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The measurements of the neutrino and quark mixing angles satisfy the empirical relations called
Quark-Lepton Complementarity (QLC). These empirical relations suggest the existence of a corre-
lation between the mixing matrices of leptons and quarks. In this work, we examine the possibility
that this correlation between the mixing angles of quarks and leptons originates in the similar hi-
erarchy of quarks and charged lepton masses and the seesaw mechanism type I, that gives mass to
the Majorana neutrinos. We assume that the similar mass hierarchies of charged lepton and quark
masses allows us to represent all the mass matrices of Dirac fermions in terms of a texture with four
zeroes.
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I. INTRODUCTION

The neutrino oscillations between different flavour
states were measured in a series of experiments with
atmospheric neutrinos [1], solar neutrinos [2], neutrinos
produced in nuclear reactors [3] and accelerators [4]. As a
result of the global combined analysis including all dom-
inant and subdominant oscillation effects, the difference
of the squared neutrino masses and the mixing angles in
the lepton mixing matrix,U

PMNS
, were determined at 1σ

(3σ) confidence level [5]:

∆m2
21 = 7.67+0.22

−0.21

(
+0.67
−0.61

)
× 10−5 eV2,

∆m2
31 =





−2.37± 0.15
(
+0.43
−0.46

)
× 10−3 eV2,

(mν2 > mν1 > mν3).

+2.46± 0.15
(
+0.47
−0.42

)
× 10−3 eV2,

(mν3 > mν2 > mν1).

(1)

θl12 = 34.5o ± 1.4
(

+4.8
−4.0

)

, θl23 = 42.3o+5.1
−3.3

(

+11.3
−7.7

)

,

θl13 = 0.0o+7.9
−0.0

(

+12.9
−0.0

)

.
(2)

Thus, values of the magnitudes of all nine elements of
the lepton mixing matrix, U

PMNS
, at 90% CL, are:

U
PMNS

=





0.80 → 0.84 0.53 → 0.60 0.00 → 0.17
0.29 → 0.52 0.51 → 0.69 0.61 → 0.76
0.26 → 0.50 0.46 → 0.66 0.64 → 0.79



 . (3)
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The CHOOZ experiment [6] determined an upper bound
for the θl13 mixing angle. The latest analyses give the
following best values: [7, 8]:

θl13 = −0.07+0.18
−0.11 (4)

and (at 1σ(3σ))

θl13 = 5.6+3.0
−2.7 (≤ 12.5)

o
, θl13 = 5.1+3.0

−3.3 (≤ 12.0)
o
, (5)

see also [9]. On the other hand, in the last years extensive
research has been done in the precise determination of the
values of the V

CKM
quark mixing matrix elements. The

most precise fit results for the values of the magnitudes
of all nine CKM elements are [10]

VCKM =




0.97419 ± .00022 0.2257 ± .0010 0.00359 ± .00016
0.2256 ± .0010 0.97334 ± .00023 0.0415+.0010

−.0011

0.00874+.00026
−.00037 0.0407 ± .0010 0.999133+.000044

−.000043





(6)

and the Jarlskog invariant is

Jq =
(
3.05+0.19

−0.20

)
× 10−5. (7)

We also have the three angles of the unitarity triangle
with the following reported best values [10]:

α =
(
88+6

−5

)o
, β = (21.46± 0.71)o , γ =

(
77+30

−32

)o
. (8)

Each of the elements of the V
CKM

matrix can be extracted
from a large number of decays and, for the purpose of our
analysis, will be considered as independent. Hence, cur-
rent knowledge of the mixing angles for the quark sector
can be summarized at 1σ as [10]:

sin θq12 = 0.2257± 0.001, sin θq23 = 0.0415+0.001
−0.0011,

sin θq13 = 0.00359± 0.00016.
(9)
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The solar mixing angle θl12 and the correponding angle
in the quark sector, the Cabibbo angle θq12, satisfy an in-
teresting and intriguing numerical relation (at 90% con-
fidence level) [11],

θl12 + θq12 ≈ 45o + 2.5o ± 1.5o, (10)

see also [12]. The equation (10) relates the 1-2 mix-
ing angles in the quark and lepton sectors, it is com-
monly known as Quark-Lepton Complementarity rela-
tion (QLC) and, if not accidental, it could imply a quark-
lepton symmetry.
A second QLC relation between the atmospheric and 2-3
mixing angles, is also satisfied [13],

θl23 + θq23 =
(
44.67+5.1

−3.3

)o
. (11)

However, this is not as interesting as (10) because θq23
is only about two degrees, and the corresponding QLC
relation would be satisfied, within the errors, even if the
angle θq23 had been zero,as long as θl23 is close to the
maximal value π/4.
A third possible QLC relation is not realized at all, or at
least not realized in the same way, since it is less than
ten degrees [13].

θl13 + θq13 < 8.1o. (12)

The equations (10)-(12) are known as the extended
Quark Lepton Complementarity, for a review see [14].
The extended QLC relations could imply a quark-lepton
symmetry [14] or a quark lepton unification [15].
A systematic numerical exploration of all CP conserving
textures of the neutrino mass matrix compatible the QLC
relations and the experimental information on neutrino
mixing is given in [16]
The neutrino oscillations do not provide information

about either the absolute mass scale or if neutrinos are
Dirac or Majorana particles [17]. Thus, one of the most
fundamental problems of the neutrinos physics is the
question of the nature of massive neutrinos. A direct way
to reveal the nature of massive neutrinos is to investigate
processes in which the total lepton number is not con-
served [18]. The matrix elements for these processes are
proportional to the effective Majorana neutrino masses,
which are defined as

〈mll〉 ≡
3∑

j=1

mνjU
2
lj , l = e, µ, τ, (13)

where mνj is the neutrino Majorana mass and Ulj are
the elements of the lepton mixing matrix.
In this work, we will focus our attention on understand-

ing the nature of the QLC relation, and finding possible
values for the effective Majorana neutrino masses. Thus,
we made a unified treatment of quarks and leptons, where
we assume that the charged lepton and quark mass matri-
ces have the same generic form with a four zeroes texture
from a universal S3 flavour symmetry and its sequential
explicit breaking.

