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We revisit the model of a quantum Brownian oscillator linearly coupled to an

environment of quantum oscillators at finite temperature. By introducing a compact

and particularly well-suited formulation, we give a rather quick and direct derivation

of the master equation and its solutions for general spectral functions and arbitrary

temperatures. The flexibility of our approach allows for an immediate generalization

to cases with an external force and with an arbitrary number of Brownian oscillators.

More importantly, we point out an important mathematical subtlety concerning

boundary-value problems for integro-differential equations which led to incorrect

master equation coefficients and impacts on the description of nonlocal dissipation

effects in all earlier derivations. Furthermore, we provide explicit, exact analytical

results for the master equation coefficients and its solutions in a wide variety of cases,

including ohmic, sub-ohmic and supra-ohmic environments with a finite cut-off.
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I. INTRODUCTION

A. New Results placed in Background Context

An open quantum systems (OQS) [1] refers to a quantum system interacting with an

environment, which could be multi-partite, possessing many more degrees of freedom (it

could also be identified as the remaining “irrelevant” degrees of freedom of the system itself).

An environment in some simplified modeling can be described in terms of its spectral density

and parametrized by its temperature. Its influence on the open system can be expressed

in terms of fluctuations (vacuum and thermal) and noises (the most general form can be

colored and multiplicative). A theory of OQS describes the nature and dynamics of this

system as a result of such interactions, which manifest in quantum dissipation and diffusion

and can alter significantly the quantum coherence, entanglement and correlation properties

of the otherwise closed quantum system. The familiar quantum statistical mechanics is the

extreme limiting case when the system remains in equilibrium through interaction with a

thermal or chemical reservoir.

Open quantum system is the theoretical construct suitable for the investigation of the

properties and dynamics of nonequilibrium quantum systems in the Langevin vein (as dis-

tinguished from the Boltzmann vein which considers closed systems albeit often with a

hierarchical structure, see, e.g., [2]). It plays an important role in addressing the funda-

mental issues such as the quantum-to-classical transition through the environment-induced

decoherence mechanism [3, 4]. For practical purposes it has been effectively applied to excit-

ing phenomena in many new directions of micro- and meso-physics in the last two decades,

made possible by innovative experiments aided by technological advances in high-precision

instrumentation. These include the areas of superconductivity such as quantum dissipa-

tive tunneling in SQUIDs [5–7], atomic and quantum optical systems using ultrafast lasers

with atoms in cavities and optical lattices [8–10], as well as nanoelectromechanical devices

[11, 12] which have great potential in physical, chemical and bioscience applications. For an

accurate description of the system’s properties and evolution in these processes, the effects

of its interaction with the environment are essential.

Quantum Brownian motion (QBM) of an oscillator coupled to a thermal bath of quantum

oscillators has been extensively studied as a canonical model for open quantum systems



5

because there is a considerable amount of insight that one can learn from it while being

treatable analytically to a significant degree. In this paper we continue the lineage of work

on QBM via the influence functional path-integral method of Feynman and Vernon [13]

used by Caldeira and Leggett [14] to derive a master equation for a high-temperature ohmic

environment, which corresponds to the Markovian regime. Following this, Caldeira, Cerdeira

and Ramaswamy [15] derived the Markovian master equation for the system with weak

coupling to an ohmic bath, which was claimed to be valid at arbitrary temperature (see

Sec. V C for a critique of this claim). At the same time Unruh and Zurek [16] derived

a more complete and general master equation that incorporated a colored noise at finite

temperature, but there is problem with their fluctuation-dissipation relation (see Ref. [17]).

Finally, in a path-integral calculation from first principles, Hu, Paz and Zhang (HPZ) [17]

derived a master equation for a general environment (arbitrary temperature and spectral

density), barring certain subtle errors in the coefficients which lead to inaccurate treatment of

the nonlocal dissipation cases as we will discuss. After that, this equation has been rederived

by a number of authors. Halliwell and Yu [18] exploited the phase-space transformation

properties of the Wigner function for the full system plus environment and derived a Fokker-

Planck equation corresponding to the HPZ equation. Calzetta, Roura and Verdaguer (CRV)

[19, 20] derived it using a stochastic description for open quantum systems based on Langevin

equations, whereas Ford and O’Connell [21] employed a somewhat related method via the

quantum Langevin equation [22] and obtained also the solution to the HPZ equation for a

Gaussian wave-packet.

The present paper’s contribution to this legacy is threefold:

1. We have completely determined the precise form of the HPZ master equation coef-

ficients and pointed out a problem with earlier derivations for nonlocal dissipation

(Sec. III B).

2. We have found concise and efficient solutions to the master equation with a number

of exact nonpertrubative analytical results (Sec. IV).

3. We have extended the theory to that of a system of multiple oscillators bilinearly

coupled amongst themselves and to the bath in an arbitrary fashion while acted upon

by classical forces (Sec. VII). This goes far beyond previous generalizations of the

theory [23] which assume specific forms of coupling.
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In this paper we will follow the approach of CRV in Refs. [19, 20] and make use of a

stochastic description whose central element is a Langevin equation for the dynamics of

the open quantum system. This offers an efficient mathematical tool for obtaining all the

quantum properties of the system. An important feature of this present approach is the

reformulation in phase-space (rather than position space) together with the use of vector

and matrix notation. The combination of all these elements makes this new approach far

more flexible and compact. For example, we are able to derive the general expression for the

solution of the master equation in essentially two short lines [see Eq. (II.34)]. The flexibility

of our formalism is also illustrated by the straightforward generalizations to the cases of an

external force (this is nontrivial for nonlocal dissipation) and an arbitrary number of system

oscillators that will be presented.

One of our key contributions, however, is uncovering a significant shortcoming of earlier

results for the master equation coefficients. We point out a subtlety involving boundary

conditions for solutions of integro-differential equations and explain how certain properties

that hold for ordinary differential equations are not true for nonlocal dissipation. These

properties had always been employed erroneously, in one way or another, when deriving

the expressions for the master equation coefficients, even those which were then evaluated

numerically. This long-standing error could have deep implications for regimes where the

effects of nonlocal dissipation are significant and one should be cautious with all results for

those cases reported in the literature.

