, q)

Γ(δ±2; p, q)

× Γ(
t2√
v
γ±1γ±1y±1,

t2√
v
δ±1δ±1r±1; p, q)Γ(

t2√
v
y±1α±1β±1,

t2√
v
r±1α±1β±1; p, q).

The equality of indices IE = IM can be interpreted as an identity following from
a particular example of duality between the SO(4) × SP (2) N = 2 SYM quiver
theory and SU(2) N = 2 SYM generalized quiver theory. Namely, the electric part
is an SO(3)×SP (2)×SO(4)×SP (2)×SO(3) N = 2 SYM quiver and the magnetic
one is the SU(2)6 N = 2 SYM generalized quiver described in Fig. 9 of [27]. We
hope to discuss in more detail N = 2 dualities and corresponding superconformal
indices in a separate paper.
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