II. UNIVERSAL MASS MATRIX WITH A

FOUR ZEROES TEXTURE

In particle physics, the imposition of a flavour sym-
metry has been successful in reducing the number of pa-
rameters of the Standard Model. Recent flavour symme-
try models are reviewed in [19], see also the references
therein. In particular, a permutational S3 flavour sym-
metry and its sequential explicit breaking allows us to
represent the mass matrices in a generic form with a tex-
ture with four zeroes [20]:

M
(F)
i =




0 Ai 0
A∗

i Bi Ci

0 Ci Di


 , i = u, d, l, ν

D
. (14)

Some reasons to propose the validity of a texture with
four zeroes as a universal mass texture for all Dirac
fermions in the theory are the following:

1. The idea of S3 flavour symmetry and its explicit
breaking has been succesfully realized as a mass
matrix with four texture zeroes in the quark sector
to interpret the strong mass hierarchy of up and
down type quarks [21].

2. The quark mixing angles and the CP violating
phase, appearing in the V

CKM
mixing matrix, were

computed as explicit, exact functions of the four
quark mass ratios (mu/mt, mc/mt,md/mb,ms/mb) ,

one symmetry breaking parameter Z1/2 =
(
81
32

)1/2
and one CP violating phase φ

u−d
= 90o, in good

agreement with the experimetal data ten years ago
when the first fitting was made [20]. This agree-
ment improved as the precision of the experimental
data improved and, now, it is very good [10].

3. Since the mass spectrum of the charged leptons
exhibits a hierarchy similar to the quark’s one, it
would be natural to consider the same S3 symme-
try and its explicit breaking to justify the use of the
same texture for the charged lepton mass matrix.

4. As for the Dirac neutrinos, we have no direct in-
formation about the absolute values or the relative
values of the neutrino masses, but the mass matrix
with a four zeroes texture can be obtained from
an SO(10) neutrino model which describes these
data well [22]. Furthermore, from supersymmetry
arguments, it would be sensible to assume that the
Dirac neutrinos have a mass hierarchy similar to
that of the u-quarks and it would be natural to take
for the Dirac neutrino mass matrix also a matrix
with a texture with four zeroes.

The Hermitian mass matrix (14) may be written in terms
of a real symmetric matrix M̄i and a diagonal matrix of
phases Pi ≡ diag

[
1, eiφi , eiφi

]
as follows:

M
(F )
i = P †

i M̄iPi . (15)
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The real symetric matrix M̄i may be brought to diagonal
form by means of an orthogonal transformation,

M̄i = Oidiag {mi1,mi2,mi3}OT
i , (16)

where the m’s are the eigenvalues of M
(F )
i and Oi is a

real orthogonal matrix. Now computing the invariants
of the real symetric matrix M̄i, tr

{
M̄i

}
, tr

{
M̄2

i

}
and

det
{
M̄i

}
,we may express the parameters Ai, Bi, Ci and

Di occuring in (14) in terms of the mass eigenvalues, in
this way, we get that the M̄i matrix, reparametrized in
terms of its eigenvalues (i = u, d, l, ν

D
) is

M̄i =




0
√

m̃i1m̃i2

1−δi
0√

m̃i1m̃i2

1−δi
m̃i1 − m̃i2 + δi

√
δi

(1−δi)
fi1fi2

0
√

δi
(1−δi)

fi1fi2 1− δi


 ,

(17)

where m̃i1 = mi1

mi3
, m̃i2 = |mi2|

mi3
,

fi1 = 1− m̃i1 − δi, fi2 = 1 + m̃i2 − δi. (18)

The small parameters δi are also functions of the mass
ratios and the flavour symmetry breaking parameter
Z1/2 [20],

δi =
Zi

Zi + 1

(m̃i2 − m̃i1)
2

Wi (Z)
(19)

where

Wi (Z) =
[
p3 + 2q2 + 2q

√
p3 + q2

] 1
3 − |p|+

+
[
p3 + 2q2 − 2q

√
p3 + q2

] 1
3

+

+ 1
9 (Zi (2 (m̃i2 − m̃i1) + 1) + (m̃i2 − m̃i1) + 2)

2

− 1
3

([
q +

√
p3 + q2

] 1
3

+
[
q −

√
p3 + q2

] 1
3

)
×

× (Zi (2 (m̃i2 − m̃i1) + 1) + (m̃i2 − m̃i1) + 2)

(20)

with

p = − 1
3

Zi

Zi+1 (Zi (2 (m̃i2 − m̃i1) + 1) + m̃i2−
m̃i1 + 2)

2
+ 1

Zi+1 [Zi (m̃i2 − m̃i1) (m̃i2 − m̃i1+

+2) (1 + m̃i2) (1− m̃i1)] ,

(21)

q = − 1
27

1
(Zi+1)3

(Zi (2 (m̃i2 − m̃i1) + 1) + m̃i2−
m̃i1 + 2)3 + 1

6
1

(Zi+1)2
[Zi (m̃i2 − m̃i1) (m̃i2−

−m̃i1 + 2) (1 + m̃i2) (1− m̃i1)] (Zi (2 (m̃i2−
−m̃i1) + 1) + m̃i2 − m̃i1 + 2) .

(22)

The values allowed for the parameters δi are in the fol-
lowing range 0 < δi < 1− m̃i1.
The entries in the real orthogonal matrix, O, are also
expressed in terms of the eigenvalues of the mass matrix
(14) as

Oi =













[

m̃i2fi1
Di1

] 1
2

−
[

m̃i1fi2
Di2

] 1
2

[

m̃i1m̃i2δi
Di3

] 1
2

[

m̃i1(1−δi)fi1
Di1

] 1
2

[

m̃i2(1−δi)fi2
Di2

] 1
2

[

(1−δi)δi
Di3

] 1
2

−
[

m̃i1fi2δi
Di1

] 1
2

−
[

m̃i2fi1δi
Di2

] 1
2

[

fi1fi2
Di3

] 1
2













,

(23)

where,

Di1 = (1− δi)(m̃i1 + m̃i2)(1 − m̃i1), (24)

Di2 = (1− δi)(m̃i1 + m̃i2)(1 + m̃i2), (25)

Di3 = (1 − δi)(1 − m̃i1)(1 + m̃i2). (26)

III. SEESAW MECHANISM AND PHASES OF

THE RIGHT HANDED NEUTRINO MASS

MATRIX

The left handed Majorana neutrinos naturally acquire
their small masses through an effective type I seesaw
mechanism of the form

MνL = MνDM
−1
νR MT

νD , (27)

where MνD and MνR denote the Dirac and right handed
Majorana neutrinos mass matrices, respectively. The
symmetry of the mass matrix of the left handed Majo-
rana neutrinos, MνL = MT

νL , and the seesaw mechanism
of type I, eq. (27), fix the form of the right handed
Majorana neutrinos mass matrix, MνR , which has to be
nonsingular and symmetric. Further restrictions onMνR ,
follow from requiring that MνL also had a texture with
four zeroes, as will be shown below. From eq. (27), the
seesaw mechanism may be written in a more explicit form
as:

MνL =
1

det (MνR)
MνDadj (MνR)M

T
νD , (28)

where det(MνR) and adj (MνR) are the determinant and
adjugate matrix of MνR , respectively. Calling Cnm,
m,n = 1, 2, 3, the cofactors of the MνR matrix, eq. (28)
may be written as

MνL =
1

det (MνR)




fν
L

aν
L

eν
L

aν
L

bν
L

cν
L

eν
L

cν
L

dν
L


 , (29)

where

det(Mν
R
) = fν

R
C11 − aν

R
C12 + eν

R
C13 (30)

and

fν
L
= C22a

2
ν
D
,

aν
L
= −C12|aν

D
|+ C22aν

D
bν

D
− C23aν

D
cν

D
,

bν
L
= C11a

∗2
ν
D
+ C22b

2
ν
D
+ C33c

2
ν
D
− 2c12a

∗
ν
D
bν

D

+2C13a
∗
ν
D
cν

D
− 2C23bν

D
cν

D
,

eν
L
= C22aν

D
cν

D
− C23aν

D
dν

D
,

cν
L
= C13a

∗
ν
D
dν

D
− C12a

∗
ν
D
cν

D
+ C22bν

D
cν

D

−C23

(
bν

D
dν

D
+ c2ν

D

)
+ C33cν

D
dν

D
,

dν
L
= C22c

2
ν
D
− 2C23cν

D
dν

D
+ C33d

2
ν
D
,

(31)
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From eqs. (29) and (31), the mass matrix of the left
handed Majorana neutrino will have the same universal
texture with four zeroes of the Dirac mass matrices when
conditions C22 = C23 = 0 are satisfied. These last condi-
tions are equivalent to

fν
R
dν

R
= e2ν

R
, fν

R
cν

R
= aν

R
eν

R
, (32)

Thus we obtain the relation

aν
R

cν
R

=
eν

R

dν
R

. (33)

For non vanishing det(MνR), these relation are satisfied,
if and only if

eν
R
= 0 and fν

R
= 0. (34)

If we extended the meaning of a texture with four zeroes,
defined in (14), to include the symmetric mass matrix of
the right handed Majorana neutrinos, Mν

R
[23], which

is non-Hermitian, we could say that the texture with four
zeroes is invariant under the action of the seesaw mech-
anism of type I [13, 23, 24].
It may also be noticed that, if we set bν

R
= 0 or/and

cν
R
= 0, the resulting expression for Mν

L
still has a tex-

ture with four zeroes. Therefore, Mν
L

may also have a
texture with four zeroes when Mν

R
has a texture with

four or six zeroes ( sometimes called a Fritzsch Texture).

Let us further assume that the phases in the entries of
the MνR may be factorized out as

Mν
R
= RM̄ν

R
R, (35)

where

M̄ν
R
=




0 aν

R
0

aν
R

|bν
R
| |cν

R
|

0 |cν
R
| dν

R



 , (36)

and R ≡ diag
[
e−iφc , eiφc , 1

]
with φc ≡ arg

{
cν

R

}
.

Then, the type I seesaw mechanism takes the form:

M
(F )

ν
L

= P †
D
M̄ν

D
P

D
R†M̄−1

ν
R
R†P

D
M̄ν

D
P †

D
, (37)

and the mass matrix of the left handed neutrinos has the
following four texture zeroes [30]:

Mν
L
=




0 aν
L

0
aν

L
bν

L
cν

L

0 cν
L

dν
L


 , (38)

where

aν
L
=

|aν
D

|2

aν
R

,

bν
L
=

c2ν
D

dν
R

+
|cν

R
|2−|bν

R
|dν

R

dν
R

|aν
D

|2

a2
ν
R

ei2(φc−φνD )

+2
|aν

D
|

|aν
R

|

(

bν
D
e−iφνD −

cν
D

|cν
R

|

dν
R

ei(φc−φνD )
)

,

cν
L
=

cν
D

dν
D

dν
R

+

+
|aν

D
|

|aν
R

|

(

cν
D
e−iφνD −

|cν
R

|dν
D

dν
R

ei(φc−φνD )
)

,

dν
L
=

d2ν
D

dν
R

.

(39)

Now, to diagonalize the left handed Majorana neu-
trino mass matrix Mν

L
by means of a unitary matrix,

we need to construct the hermitian matrices Mν
L
M †

ν
L

and M †
ν
L
Mν

L
, which can be diagonalized with unitary

matrices through of the following transformations:

U †
R
M †

ν
L
Mν

L
U

R
= diag

[∣∣ms
ν1

∣∣2 ,
∣∣ms

ν2

∣∣2 ,
∣∣ms

ν3

∣∣2
]
,

U †
L
Mν

L
M †

ν
L
U

L
= diag

[∣∣ms
ν1

∣∣2 ,
∣∣ms

ν2

∣∣2 ,
∣∣ms

ν3

∣∣2
]
,

(40)

where the ms
νj (j = 1, 2, 3) are the singular values of the

Mν
L
matrix. Thus, with the help of the symmetry of the

matrix (38) and the transformations (40), the left handed
Majorana neutrino mass matrix, Mν

L
, can be diagonal-

ized by a unitary matrix through the transformation

U †
νMν

L
U∗
ν = diag

[∣∣ms
ν1

∣∣ ,
∣∣ms

ν2

∣∣ ,
∣∣ms

ν3

∣∣] , (41)

where Uν ≡ U
L
K and K ≡ diag

[
eiη1/2, eiη2/2, eiη3/2

]
is

the diagonal matrix of the Majorana phases.
From the previous analysis, the matrix Mν

L
has only two

phases, which are

φ1 ≡ arg
{
bν

L

}
and φ2 ≡ arg

{
cν

L

}
. (42)

In the particular case, when φ1 = 2φ2, the analysis sim-
plifies since the phases in Mν

L
may be factorized out[31]

and the following relationship is fulfilled:

tanφ1 =
2ℑm cν

L
ℜe cν

L(
ℜe cν

L

)2

−
(
ℑm cν

L

)2 . (43)

Then, the left handed Majorana neutrino mass matrix
may be written as follows

Mν
L
= QM̄ν

L
Q, (44)

where Q ≡ diag
[

e−iφ2 , eiφ2 , 1
]

is a diagonal matrix of
phases and M̄ν

L
is a real symetric matrix. Now, the

matrix Mν
L
, can be diagonalized by a unitary matrix

through the transformation

U †
νMν

L
U∗
ν = diag [mν1 ,mν2 ,mν3 ] ; (45)
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where mνj (j = 1, 2, 3) are the eigenvalues of the matrix
Mν

L
, and the unitary matrix is Uν ≡ QOνK where Oν

is the orthogonal real matrix (23), that diagonalizes the
real symetric matrix M̄ν

L
.