Taking into account the aspect mentioned in the previous paragraph, and using our com-

pact formulation, we have provided a relatively simplified expression for the correct master

equation. Moreover, one can also obtain the general solution to the master equation in terms

of the matrix propagator of a linear integro-differential equation, and see that at late times

it tends to a Gaussian state completely characterized by a constant covariance matrix. For

odd meromorphic spectral functions, and many others, we are able to reduce the calculation

of this covariance matrix to a simple contour integral and obtain exact nonperturbative

results for finite cut-off and arbitrarily strong coupling. This includes examples of ohmic,

sub-ohmic and supra-ohmic environments; and from this late-time covariance one can im-

mediately obtain the late-time diffusion coefficients as well. Our results generalize the work

of Anastopoulos and Halliwell [24] as well as Ford and O’Connell [21], who already found

the late time state to be a Gaussian, and the earlier work of Hu and Zhang [25, 26] on the
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generalized uncertainty function for Gaussian states.

In addition, working with Laplace transforms and then transforming back to time domain,

we manage to find the exact solutions for the propagators associated with the integro-

differential equations corresponding to ohmic, sub-ohmic and supra-ohmic environments

with a finite cut-off. This enables us to gain very valuable information on the dynamics

of the system. For instance, for an ohmic environment one can show that using the local

approximation for the propagator is a valid approximation in the large cut-off limit, which

makes it possible to obtain relatively manageable analytic results for the diffusion coefficients

at all times. Furthermore, the exact solution of a specific sub-ohmic environment reveals

that long-time correlations (due to excessive coupling with IR modes of the environment)

give rise to contributions to the propagator that decay at late times like power laws. This

invalidates the use of an effectively local description at late times, whose contributions decay

exponentially, and provides a clear example of a situation where nonlocal dissipation needs

to be properly dealt with. Finally, studying the exact solutions for some particular supra-

ohmic environment we also find significant nonlocal effects which are due in this case to

the UV regulator function. This leads to a marked cut-off sensitivity of the momentum

covariance that had not been noticed before.

B. Key Points and Organization

Those readers who want to find out quickly the problem with earlier derivations of the

master equation can simply read Sec. II to get acquainted with our notation and formalism

and go to Sec. III B, where the master equation is derived, aided perhaps by Appendix D,

which explains in detail the key mathematical subtlety concerning integro-differential equa-

tions and its implications for the existing derivations. They may also find Sec. VI valuable

since it contains specific examples where nonlocal dissipation effects give dominant contri-

butions and can lead to significant discrepancies from previous results.

The other useful results are mentioned below alongside a description of how this paper

is organized:

The key feature in the stochastic description for an open quantum system in terms of a

Langevin equation and its compact phase-space formulation is introduced in Sec. II, where a

very simple derivation of the general solution for the state evolution of the system is provided.
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The problems with previous derivations are pointed out and the correct derivation of the

master equation is given in Sec. III. The master equation is then solved using the method of

characteristic curves and the solution is shown to be equivalent to that obtained in a more

straightforward manner from the Langevin equation.

The general solution of the master equation is employed in Sec. IV to discuss general

properties in how the state of the QBM subsystem evoles, tending to a Gaussian stationary

state at late times. A very simple and intuitive picture of environment-induced decoherence

in terms of the reduced Wigner function can be directly extracted, which could easily be

made quantitative and precise. In addition, a generic discussion of late-time dynamics is

provided.

In Sec. V we find the exact nonlocal propagator for an ohmic environment with finite cut-

off and identify a new regime at ultra-strong coupling. We provide exact nonpertrubative

results for the late-time thermal covariance and full-time results for the diffusion coefficients

in the large cut-off limit.

Explicit examples of sub-ohmic and supra-ohmic spectral functions are considered in

Sec. VI for which the exact propagator is computed and dominant contributions from non-

local dissipation effects are found (of IR origin in one case and UV in the other).

The generalization to a system of multiple oscillators bilinearly coupled to themselves

and the bath in arbitrary fashion and acted upon by classical forces is presented in Sec. VII.

Finally, in Sec. VIII we summarize our results and discuss their main implications as well

as possible applications.

In addition to a couple of appendices on special functions and properties of Laplace

transforms for reference purposes, Appendix C contains technical aspects concerning diver-

gences of the dissipation kernel and frequency renormalization, as well as initial kicks and a

discussion of divergences associated with uncorrelated initial states.

Appendix D contains a detailed explanation of the mathematical subtlety for the

boundary-value problems for integro-differential equations and a discussion of how it af-

fected different classes of earlier derivations of the master equations. The important formula

for the late-time covariance in terms of a single frequency integral is derived in Appendix E,

and the explicit analytic results for the diffusion coefficients of an ohmic environment at all

times in the large cut-off limit are computed in Appendix F.

Throughout the paper we use units with ~ = kB = 1.
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II. THE LANGEVIN EQUATION

A. General Theory

The Lagrangian of a closed system consisting of a quantum Brownian oscillator with mass

M , natural frequency Ω and coordinate x, bilinearly coupled with coupling constants cn to

an environment consisting of oscillators with mass mn, natural frequency ωn and coordinates

xn, is most straightforwardly given by

L =
1

2
M
(
ẋ2 − Ω2

barex
2
)

+
∑
n

1

2
mn

(
ẋ2
n − ω2

nx
2
n

)
−
∑
n

cnxxn. (II.1)

One introduces a “bare” frequency Ωbare because the interaction with the environment shifts

the coefficient of the potential term by a certain amount δΩ2, so that the square of the actual

frequency characterizing the subsystem of interest is given by Ω2
bare − δΩ2. Alternatively,

one can consider the following Lagrangian:

L =
1

2
M
(
ẋ2 − Ω2x2

)
+
∑
n

1

2
mn

(
ẋ2
n − ω2

n

(
xn −

cnθs(t)

mnω2
n

x

)2
)
, (II.2)

where Ω corresponds to the actual frequency of the Brownian oscillator. For θs(t) = 1 and

provided that one identifies Ω2 with Ω2
bare − δΩ2, this new Lagrangian is equivalent to that

of Eq. (II.1) (further details on frequency renormalization and related issues are provided

in Appendix C). In addition, we included a switch-on function θs(t) which vanishes at the

initial time and smoothly increases to reach a constant unit value after a characteristic

time-scale ts. While we consider initially uncorrelated states for the Brownian oscillator

and the environment throughout the paper, which can sometimes lead to certain unphysical

results, introducing a smooth switch-on function provides a way of effectively generating well-

behaved initial states with the high-frequency modes of the environment properly correlated

with the Brownian oscillator. Further discussion on this point can be found in Appendix C 2,

but throughout the rest of the paper we will take θs(t) = 1 (or, equivalently, ts = 0) unless

stated otherwise, and will only occasionally describe how the results would differ for a non-

vanishing switch-on time.

The subsystem corresponding to the quantum Brownian oscillator constitutes an open

quantum system: while the evolution of the whole closed system is unitary, the Brown-

ian oscillator (referred to as the “system” from now on) evolves non-unitarily due to the
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entanglement generated by the interaction with the environment. An important object

characterizing the open system is the reduced density matrix, which results from taking

the density matrix of the closed system and tracing out the environment: ρr = TrEρ. The

expectation value of observables O that only depend on the system variables and are local

in time can be directly obtained from it: 〈O〉(t) = Tr [O ρr(t)]. Given the density matrix

for a continuous degree of freedom in position representation, one can always define the

corresponding Wigner function:

Wr(X, p, t) =
1

2π

∫ +∞

−∞
d∆ eip∆ ρr(X −∆/2, X + ∆/2, t), (II.3)

which contains the same amount of information. See for instance Ref. [27] for a detailed

description of the main properties of Wigner functions. In addition, the so-called dissipation

and noise kernels (which involve respectively the commutator and anticommutator of the

environment position operators in interaction picture) play an important role when study-

ing the open system dynamics [28, 29]. The case of a time-dependent coupling has been

considered by Hu and Matacz [30], wherein all parameters of the system and bath oscillators

and their couplings were allowed to be time-dependent. When only the system-environment

coupling is time-dependent, as in our case, and the initial state of the environment is a

thermal state with temperature T , the dissipation and noise kernels are given respectively

by

µ(t, τ) = −
∫ ∞

0

dω sin[ω(t− τ)] I(ω) θs(t)θs(τ), (II.4)

ν(t, τ) = +

∫ ∞
0

dω coth
( ω

2T

)
cos[ω(t− τ)] I(ω) θs(t)θs(τ), (II.5)

where I(ω) is the spectral density function defined by I(ω) =
∑

n(c2
n/2mnωn) δ(ω − ωn).

It is often taken to be ohmic, i.e. I(ω) = (2/π)Mγ0 ω, but with a cut-off regulator so that

it vanishes (or decays sufficiently fast) above some high-frequency scale Λ. However, more

general spectral functions have been considered before and will be considered here as well.

It was shown in Ref. [19] that the quantum properties of this kind of open systems can be

entirely studied using a stochastic description whose central element is a Langevin equation

of the form (L·x)(t) = ξ(t), where ξ(t) is a Gaussian stochastic source with a vanishing mean

and correlation function equal to the noise kernel, i.e. 〈ξ(t)〉ξ = 0 and 〈ξ(t)ξ(τ)〉ξ = ν(t, τ).

The dissipation kernel in turn appears in the Langevin integro-differential operator L, which
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is defined by

(L · x)(t) = Mẍ(t) +MΩ2x(t) + 2

∫ t

0

dτ µ(t, τ)x(τ) +MδΩ2 θ2
s (t)x(t). (II.6)

One can then express the time-evolving reduced Wigner function in terms of solutions of

the Langevin equation and a double average over their initial conditions, weighed with the

reduced Wigner function at the initial time, and over the realizations of the stochastic

source [see Eq. (II.28) below]. Furthermore, one can also obtain the quantum correlation

functions for system observables at multiple times (which in general cannot be obtained

from the reduced Wigner function and its evolution via the master equation) in terms of the

solutions of the Langevin equation [19], as briefly illustrated in Sec. II D. See also Ref. [22] for

a similar formulation involving a Langevin equation for operators in the Heisenberg picture.

If we take a vanishing switch-on time, which amounts to discarding the switch-on function

entirely, both the noise and dissipation kernels become time-translation invariant. Moreover,

it is convenient to introduce a damping kernel γ(t, τ) which is related to the dissipation

kernel by µ(t, τ) = −M(∂/∂τ)γ(t, τ). For times greater than the small switch-on time, the

damping kernel is then given by

γ(t, τ) =
1

M

∫ ∞
0

dω cos[ω(t− τ)]
I(ω)

ω
, (II.7)

which is symmetric, stationary, and positive definite like the noise kernel. Integrating by

parts, the left-hand side of the Langevin equation can be written as follows (see Appendix C

for further details):

(L · x)(t) = M

(
ẍ(t) + 2

∫ t

0

dτ γ(t, τ)ẋ(τ) + Ω2x(t)

)
+ 2Mγ(t, 0)x(0), (II.8)

The damping-kernel representation provides a cancelation of the frequency renormalization

while introducing a slip in the initial conditions. The slip can be thought of as a transient

and conditional forcing of the system. Ignoring the slip, all energy dissipated through the

nonlocal damping kernel will be strictly positive (no amplification) as it is a positive-definite

kernel.

B. Solutions of the Langevin Equation

The Langevin equation can be written as

L · x = M
(
ẍ+ 2 γ ∗ ẋ+ Ω2x

)
+ 2Mx0γ = ξ, (II.9)
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where ∗ denotes the Laplace convolution, i.e. (A ∗B)(t) =
∫ t

0
dτA(t− τ)B(τ)], and x0 is the

initial condition at t = 0. It is, thus, convenient to perform a Laplace transform

f̂(s) = L{f}(s) =

∫ ∞
0

dt e−stf(t), (II.10)

under which the equation becomes purely algebraic. The Laplace transform of Eq. (II.9) is

given by

M
(
s2 + 2sγ̂(s) + Ω2

)
x̂(s) = M (sx0 + ẋ0) + ξ̂(s), (II.11)

whose solution is

x̂(s) = M (sx0 + ẋ0) Ĝ(s) + Ĝ(s)ξ̂(s), (II.12)

Ĝ(s) =
1
M

s2 + 2sγ̂(s) + Ω2
, (II.13)

where terms proportional to the initial conditions x0 and ẋ0 correspond to the homogeneous

solution while the noise term corresponds to the driven solution. G(t) satisfies the initial

boundary conditions G(0) = 0, Ġ(0) = 1
M

and fully determines the retarded Green function

or propagator. In the time domain, the solution can be expressed as

x(t) = M
(
x0Ġ(t) + ẋ0G(t)

)
+ (G ∗ ξ)(t). (II.14)

1. Meromorphic Spectra

For an ohmic environment in the infinite cut-off limit one has γ̂(s) = γ0. More realistically,

γ̂(s) will decay sufficiently fast at high s, implying a certain degree of nonlocal dissipation

(non-polynomial behavior in Laplace space). Thus, as illustrated by this example, one will

generally need to deal with non-polynomial damping kernels γ̂(s). If γ̂(s) is a meromorphic

function (i.e. analytic except for an isolated set of poles), obtaining the inverse Laplace

transform of Ĝ(s) amounts to calculating a simple contour integral.