It is also important to mention that when the Her-
mitian matrix with a texture with four zeroes defined
in eq. (14), is taken as a universal mass texture for all
fermions [13], the phases of all entries in the right handed
Majorana neutrino mass matrix are fixed at the numer-
ical value of φνR = nπ. Thus, the right handed Majo-
rana neutrinos mass matrix is real and symmetric and
has the texture with four zeroes shown in (14). In the
more general case in which the Dirac and right handed
neutrino mass matrices are represented by Hermitian ma-
trices that can be written in polar form as A = P †ĀP ,
where P is a diagonal matrix of phases and Ā is a real
symmetric matrix, the symmetry of the left handed Ma-
jorana neutrino mass matrix also fixes all phases in the
mass matrix of the right handed neutrinos at the numeri-
cal value φνR = nπ. Then, the only undetermined phases
in the mass matrix of the left handed Majorana neutrinos
Mν

L
are the phases φνD , coming from the mass matrix

of the Dirac neutrinos.

IV. MIXING MATRICES

The quark and lepton flavour mixing matrices, U
PMNS

and V
CKM

, arise from the mismatch between diagonal-
ization of the mass matrices of u and d type quarks [10]
and the diagonalization of the mass matrices of charged
leptons and left handed neutrinos [25] respectively,

U
PMNS

= U †
l Uν , V

CKM
= UuU

†
d . (46)

Therefore, in order to obtain the unitary matrices ap-
pearing in (46) and get predictions for the flavour mix-
ing angles and CP violating phases, we should specify the
mass matrices.
In the quark sector, the unitarity of V

CKM
leads to the

relations
∑

i VijV
∗
ik = δjk and

∑
j VijV

∗
kj = δik. The van-

ishing combinations can be represented as triangles in a
complex plane. The area of all triangles is equal to half
of the Jarlskog invariant, Jq [26], which is a rephasing
invariant measure of CP violation. The term unitarity
triangle is usually reserved for the tringle obtained from
the relation VudV

∗
ub +VcdV

∗
cb+VtdV

∗
tb = 0. In this case de

Jarlskog invariant is

Jq = ℑm [VusV
∗
csV

∗
ubVcb] , (47)

and the inner angles of the unitarity triangle are

α ≡ arg
(
− VtdV

∗

tb

VudV ∗

ub

)
, β ≡ arg

(
−VcdV

∗

cb

VtdV ∗

tb

)
,

γ ≡ arg
(
−VudV

∗

ub

VcdV ∗

cb

)
.

(48)

For the lepton sector, when the left handed neutrinos are
Majorana particles, the mixing matrix is defined as [27]
U

PMNS
= U †

l UL
K where K ≡ diag

[
1, eiβ1 , eiβ2

]
is the

diagonal matrix of the Majorana CP violating phases.
Also in the case of three neutrino mixing there are three
CP violation rephasing invariants [25], associated with
the three CP violating phases present in the U

PMNS
ma-

trix. The rephasing invariant related to the Dirac phase,
analogous to the Jarlskog invariant in the quark sector,
is given by:

Jl ≡ ℑm
[
U∗
e1U

∗
µ3Ue3Uµ1

]
. (49)

The rephasing invariant Jl controls the magnitude of CP
violation effects in neutrino oscillations and is a directly
observable quantity. The other two rephasing invariants
associated with the two Majorana phases in the U

PMNS

matrix, can be chosen as:

S1 ≡ ℑm [Ue1U
∗
e3] , S2 ≡ ℑm [Ue2U

∗
e3] . (50)

These rephasing invariants are not uniquely defined, but
the ones shown in the eqs (49) and (50) are relevant for
the definition of the effective Majorana neutrino mass,
mee, in the neutrinoless double beta decay.

A. Mixing Matrices as Functions of the Fermion

Masses

The unitary matrices Ui (i = u, d) occurring in the
definition of V

CKM
, eq.(46), may be written in polar form

as Ui = O
T
i Pi. In this expresion, Pi is the diagonal

matrix of phases appearing in the four texutre zeroes
mass matrix (15). Then, from (46), the quark mixing
matrix takes the form

V th
CKM

= Ou
TP (u−d)

Od, (51)

where P (u−d) = diag
[
1, eiφ, eiφ

]
with φ = φu − φd, and

Oi, are the real orthogonal matrices (23) that diagonal-

ize the real symmetric mass matrices M̄
(F )
i .

A similar analysis shows that U
PMNS

may also be writ-

ten as U
PMNS

= U †
l Uν , with Uj = PjOj (j = ν, l), this

matrix takes the form

U th
PMNS

= O
T
l P

(ν−l)
OνK, (52)

where P (ν−l) = diag
[
1, eiΦ1 , eiΦ2

]
is the diagonal matrix

of the Dirac phases, with Φ1 = 2φ2−φl and Φ2 = φ2−φl.
The real orthogonal matrices Oj are defined in (23).
Substitution of the expressions (18)-(26) in the unitary
matices (51) and (52) allows us to express the mix-
ing matrices V th

CKM
and U th

PMNS
as explicit functions of

the masses of quarks and leptons. For the elements of
the V

CKM
mixing matrix, we obtained the same theo-

retical expressions given by Mondragón and Rodŕıguez-
Jauregui [20]:

V th
CKM

=




V th
ud V th

us V th
ub

V th
cd V th

cs V th
cb

V th
td V th

ts V th
tb



 , (53)

where
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V th
ud =

√
m̃cm̃sfu1fd1

Du1Dd1
+
√

m̃um̃d

Du1Dd1

(√
(1− δu) (1− δd) fu1fd1 +

√
δuδdfu2fd2

)
eiφ,

V th
us = −

√
m̃cm̃dfu1fd2

Du1Dd2
+
√

m̃um̃s

Du1Dd2

(√
(1− δu) (1− δd) fu1fd2 +

√
δuδdfu2fd1

)
eiφ,

V th
ub =

√
m̃cm̃dm̃sδdfu1

Du1Dd3
+
√

m̃u

Du1Dd3

(√
(1− δu) (1− δd) δdfu1 −

√
δufu2fd1fd2

)
eiφ,

V th
cd = −

√
m̃um̃sfu2fd1

Du2Dd1
+
√

m̃cm̃d

Du2Dd1

(√
(1− δu) (1− δd) fu2fd1 +

√
δuδdfu1fd2

)
eiφ,

V th
cs =

√
m̃um̃dfu2fd2

Du2Dd2
+
√

m̃cm̃s

Du2Dd2

(√
(1− δu) (1− δd) fu2fd2 +

√
δuδdfu1fd1

)
eiφ,

V th
cb = −

√
m̃um̃dm̃sδdfu2

Du2Dd3
+
√

m̃c

Du2Dd3

(√
(1− δu) (1− δd) δdfu2 −

√
δufu1fd1fd2

)
eiφ,

V th
td =

√
m̃um̃cm̃sδufd1

Du3Dd1
+
√

m̃d

Du3Dd1

(√
δu (1− δu) (1− δd) fd1 −

√
δdfu1fu2fd2

)
eiφ,

V th
ts = −

√
m̃um̃cm̃dδufd2

Du3Dd2
+
√

m̃s

Du3Dd2

(√
δu (1− δu) (1− δd) fd2 −

√
δdfu1fu2fd1

)
eiφ,

V th
tb =

√
m̃um̃cm̃dm̃sδuδd

Du3Dd3
+

(√
fu1fu2fd1fd2

Du3Dd3
+
√

δuδd(1−δu)(1−δd)
Du3Dd3

)
eiφ.

(54)

Now, with the help of the equations (23) and (52), we
obtain the theoretical expresion of the elements of the
lepton mixing matrix, U th

PMNS
. This expresions have the

following form:

U th
PMNS

=




U th
e1 U th

e2 e
iβ1 U th

e3 e
iβ2

U th
µ1 U th

µ2e
iβ1 U th

µ3e
iβ2

U th
τ1 U th

τ2e
iβ1 U th

τ3e
iβ2


 (55)

where

U th
e1 =

√
m̃µm̃ν2fl1fν1

Dl1Dν1
+
√

m̃em̃ν1

Dl1Dν1

(√
(1− δl)(1 − δ

ν
)fl1fν1e

iΦ1 +
√
δlδνfl2fν2e

iΦ2

)
,

U th
e2 = −

√
m̃µm̃ν1fl1fν2

Dl1Dν2
+
√

m̃em̃ν2

Dl1Dν2

(√
(1 − δl)(1 − δ

ν
)fl1fν2e

iΦ1 +
√
δlδνfl2fν1e

iΦ2

)
,

U th
e3 =

√
m̃µm̃ν1m̃ν2δνfl1

Dl1Dν3
+
√

m̃e

Dl1Dν3

(√
δν(1− δl)(1 − δ

ν
)fl1e

iΦ1 −
√
δefl2fν1fν2e

iΦ2

)
,

U th
µ1 = −

√
m̃em̃ν2fl2fν1

Dl2Dν1
+
√

m̃µm̃ν1

Dl2Dν1

(√
(1− δl)(1 − δ

ν
)fl2fν1e

iΦ1 +
√
δlδνfl1fν2e

iΦ2

)
,

U th
µ2 =

√
m̃em̃ν1fl2fν2

Dl2Dν2
+
√

m̃µm̃ν2

Dl2Dν2

(√
(1− δl)(1− δ

ν
)fl2fν2e

iΦ1 +
√
δlδνfl1fν1e

iΦ2

)
,

U th
µ3 = −

√
m̃em̃ν1m̃ν2δνfl2

Dl2Dν3
+
√

m̃µ

Dl2Dν3

(√
δν(1 − δl)(1 − δ

ν
)fl2e

iΦ1 −
√
δlfl1fν1fν2e

iΦ2

)
,

U th
τ1 =

√
m̃em̃µm̃ν2δlfν1

Dl3Dν1
+
√

m̃ν1

Dl3Dν1

(√
δl(1− δl)(1− δ

ν
)fν1e

iΦ1 −
√
δνfl1fl2fν2e

iΦ2

)
,

U th
τ2 = −

√
m̃em̃µm̃ν1δlfν2

Dl3Dν2
+
√

m̃ν2

Dl3Dν2

(√
δl(1 − δl)(1 − δ

ν
)fν2e

iΦ1 −√
δνfl1fl2fν1e

iΦ2

)
,

U th
τ3 =

√
m̃em̃µm̃ν1m̃ν2δlδν

Dl3Dν3
+
√

δlδν(1−δl)(1−δν )
Dl3Dν3

eiΦ1 +
√

fl1fl2fν1fν2

Dl3Dν3
eiΦ2 .

(56)

in these expresions the m̃’s, f ’s and D’s are defined in
(18) and (24)-(26), respectively.

B. The χ2 fit for the Quark Mixing Matrix

We made a χ2 fit of the exact theoretical expressions
for the modulii of the entries of the quark mixing matrix
|(V th

CKM
)ij | and the inner angles of the unitarity triangle

αth, βth and γth to the experimental values given by
Amsler [10].In this fit, we computed the modulii of the
entries of the quark mixing matrix and the inner angles of
the unitarity triangle from the theoretical expresion (54)
with the following numerical values of the quark mass
ratio

m̃u = 2.5469× 10−5, m̃c = 3.9918× 10−3,
m̃d = 1.5261× 10−3, m̃s = 3.2319× 10−2.

(57)
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The resulting best values of the parameters δu and δd are

δu = 3.829× 10−3, δd = 4.08× 10−4 (58)

and the Dirac CP violating phase φ = 90o.
The best values for the modulii of the entries of the CKM
mixing matrix are given in the following expresion

∣∣V th
CKM

∣∣ =




0.97421 0.22560 0.003369
0.22545 0.97335 0.041736
0.008754 0.04094 0.99912


 (59)

and

αth = 91.24o, βth = 20.41o, γth = 68.33o. (60)

The Jarlskog invariant takes the value J th
q = 2.9× 10−5,

all these results are in very good agreement with the ex-
perimental values.