On the other hand, given expression (II.7) for the damping kernel, one can easily compute

its Laplace transform:

γ̂(s) =
1

M

∫ ∞
0

dω
I(ω)

ω

s

ω2 + s2
. (II.15)

If we take the odd extension of the spectral density for negative frequencies, i.e. I(−|ω|) ≡

−I(|ω|), then the integral can be recast as

γ̂(s) =
1

2M

∫ +∞

−∞
dω

I(ω)

ω

s

ω2 + s2
, (II.16)
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which can be easily evaluated if the odd extension of I(ω) is meromorphic, e.g. for I(ω) ∼ ω

but not I(ω) ∼ ω2. This is still less than ideal as the difficulty of solving the Langevin

equation is more directly determined by the nature of the damping kernel. One would

rather make the choice of damping kernel first (preferably in the Laplace domain) than

derive it from the spectral density. Nevertheless, since the spectral density is still required

to compute the noise kernel, we need the inverse relationship. Furthermore, as shown below,

not every γ̂(s) (even sufficiently regular ones) can be obtained from a spectral function

through Eq. (II.16).

Fortunately, Eq. (II.7) implies a simple relation between the spectral density and the

Fourier transform of the damping kernel: I(ω) = M
π
ωγ̃(ω), and using Eq. (B.14) applied to

γ̃(ω) we get the following result for I(ω) in terms of the Laplace transform of the damping

kernel:

I(ω) =
1

π
Mω lim

ε→0
[γ̂(ε+ ıω) + γ̂(ε− ıω)] . (II.17)

From this we see that meromorphic damping kernels result in spectral densities which are

odd meromorphic functions. Conversely, we have also seen that odd meromorphic spectral

densities lead to a meromorphic damping kernel in Laplace space that can be obtained via

contour integration through Eq. (II.16). We will thus refer to this class of odd meromorphic

spectral densities and corresponding damping kernels as meromorphic spectra. Moreover,

as we will see in later sections, given that Bromwich’s formula for the inverse Laplace

transform can also be computed as a contour integral, all the important quantities for these

meromorphic spectra are calculable via contour integration.

Note that, as mentioned above, not every meromorphic function γ̂(s) corresponds to a

damping kernel that can be obtained from a spectral function through Eq. (II.16). This

point can be seen by realizing that according to Eq. (II.17) different γ̂(s) will give rise to

the same spectral density as long as γ̂(ε+ ıω) + γ̂(ε− ıω) is the same. Hence, if one wants to

consider a candidate function γ̂(s), one should proceed as follows. Eq. (II.17) is first used to

obtain the spectral density, which is then substituted into Eq. (II.16). If the initial candidate

is recovered, it was a satisfactory one to begin with, otherwise it should be discarded, but

the new damping kernel obtained in the last step is a valid one, which can be used instead.
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2. Phase-Space Representation

If we introduce the phase-space coordinates qT = (x, p), the Langevin equation (II.9),

together with the relation p = mẋ, can be recast as a first-order linear integro-differential

system of equations:

q̇ + H ∗ q = ξ, (II.18)

where we introduced the boldface notation for vectors and matrices, ξT = (0, ξ) and the

time-nonlocal pseudo-Hamiltonian H(t, τ) = H(t− τ) is given by

H(τ) =

 0 − 1
M
δ(τ)

MΩ2δ(τ) 2 γ(τ)

 . (II.19)

Performing the Laplace transform of Eq. (II.18), which becomes a purely algebraic equation,

and rearranging the terms to express the solution in terms of the initial conditions and the

stochastic source, one gets

q̂(s) = Φ̂(s) q0 + Φ̂(s) ξ̂(s), (II.20)

Φ̂(s) =

 Ms Ĝ(s) Ĝ(s)

M2s2Ĝ(s)−M Ms Ĝ(s)

 , (II.21)

where Ĝ(s) is the same propagator derived in the position representation and given by

Eq. (II.13). Transforming back to the time domain, we can express the initial-value solutions

as

q(t) = Φ(t) q0 + (Φ ∗ ξ)(t), (II.22)

Φ(t) =

 MĠ(t) G(t)

M2G̈(t) MĠ(t)

 , (II.23)

and Φ(t) can be identified as the matrix propagator associated with the phase-space version

of the Langevin equation, Eq. (II.18).

Combining the result for q(t) as given by Eq. (II.22) with an analogous expression for

the solution q(τ) evaluated at an earlier time τ < t, one can write q(τ) in terms of q(t) and

the stochastic source as follows:

q(τ) = Φ(τ, t) q(t)−
∫ t

τ

dτ ′Φ(τ, t) Φ(t− τ ′) ξ(τ ′)

−
∫ τ

0

dτ ′ [Φ(τ, t) Φ(t− τ ′)−Φ(τ − τ ′)] ξ(τ ′), (II.24)
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where we introduced the transition matrix Φ(t, τ), which is defined as

Φ(t, τ) = Φ(t) Φ−1(τ). (II.25)

Note that Φ(t, τ) 6= Φ(t − τ) unless one has local dissipation. Thus, in the general case of

nonlocal dissipation the last term on the right-hand side of Eq. (II.24) does not vanish and

q(τ) also depends on ξ(τ ′) with τ ′ < τ . This means that, unlike with ordinary differential

equations, when boundary conditions q(t) are specified at a final time t, there is no truly ad-

vanced propagator for the inhomogeneous solutions of the integro-differential equation. One

can still express the solution of such a final-value problem in terms of a matrix propagator

(or Green’s function in position space) with the right boundary conditions:

q(τ) = Φ(τ, t) q(t) +

∫ t

0

dτ ′Φf (τ, τ ′) ξ(τ ′), . (II.26)

where

Φf (τ, τ ′) = −Φ(τ, t) Φ(t− τ ′) + θ(τ − τ ′) Φ(τ − τ ′), (II.27)

but one only has Φf (τ, τ ′) = 0 for τ > τ ′ in the case of strictly local dissipation.

Such mathematical subtleties of final-value problems for integro-differential equations

have been missed in the existing literature on the derivation of the master equation for

QBM models and could lead to significant discrepancies whenever the nonlocal effects of

dissipation are important. A detailed discussion of this and related points is provided in

Appendix D.

C. Evolution of States

As found in Ref. [19], the reduced Wigner function can be expressed in terms of the

solutions of the Langevin equation and a double average over their initial conditions and

the realizations of the stochastic source. Using the vector notation for phase-space variables

introduced in the previous subsection, the result can be written as

Wr(q, t) =
〈
〈δ(q(t)− q)〉ξ

〉
q0

, (II.28)

with the averages over the initial conditions and the stochastic source defined as follows:

〈· · · 〉q0 =
1

2π

∫
dq · · ·Wr(q, 0), (II.29)

〈· · · 〉ξ =
1√

2π det(ν)

∫
Dξ · · · e−

1
2
ξ·ν−1·ξ, (II.30)
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where the right-hand side of Eq. (II.30) corresponds to the functional integral associated

with the Gaussian stochastic source. The characteristic function of the Wigner function,

regarded as a phase-space distribution, is given by its Fourier transform and it can be shown

to take a rather simple form:

Wr(k, t) =

∫
dq e−ik

Tq
〈
〈δ[q− q(t)]〉q0

〉
ξ

(II.31)

=

〈〈
e−ik

Tq(t)
〉

q0

〉
ξ

=
〈
e−ik

TΦ(t)q0

〉
q0

〈
e−ik

T(Φ∗ξ)(t)
〉
ξ

(II.32)

= Wr

(
ΦT(t)k, 0

)
e−

1
2
kTσT (t)k, (II.33)

where the thermal covariance matrix σT (t) is given by

σT (t) =

∫ t

0

dτ

∫ t

0

dτ ′Φ(t− τ)ν(τ, τ ′) ΦT(t− τ ′), (II.34)

ν(τ, τ ′) =

 0 0

0 ν(τ, τ ′)

 . (II.35)

In the third equality above we used the initial-value solution (II.22) for q(t) to get Eq. (II.32),

and in the last step we completed the square to calculate the Gaussian functional integral

corresponding to the noise average in order to obtain the final result in Eq. (II.33). Note that

for our Lagrangian, the stochastic force ξ only has a momentum component and, therefore,

all the components of its covariance matrix ν vanish except for the momentum-momentum

component, which coincides with the noise kernel.

The form of the solution is rather simple: all initial cumulants of the Wigner function

undergo damped oscillations (for the underdamped case) while the thermal covariance starts

from a vanishing value and evolves to the asymptotic values corresponding to the thermal

equilibrium state for the system coupled to the environment. We will discuss these solutions

more thoroughly in Sec. IV.

D. General Correlations

Using the initial-value solution of the Langevin equation given by Eq. (II.22) and follow-

ing the same approach as in Ref. [19], it is straightforward to calculate quantum correlations

between system observables at different times. For instance, the symmetrized two-point
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quantum correlation function for position and momentum operators in the Heisenberg rep-

resentation is given by:

1

2

〈
q(t1) qT(t2) + q(t2) qT(t1)

〉
=

1

2

〈〈
q(t1) qT(t2) + q(t2) qT(t1)

〉
ξ

〉
q0

, (II.36)

which with our solutions in Eq. (II.22) and some basic properties of the stochastic Gaussian

source, namely 〈ξ(t)〉ξ = 0 and 〈ξ(t)ξ(τ)〉ξ = ν(t, τ), will produce the two-time correlation〈〈
q(t1) qT(t2)

〉
ξ

〉
q0

= Φ(t1)σ0 ΦT(t2) + σT (t1, t2) , (II.37)

σT (t1, t2) =

∫ t1

0

dτ1

∫ t2

0

dτ2 Φ(t1 − τ1) ν(τ1, τ2) ΦT(t2 − τ2) . (II.38)

The result for the coincidence-time limit, t1 = t2 = t, agrees with that of our master

equation solution, Eqs. (II.33)-(II.34), as discussed in Sec. IV A 1. Higher-order correlations

can be calculated in a similar manner, but we can see from the form of our solution in

Eq. (II.33) and the Gaussian character of the stochastic source and its vanishing mean

that only the homogeneous part of the solution contributes to cumulants different from the

second-order one, which are therefore entirely characterized by the initial state of system

and the homogeneous solutions of the Langevin equation.

III. MASTER EQUATION

A. General Theory

Given the microscopic QBM model of Sec. II A, the HPZ master equation for the reduced

density matrix operator ρr and for the reduced Wigner function are given respectively by

∂

∂t
ρr = −ı [HR, ρr]− ıΓ [x, {p, ρr}]−MDpp [x, [x, ρr]]−Dxp [x, [p, ρr]] , (III.1)

∂

∂t
Wr = {HR,Wr}+ 2Γ

∂

∂p
(pWr) +MDpp

∂2

∂p2
Wr −Dxp

∂2

∂x∂p
Wr, (III.2)

where HR corresponds to the system Hamiltonian with Ω2 replaced by a time-dependent

frequency Ω2
R(t) ∼ Ω2 whose detailed form, together with that of the time-dependent dis-

sipation coefficient Γ(t) and the diffusion coefficients Dxp(t) and Dpp(t), can be found in

Ref. [17].

However, as discussed in Appendix D, previous derivations of this master equation missed

a mathematical subtlety concerning the Green functions of integro-differential equations,
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which renders the existing results for the master equation coefficients invalid whenever the

nonlocal aspects of dissipation become important. In the next subsection we provide a

compact rederivation of the master equation where this issue is properly dealt with, and

obtain the correct expressions for the coefficients in the general case (including the case of

nonlocal dissipation). In addition, in Sec. III C we will provide an analytic expression for

the solutions of the master equation and show its equivalence with the result for the state

evolution obtained in the previous section using the Langevin equation.