C. The χ2 fit for the Lepton Mixing Matrix

In the case of the lepton mixing matrix, we made a χ2

fit of the theoretical expressions for the modulii of the
entries of the lepton mixing matrix |(U th

PMNS
)ij | given in

eq. (56) to the values extracted from experiment as given
by Gonzalez-Garcia [5] and quoted in (3).The computa-
tion was made using the following values for the charged
leptonmasses [10]:

me = 0.5109MeV, mµ = 105.685MeV,
mτ = 1776.99GeV,

(61)

we took for the masses of the left handed Majorana neu-
trinos a normal hierarchy. This allows us to write the left
handed Majorana neutrinos mass ratios in terms of the
neutrino squared mass differences and the neutrino mass
mν3 in the following form:

m̃ν1 =

√
1− (∆m2

32+∆m2
21)

m2
ν3

, m̃ν2 =

√
1− ∆m2

32

m2
ν3

. (62)

The neutrino squared mass differences were obtained
from the experimental data on neutrino oscillations given
in Gonzalez-Garcia [5] and we left the mass mν3 as a free
parameter of the χ2 fit. From the best values obtained
for mν3 and the experimental values of the ∆m2

32 and
∆m2

21, we obtained the following best values for the neu-
trino masses

mν1 = 2.7× 10−3eV, mν2 = 9.1× 10−3eV,
mν3 = 4.7× 10−2eV.

(63)

The resulting best values of the parameters δe and δν are

δe = 0.06, δν = 0.522, (64)

and the best values of the Dirac CP violating phases are
Φ1 = 0 and Φ2 = 90o. The best values for the modulii

of the entries of the PMNS mixing matrix are given in
the following expresion

∣∣U th
PMNS

∣∣ =




0.820421 0.568408 0.061817
0.385027 0.613436 0.689529
0.422689 0.548277 0.721615


 . (65)

The value of the rephasing invariant related to the Dirac
phase is

J th
l = 8.8× 10−3. (66)

Since we have no experimental information about the
Majorana phases β1 and β2, the other two rephasing in-
variants associated with the two Majorana phases in the
U

PMNS
matrix, could not be determined from the exper-

iment values. Therefore, in order to make a numerical
estimate, we maximized the rephasing invariants S1 and
S2, thus obtaining a numerical value for the Majorana
phases β1 and β2. Then, the maximum values of the
rephasing invariants, eq(50), are:

Smax
1 = −4.9× 10−2, Smax

2 = 3.4× 10−2, (67)

with β1 = −1.4o and β2 = 77o. In this analysis, the
minimum value of the χ2, corresponding to the best fit
is χ2 = 0.288, and all the numerical results of the fit are
in very good agreement with the values of the moduli of
the entries in the matrix U

PMNS
as given in Gonzalez-

Garcia [5].

V. THE MIXING ANGLES

In the standard PDG parametrization, the entries in
the quark and lepton mixing matrices are parametrized
in terms of the mixing angles and phases. Thus, the
modulii of the entries of the quark (lepton) mixing matrix
V

CKM
(U

PMNS
) are related to the mixing angles through

the expressions:

sin2 θ
q(l)
12 = |Vus(Ue2)|2

1−|Vub(Ue3)|2 ,

sin2 θ
q(l)
23 =

|Vcb(Uµ3)|2
1−|Vub(Ue3)|2 ,

sin2 θ
q(l)
13 = |Vub (Ue3)|2 .

(68)

The theoretical expression for the quark mixing angles as
functions of the quark mass ratios are readily obtained
when the theoretical expressions for the modulii of the
entries in the CKM mixing matrix, given in eqs. (54)
and (24)-(24),are substituted for |Vij | in the right hand
side of eqs.(68). In this way,and keeping only the leading
order terms, we get :

sin2 θq12 ≈
m̃d

m̃s
+ m̃u

m̃c
− 2

√
m̃u

m̃c

m̃d

m̃s
cosφ

(
1 + m̃u

m̃c

)(
1 + m̃d

m̃s

) , (69)
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sin2 θq23 ≈
(√

δu −
√
δd
)2

(
1 + m̃u

m̃c

) , (70)

sin2 θq13 ≈
m̃u

m̃c

(√
δu −

√
δd
)2

(
1 + m̃u

m̃c

) . (71)

Now, the numerical values of the quark mixing angles
may be computed from eq.(54) and the numerical values
of the parameters δu and δd,eq. (58), and the CP violat-
ing phase φ = 90o obtained from χ2 fit of

∣∣V th
CKM

∣∣ to the

experimentally determined values
∣∣V exp

CKM

∣∣. In this way
we obtain

θq12 = 13o, θq23 = 2.38o, θq13 = 0.19o, (72)

in very good agreement with the latest analysis of the
experimental data [28], see (9).
The numerical values of the leptonic mixing angles are
computed in a similar fashion. The theoretical expres-
sions for the lepton mixing angles as funtion of the
charged lepton and neutrino mass ratios are obtained
from eqs (68) when the theoretical expressions for the
modulii of the entries in the PMNS mixing matrix, given
in eqs.(56) and eqs. (24)-(24), are substituted for |Uij |
in the right hand side of eqs.(68). If we keep only the
leading terms, we obtain:

sin2 θl12 ≈ fν2

(1+m̃ν2)(1−δν)
×

×





m̃ν1
m̃ν2

+ m̃e
m̃µ

(1−δν)+2

√
m̃ν1
m̃ν2

m̃e
m̃µ

(1−δν) cosΦ1
(
1+

m̃ν1
m̃ν2

)(
1+ m̃e

m̃µ

)



 ,

(73)

sin2 θl23 ≈ δν + δefν2 −
√
δνδefν2 cos (Φ1

− Φ
2
)(

1 + m̃e

m̃µ

)
(1 + m̃ν2)

, (74)

sin2 θl13 ≈ δν(
1+ m̃e

m̃µ

)
(1+m̃ν2)

{
m̃e

m̃µ
+

m̃ν1m̃ν2

(1−δν)
−

−2
√

m̃e

m̃µ

m̃ν1m̃ν2

(1−δν)
cosΦ1

}
.

(75)

The expressions quoted above are written in terms of the
ratios of the lepton masses. When the well known values
of the charged lepton masses, the values of the neutrino
masses, eq.(63), the values of the delta parameters eq.
(64) and the values of the Dirac CP violating phases ob-
tained from χ2 fit in the lepton sector, are inserted in
eqs. (73)-(75), we obtain the following numerical values
for the mixing angles

θl12 = 34.7o, θl23 = 43.6o, θl13 = 3.5o, (76)

which are in very good agreement with the latest exper-
imental data [5, 8].

VI. QUARK-LEPTON COMPLEMENTARITY

We may now address the question of the meaning of
the quark-lepton complementarity relations as expressed
in eq. (10)-(12). The relations between mixing angles
and the moduli of the entries of the mixing matrices given
in eqs. (68), allow us to write the Quark Lepton Comple-
mentarity relations in the following form; the first QLC
relation, between the Cabibbo angle and the solar angle
is

tan
(
θq12 + θl12

)
= 1 +∆th

12, (77)

where

∆th
12 =

|V th
us |(|Uth

e1 |+|Uth
e2 |)+|V th

ud |(|Uth
e2 |−|Uth

e1 |)
|Uth

e1 ||V th
ud |−|Uth

e2 ||V th
us | . (78)

The second QLC relation, between the atmospheric angle
and the 2-3 mixing angle of the quarks is

tan
(
θq23 + θl23

)
= 1 +∆th

23, (79)

where

∆th
23 =

|V th
cb |
√

1−|Uth
e3 |2−|Uth

µ3|2+|Uth
µ3||V th

cb |+√
1−|V th

ub |2−|V th
cb |2

√
1−|Uth

e3 |2−|Uth
µ3|2−

×

×
+
√

1−|V th
ub |2−|V th

cb |2
(
|Uth

µ3|−
√

1−|Uth
e3 |2−|Uth

µ3|2
)

−|V th
cb ||Uth

µ3| .

(80)

The last QLC relation, between the 1-3 mixing angles of
the quarks and the leptons, is

tan
(
θq13 + θl13

)
=

|V th
ub |
√

1−|Uth
e3 |+|Uth

e3 |
√

1−|V th
ub |√

1−|V th
ub |
√

1−|Uth
e3 |−|Uth

e3 ||V th
ub |

(81)

The substitution of expresions (54) and (56) for the mod-
ulii of the elements of the mixing matrices V

CKM
and

U th
PMNS

, allows us express the Quark Lepton Complemen-
tarity relations in term of the mass ratios of quarks and
leptons.
Then, the (77)-(81) take the follwing form:

tan
(
θq12 + θl12

)
= 1 +∆th

12, (82)

where

∆th
12 ≈

(
m̃d
m̃s

+ m̃u
m̃c

) 1
2
[
(1−δν)(1+m̃ν2)

(
1+

m̃ν1
m̃ν2

)(
1+ m̃e

m̃µ

)
−

(
1+

m̃d
m̃s

m̃u
m̃c

) 1
2
[
(1−δν)(1+m̃ν2)

(
1+

m̃ν1
m̃ν2

)(
1+ m̃e

m̃µ

)
−
×

×
−fν2

(√
m̃ν1
m̃ν2

+
√

m̃e
m̃µ

(1−δν)

)2
] 1

2

+

(√
m̃ν1
m̃ν2

+
√

m̃e
m̃µ

(1−δν)

)

−fν2

(√
m̃ν1
m̃ν2

+
√

m̃e
m̃µ

(1−δν)

)2
] 1

2

+
√

m̃d
m̃s

+ m̃u
m̃c

fν2

×

×
√
fν2

[(
m̃d
m̃s

+ m̃u
m̃c

) 1
2 +
(
1+

m̃d
m̃s

m̃u
m̃c

) 1
2

]

(√
m̃ν1
m̃ν2

+
√

m̃e
m̃µ

(1−δν)

) .

(83)
Similarly,

tan
(
θq23 + θl23

)
= 1 +∆th

23, (84)
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where

∆th
23 ≈

([(
1+ m̃e

m̃µ

)
(1+m̃ν2)−δν−δefν2

] 1
2 +

√
δν+δefν2

)

−(
√
δu−

√
δd)

√
δν+δefν2+

×

×

(√
1+ m̃u

m̃c
−(

√
δu−

√
δd)

2
+(

√
δu−

√
δd)
)

+
[(

1+ m̃e
m̃µ

)
(1+m̃ν2)−δν−δefν2

] 1
2
√

1+ m̃u
m̃c

−(
√
δu−

√
δd)

2
.

(85)
Also,

tan
(
θq13 + θl13

)
≈

√
m̃u
m̃c

(
√
δu−

√
δd)√

1+ m̃u
m̃c

− m̃u
m̃c

(
√
δu−

√
δd)

2
×

×

[(
1+ m̃e

m̃µ

)
(1+m̃ν2)−δν

(√
m̃ν1 m̃ν2
(1−δν )

−
√

m̃e
m̃µ

)2] 1
2

+

[(
1+ m̃e

m̃µ

)
(1+m̃ν2)−δν

(√
m̃ν1 m̃ν2
(1−δν )

−
√

m̃e
m̃µ

)2] 1
2

−

×

×
+
√
δν

(√
m̃ν1 m̃ν2
(1−δν )

−
√

m̃e
m̃µ

)√
1+ m̃u

m̃c
− m̃u

m̃c
(
√
δu−

√
δd)

2

−
√

m̃u
m̃c

(
√
δu−

√
δd)

√
δν

(√
m̃ν1 m̃ν2
(1−δν ) −

√
m̃e
m̃µ

) .

(86)

After substitution of the numerical values of the mass
ratios of quarks and leptons in eqs. (83)-(86), we obtain,

θq12 + θl12 = 45o + 2.7o. (87)

θq23 + θl23 = 45o + 1o, (88)

θq13 + θl13 = 3.7o. (89)

The equations (82) and (83) are obtained from an exact
analytical expression for tan

(
θq12 + θl12

)
as a funtion of

the absolute values of the entries in the mixing matrices
V th

CKM
and U th

PMNS
, eqs (77). In eqs. (54) and (56), the

elements of the mixing matrices V th
CKM

and U th
PMNS

are
given as exact explicit analytical funtions of the quark
and lepton mass ratios. Let us stress that these expre-
sions are exact and valid for any possible values of the
quark and lepton mass ratios. Therefore, the smallness
of the term ∆th

12 is only due to the smallness of the ratios
m̃d/m̃s, m̃u/m̃c and m̃e/m̃µ.
We may conclude that the Quark-Lepton Complemen-
tarity as expresed in (82) is not a numerical coincidence,
it is the result of the combined effect of two factors:

1. The strong mass hierarchy of the Dirac fermions
which produces small and very small mass ratios
of u and d-type quarks and charged leptons. The
quark mass hierarchy is then reflected in a simi-
lar hierarchy of small and very small quark mixing
angles.

2. The normal seesaw mechanism gives very small
masses to the left handed Majorana neutrinos with
relatively large values of the neutrino mass ratio
mν1/mν2 and allows for large θl12 and θl23 mixing
angles.

VII. THE EFFECTIVE MAJORANA MASSES

The square of the magnitudes of the effective Majorana
neutrino masses, eq.(13), are

|〈mll〉|2 =
∑3

j=1 m
2
νj |Ulj |4 + 2

∑3
j<k mνjmνk×

× |Ulj |2 |Ulk|2 cos 2 (wlj − wlk) ,
(90)

where wlj = arg {Ulj}; this term includes phases of both
types, Dirac and Majorana.