B. Derivation of the Master Equation

At this point, the quickest derivation of the QBM master equation would merely consist

of taking the time derivative of Eq. (II.33) and calculating the inverse Fourier transform.

Nevertheless, in order to point out the differences with previous derivations, which missed the

subtleties of propagators associated with integro-differential equations, we will now provide

a more traditional derivation involving the propagator associated with final-value boundary

conditions and show that, when done correctly, the two are equivalent. We will follow the

derivation by Calzetta, Roura and Verdaguer (CRV) [19, 20] adapting it to our compact

notation in terms of phase-space vectors and matrices.

We start by considering the stochastic representation of the Wigner function

Wr(q, t) =
〈
〈δ(q(t)− q)〉ξ

〉
q0

, (III.3)

and differentiate with respect to time:

∂

∂t
Wr(q, t) = −∇T

q

〈
〈q̇(t) δ(q(t)− q)〉ξ

〉
q0

. (III.4)

One can then use the Langevin equation q̇ + H ∗ q = ξ to substitute q̇(t) and rewrite

Eq. (III.4) as

∂

∂t
Wr(q, t) = ∇T

q

〈〈(∫ t

0

dτ H(t, τ) q(τ)− ξ(t)

)
δ(q(t)− q)

〉
ξ

〉
q0

. (III.5)

Next, using Eq. (II.26) one can express q(τ) in terms of the final value q(t) = q and the

propagator Φf(τ, τ
′) given by Eq. (II.27). As already pointed out in Sec. II B and discussed in

detail in Appendix D, Φf(τ, τ
′) will only be a truly advanced propagator [with Φf(τ, τ

′) = 0

for τ > τ ′] when considering a strictly local damping kernel, contrary to what had been



19

previously assumed. After using Eq. (II.26) we are left with a homogeneous term and two

more terms involving the stochastic source:

∂

∂t
W (q, t) = ∇T

q

∫ t

0

dτ H(t, τ) Φ(τ, t) qW (q, t)

+∇T
q

〈〈∫ t

0

dτ

∫ t

0

dτ ′H(t, τ) Φf(τ, τ
′) ξ(τ ′) δ(q(t)− q)

〉
ξ

〉
q0

−∇T
q

〈
〈ξ(t) δ(q(t)− q)〉ξ

〉
q0

. (III.6)

The expectation value of the terms proportional to the stochastic source ξ can be evaluated

with the help of Novikov’s formula

〈ξ(τ ′) δ(q(t)− q)〉ξ = −
∫ t

0

dτ ′′ ν(τ ′, τ ′′)

〈[
δq(t)

δξ(τ ′′)

]T
∇q δ(q(t)− q)

〉
ξ

, (III.7)

which can be derived by using Eq. (II.30) and functionally integrating by parts with respect

to ξ. The functional Jacobian matrix appearing in Eq. (III.7) can be easily obtained by

functionally differentiating with respect to ξ(τ ′′) the solution of the Langevin equation as

given by Eq. (II.22), and one gets[
δq(t)

δξ(τ ′′)

]
= Φ(t− τ ′′) . (III.8)

Putting these elements together we finally get the following result for the master equation:

∂

∂t
Wr(q, t) =

{
∇T

q H(t) q + ∇T
q D(t)∇q

}
Wr(q, t), (III.9)

with the time-local pseudo-Hamiltonian and diffusion matrices given respectively by

H(t) ≡
∫ t

0

dτ H(t, τ) Φ(τ, t), (III.10)

D(t) ≡ Sy

∫ t

0

dτ ν(t, τ) ΦT(t− τ)

−Sy

∫ t

0

dτ

∫ t

0

dτ ′
∫ t

0

dτ ′′H(t, τ) Φf(τ, τ
′) ν(τ ′, τ ′′) ΦT(t− τ ′′) , (III.11)

and where Φf(τ, τ
′) was defined in Eq. (II.27), and only the symmetric part, Sy(M) ≡(

M + MT
)
/2, of the diffusion matrix contributes to the master equation. These matrices

relate to the conventional representation as follows:

H(t) =

 0 − 1
M

MΩ2
R(t) 2Γ(t)

 D(t) =

 0 −1
2
Dxp(t)

−1
2
Dxp(t) MDpp(t)

 . (III.12)
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The result for the master equation coefficients is expressed here in a form analogous to that of

previous derivations, but this is not the simplest representation. We will next proceed to sim-

plify them by eliminating the explicit dependence on the time-nonlocal pseudo-Hamiltonian

H(t, τ).

1. Simplification of the Master Equation Coefficients

Let us start with the pseudo-Hamiltonian matrix

H(t) = (H ·Φ)(t) Φ−1(t). (III.13)

Taking into account that Φ satisfies the integro-differential equation Φ̇(t) = −(H · Φ)(t),

the pseudo-Hamiltonian can be rewritten as

H(t) = −Φ̇(t) Φ−1(t). (III.14)

This new expression for H(t) immediately reveals that the homogenous solutions of the

nonlocal Langevin equation can be equivalently related to the solutions of linear ordinary

differential equation with time-dependent coefficients. Indeed, the nonlocal propagator also

satisfies the dual local equation

Φ̇(t) + H(t) Φ(t) = 0. (III.15)

Hence, for local dissipation one would simply have a time-independent H and Φ(t) = e−tH,

whereas for nonlocal dissipation H(t) would be time-dependent and Φ(t) would be given by

a time-ordered exponential.

One can proceed analogously for the diffusion matrix. In order to do so we need to

simplify the following integral:∫ t

0

dτ H(t, τ) Φ(τ − τ ′) θ(τ − τ ′) =

∫ t

τ ′
dτ H(t− τ) Φ(τ − τ ′)

=

∫ t−τ ′

0

dτ H(t− τ ′ − τ) Φ(τ)

= −Φ̇(t− τ ′). (III.16)

where we made use of the stationary property of the dissipation kernel and introduced a

simple change of variables. Using Eqs. (III.14) and (III.16), Eq. (III.11) can be simplified
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to the following form, which involves terms with at most two time integrals:

D(t) = Sy

∫ t

0

dτ ν(t, τ) ΦT(t− τ)

+Sy

∫ t

0

dτ

∫ t

0

dτ ′
{[

d

dt
+ H(t)

]
Φ(t− τ)

}
ν(τ, τ ′) ΦT(t− τ ′) , (III.17)

where one can clearly see that the second term on the right-hand side vanishes for local

dissipation, when the transition matrix is the exponential matrix e−tH. However, it can

play a crucial role whenever the effects of nonlocal dissipation are important, as in the

example of a sub-ohmic environment of Sec. VI A.

From our new expression (III.17) one can see that the diffusion matrix can be easily

related to the thermal covariance, as given by Eq. (II.34), and its time derivative. Our

simplified representation of the master equation is then

∂

∂t
Wr(q, t) =

{
∇T

q H(t) q + ∇T
q D(t)∇q

}
Wr(q, t), (III.18)

H(t) = −Φ̇(t) Φ−1(t), (III.19)

D(t) =
1

2

{
H(t)σT (t) + σT (t)HT(t) + σ̇T (t)

}
, (III.20)

with the phase-space propagator Φ(t) given by Eq. (II.23) and the thermal covariance σT (t)

given by Eq. (II.34). This representation contains fewer integrals than the conventional

representation and is completely determined in terms of Φ(t) and the noise kernel.

C. Master Equation Solutions

In this section we will show that the master equation itself can be solved to produce the

same solution as derived in Sec. II C. We consider the general master equation

∂

∂t
Wr =

(
∇T

q D(t)∇q + ∇T
q H(t) q

)
Wr . (III.21)

This is a hyperbolic second-order partial differential equation (PDE). The equation is not

separable in time nor phase-space. The nature of the PDE suggests taking a Fourier trans-

form of the phase-space variables as the derivatives are of higher order than the algebraic

parameters. Furthermore, not only does a Fourier transform reduce the PDE to first order,

but the computation of expectation values also becomes trivial since we are then working

with the characteristic function of the distribution.
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The Fourier transform is defined as

F{f}(k) =

∫ +∞

−∞
dx

∫ +∞

−∞
dp e−ık·qf(q), (III.22)

and it exhibits the usual properties:

ın
∂nF{f}
∂knj

(0) =

∫ +∞

−∞
dx

∫ +∞

−∞
dp qnj f(q). (III.23)

The master equation becomes then(
∂

∂t
+ kTH∇k

)
Wr = −kTD kWr. (III.24)

where Wr = F{Wr} and the normalization of Wr(q, t) implies Wr(0, t) = 1.

From Eq. (III.24) it is clear that if the master equation coefficients asymptote to constant

values, then we will have a stationary Gaussian solution in the late-time limit given by

W∞T = e−
1
2
kTσ∞T k , (III.25)

with σ∞T uniquely determined by the Lyapunov equation

H∞ σ∞T + σ∞T HT
∞ = 2D∞ . (III.26)

To zeroth-order in the system-environment coupling, this corresponds to the free thermal

state of the system. It is also reasonable to believe that more generally this corresponds to

the thermal state of our system coupled to the environment (i.e. the reduced density matrix

of the thermal state of the whole system including the system-environment interaction). For

arbitrary systems this has been proven to second order in the system-environment coupling

(here first order in damping, e.g. γ0) [31].

1. Method of Characteristic Curves

The method of characteristic curves involves looking for parameterized curves in the

domain (t,k) along which the first order PDE becomes a set of first-order ODEs. For each

one of those curves we have

Wr[k, t] = Wr[k(τ), t(τ)] , (III.27)

d

dτ
Wr =

dt

dτ

∂

∂t
Wr +

dk

dτ

T

∇kWr , (III.28)
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Next, we attempt to match the right-hand side of Eq. (III.28) to the left-hand side of

Eq. (III.24). This results in a system of ODEs in the parameter τ . We will look for curves

that synchronize with the initial time so that t(0) = 0, k(0) = k0. The solution for the

parameterization of the time coordinate is simple:

dt

dτ
= 1 ⇒ t(τ) = τ . (III.29)

On the other hand, finding the parameterization for the Fourier transform of the phase-space

variables is a bit more involved. It is characterized by the linear ODE system

d

dτ
kT(τ) = +kT(τ)H(τ). (III.30)

and its solutions can be written as

k(τ) = Φk(τ)k0, (III.31)

where Φk(τ) is the matrix propagator associated with the transpose of Eq. (III.30) and

equals the identity matrix at τ = 0. For local dissipation, H is time independent and

the propagator is simply given by ΦT
k (τ) = e+τH, which equals Φ−1(τ). Such a relation

between the matrix propagator of the integro-differential Langevin equation (II.18) and the

local equation (III.30) actually holds in general. Indeed, taking into account Eq. (III.14), it

follows that the propagator for the characteristic curves ΦT
k (τ) must satisfy the equation

d

dτ
ΦT
k (τ) = −ΦT

k (τ) Φ̇(t) Φ−1(t), (III.32)

which is equivalent to the relation

d

dτ

(
ΦT
k (τ) Φ(τ)

)
= 0. (III.33)

Together with ΦT
k (0) Φ(0) = I, since both Φk(τ) and Φ(τ) equal the identity matrix at the

initial time, this implies that ΦT
k (τ) = Φ−1(τ).

We now have the rules for transforming back and forth between the domain coordinates

(t,k) and the characteristic curve coordinates (τ,k0); k0 uniquely specifies each characteristic

curve parameterized by τ . Using these results, we can immediately apply the method of

characteristic curves to solving Eq. (III.24) as follows:

d

dτ
Wr[k(τ), t(τ)] = −kTD(t)kWr[k(τ), t(τ)] , (III.34)

d

dτ
Wr[Φk(τ)k0, t(τ)] = −

(
kT

0 ΦT
k (τ) D(τ) Φk(τ)k0

)
Wr[Φk(τ)k0, t(τ)] . (III.35)
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The last equation is a linear ODE whose solution can be easily found to be

Wr[Φk(τ)k0, τ ] =Wr[k0, 0] e−
∫ τ
0 dτ

′(kT
0 ΦT

k (τ ′) D(τ ′) Φk(τ ′)k0), (III.36)

where Wr[k0, 0] is the initial characteristic function at t = 0. We can now express the

solution back in terms of k and Φ to get the final result

Wr[k, t] =Wr

[
ΦT(t)k, 0

]
e−

1
2
kTσT (t)k, (III.37)

with thermal covariance defined

σT (t) ≡ 2

∫ t

0

dτ Φ(t, τ) D(τ) ΦT(t, τ), (III.38)

and note that Φ(t, τ) here does not have time-translational invariance for nonlocal dissipa-

tion, where Φ(t, τ) = Φ(t) Φ−1(τ) 6= Φ(t− τ); see the discussion in Appendix D.