The theoretical expression for the squared magnitud
of the effective Majorana neutrino mass of electron neu-
trino, written in terms of the ratios of the quark masses,
is:

|〈mee〉|2 ≈ 1(
1+ m̃e

m̃µ

)2(
1+

m̃ν1
m̃ν2

)2

{
m2

ν1 (1−

−4
√

m̃e

m̃µ

m̃ν1

m̃ν2
(1− δν)

)
+

m2
ν2

f2
ν2

(1+m̃ν2)
2
(1−δν)

2

m̃ν1

m̃ν2

(
m̃ν1

m̃ν2

+4
√

m̃e

m̃µ

m̃ν1

m̃ν2
(1− δν) + 6 m̃e

m̃µ
(1− δν)

)

+2
mν1mν3δν

(1+m̃ν2)

(
1 +

m̃ν1

m̃ν2

)(√
m̃ν1m̃ν2

(1−δν)
−
√

m̃e

m̃µ

)2

×

× cos 2(we1 − we3) + 2
mν1mν2fν2

(1+m̃ν2)(1−δν)

(
m̃ν1

m̃ν2

+2
(
1− m̃ν1

m̃ν2

)√
m̃ν1

m̃ν2

m̃e

m̃µ
(1− δν)

)
cos 2(we1 − we2)

+2
mν2mν3fν2δν

(1+m̃ν2)
2
(1−δν)

2

(
1 +

m̃ν1

m̃ν2

)
(2m̃ν1m̃ν2

+
√

m̃e

m̃µ

m̃ν1

m̃ν2
(1− δν)

)
cos 2(we2 − we3)

}

(91)
where we2 = β1 and

we1 = arctan




−

√
m̃ν1

m̃ν2

m̃e

m̃µ
δeδνfν2

√
(1− δν) +

√
m̃ν1

m̃ν2

m̃e

m̃µ
(1− δν)




 ,

(92)

we3 ≈ arctan

{ √
m̃e
m̃µ

δefν2(1−δν)+

−
√

m̃e
m̃µ

δefν2(1−δν) tan β2+

+
√
δν
(√

m̃ν1m̃ν2−
√

m̃e
m̃µ

(1−δν)
)
tan β2

+
√
δν
(√

m̃ν1m̃ν2−
√

m̃e
m̃µ

(1−δν)
)

}
.

(93)

In a similar way, the theoretical expression for the
squared magnitud of the effective Majorana neutrino
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mass of the muon neutrino is:

|〈mµµ〉|2 ≈ 1(
1+ m̃e

m̃µ

)2(
1+

m̃ν1
m̃ν2

)2

(1+m̃ν2)

{
m2

ν3

(1+m̃ν2)
(
1 +

m̃ν1

m̃ν2

)2

(δν + 2δefν2) +
m2

ν2

(1+m̃ν2)(1−δν)
(1− δν

−4
√

m̃e

m̃µ

m̃ν1

m̃ν2
(1− δν) + 6 m̃e

m̃µ

m̃ν1

m̃ν2

)
+ 2mν1mν2fν2(

m̃ν1

m̃ν2
(1− δν) + 2

√
m̃ν1

m̃ν2

m̃e

m̃µ
(1− δν)

(
1− m̃ν1

m̃ν2

))

cos 2(wµ1 − wµ2) + 2mν1mν3

(
1 +

m̃ν1

m̃ν2

)
(2δν×

×
√

m̃ν1

m̃ν2

m̃e

m̃µ
(1− δν) +

m̃ν1

m̃ν2
(1− δν) (δν + δefν2)

)

cos 2(wµ1 − wµ3) + 2
mν2mν3fν2

(1+m̃ν2)(1−δν)

(
1 +

m̃ν1

m̃ν2

)

(
(1− δν) (δν + δefν2)− 2δν

√
m̃ν1

m̃ν2

m̃e

m̃µ
(1− δν)

)

cos 2(wµ2 − wµ3)}
(94)

where

wµ1 = arctan





√
m̃ν1

m̃ν2
δeδνfν2

√
m̃e

m̃µ
(1− δν) +

√
m̃ν1

m̃ν2
(1− δν)





,

(95)
and

wµ2 = arctan

{√
fν2 tanβ1 +

√
δeδν√

fν2 −
√
δeδν tanβ1

}
, (96)

wµ3 = arctan

{
tanβ2 −

√
fν2

1 +
√
fν2 tanβ2

}
. (97)

From these expresions and the numerical values of the
neutrinos masses given in (63), we obtain the follow-
ing numerical value of the effective Majorana neutrino
masses

|〈mee〉| ≈ 4.6× 10−3 eV, |〈mµµ〉| ≈ 2.1× 10−2 eV.
(98)

These numerical values are consistent with the very small
experimentally determined upper bounds for the reactor
neutrino mixing angle θl13 [29].

VIII. CONCLUSIONS

In this communication, we outlined a unified treatment
of masses and mixing of quarks and leptons in which the

left handed Majorana neutrinos acquire their masses via
the type I seesaw mechanism, and the mass matrices of
all Dirac fermions have a similar texture with four zeroes
and a normal hierarchy. Then, the mass matrix of the
left handed Majorana neutrinos has also a texture with
four zeros. In this scheme, we derived exact, explicit
expressions for the Cabibbo (θq12) and solar (θl12) mixing
angles as functions of the quark and lepton masses. The
Quark-Lepton Complementarity relation takes the form,

θq12 + θl12 = 45o + δth12. (99)
The correction term, δ12, is an explicit function of the
ratios of quark and lepton masses, given in eq. (83),
which reproduces the experimentally determined value,
δexp12 ≈ 2.7o, when the numerical values of the quark and
lepton masses are substituted in (83).

Three essential ingredients are needed to explain the
correlations implicit in the small numerical value of δth12:

1. The strong hierarchy in the mass spectra of the
quarks and charged leptons, realized in our scheme
through the explicit breaking of the S3 flavour sym-
metry in the texture with four zeroes for mass ma-
trices, explains the resulting small or very small
quark mixing angles, the very small charged lepton
mass ratios explain the very small value of θl13.

2. The normal seesaw mechanism that gives very
small masses to the left handed Majorana neutrinos
with relatively large values of the neutrino mass ra-
tio mν1/mν2 and allows for large θl12 and θl23 mixing
angles.

3. The assumption of a normal hierarchy for the
masses of the Majorana neutrinos.
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