2. Equivalence with the Result from the Langevin Equation

We have shown that the form of the solution from the master equation is equivalent to

that derived from the Langevin equation in Sec. II B. What remains to be shown is that the

thermal covariances are indeed equivalent. To do this one can differentiate Eq. (III.38) with

respect to time and get the following result:

σ̇T (t) = −H(t)σT (t)− σT (t)HT(t) + 2 D(t). (III.39)

This equation is also satisfied by the thermal covariance expression directly derived from

the Langevin equation, as can be seen from Eq. (III.20). Furthermore, the thermal covari-

ances given by Eqs. (III.38) and (II.34) both have vanishing initial conditions: σT (0) = 0.

Therefore, since they are both solutions of the same ordinary differential equation and have

the same initial conditions, they must be equivalent.

IV. EVOLUTION OF STATES

A. General Solutions

Whether derived via the Langevin equation in Sec. II C or solving the master equation

in Sec. III C, the evolution of the system state is most easily represented in terms of the
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characteristic function (the Fourier transform) of the reduced Wigner distribution:

Wr[k, t] =Wr

[
ΦT(t)k, 0

]
e−

1
2
kTσT (t)k, (IV.1)

with the thermal covariance σT (t) given by

σT (t) =

∫ t

0

dτ

∫ t

0

dτ ′Φ(t− τ)ν(τ, τ ′) ΦT(t− τ ′), (IV.2)

where Φ(t) is the phase-space propagator for the Langevin equation defined in Eq. (II.21).

The solution in Eq. (IV.1) consists of two factors. The first one tends to unity in the long

time limit and encodes the disappearance of the initial state (we will call it the death factor).

The second factor describes the appearance of a Gaussian state that evolves in time and

tends asymptotically to a state that corresponds to thermal equilibrium (we will refer to this

as the birth factor). Assuming dissipation, all initial distributions evolve towards this final

Gaussian state, with thermal covariance σT (t). This state does not look like the thermal

state of a free harmonic oscillator because of the coupling to the environment. It more likely

results from considering the thermal equilibrium state for the whole system (system plus

environment) including the system-environment interaction, which gives rise to a non-trivial

correlation between them, and tracing out the environment.

The death factor contains the information on the initial conditions; it describes the grad-

ual disappearance of the initial distribution and it is always temperature independent. The

free evolution of the Wigner function corresponds to rotation in phase space (when properly

rescaled) at constant angular velocity. Dissipation will modify this rotation to inspiralling of

the trajectories down to the origin, or decay to the origin without completing a full rotation

in the case of overdamping. More generally, for nonlocal dissipation the trajectories will

correspond to those of a parametrically damped oscillator, which in some cases could be

quite complicated.

The birth factor describes the complicated birth and settlement of a state of thermal

equilibrium. This factor is always Gaussian with a covariance matrix given by Eq. (IV.2),

which involves a convolution of the noise kernel with propagators that reflect the natural

oscillatory decay of the system. This covariance matrix vanishes at the initial time and tends

at late times to an equilibrium covariance matrix which can be easily determined from the

Lyapunov equation (III.26). The thermal covariance matrix is always positive definite.
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1. Trajectories of the Cumulants

As we have already mentioned, the Fourier transfom of the reduced Wigner function

corresponds to its characteristic function, from which the correlation functions for the phase-

space variables can be easily derived using Eq. (III.23). The general expressions for the

cumulants can be obtained straightforwardly from the logarithm of the reduced Wigner

function in Fourier space as follows:

∞∑
n=1

1

n!
κ

(n)
i1...in

(t)
n∏
l=1

ıkil = logWr(k, t), (IV.3)

where kil denotes the components of the vector k and we used the Einstein summation

convention for pairs of repeated indices (i.e., it is implicitly understood that a sum
∑2

il=1

should be preformed over each pair of repeated indices il). κ(n) is the nth cumulant and

acts as a tensor of order n contracted with n copies of k. Using the result for Wr(t,k) from

Eq. (IV.1) we have

∞∑
n=1

1

n!
κ

(n)
i1...in

(t)
n∏
l=1

ıkil =
∞∑
n=1

1

n!
κ

(n)
i1...in

(0)
n∏
l=1

ı
(
ΦT(t)k

)il − 1

2
kTσT (t)k, (IV.4)

where κ
(n)
j1...jn

(0) are the cumulants associated with the initial distribution. Eq. (IV.4) implies

κ
(n)
i1...in

(t) = κ
(n)
j1...jn

(0)
n∏
l=1

ı
(
ΦT(t)

)jlil + δn2 σ
i1i2
T (t). (IV.5)

We can see that the only cumulant with a non-vanishing asymptotic value, which is a

consequence of the thermal fluctuations, is the covariance matrix (with n = 2). The closely

related second momenta of the distribution are given by

〈qqT〉(t) = Φ(t) 〈qqT〉q0 ΦT(t) + σT (t), (IV.6)

where 〈· · · 〉q0 denotes the expectation value with respect to the reduced Wigner function

at the initial time,1 as defined in Eq. (II.29). All other cumulants experience whatever

1 Note that the expectation value of any phase-space function with respect to the reduced Wigner function

is equivalent to a quantum expectation value with respect to the corresponding reduced density matrix

where the arguments x and p of the phase-space function are promoted to operators and the Weyl ordering

prescription is employed. In particular, for the second-order cumulants this corresponds to considering

symmetrized two-point quantum correlation functions.
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oscillatory decay is inherent in the homogeneous solution of the Langevin equation. In

particular, the expectation value

〈q〉(t) = Φ(t) 〈q〉q0 , (IV.7)

follows a trajectory like that plotted in Fig. 1 for local dissipation, where one can see that

the trajectory of the expectation values 〈x〉, 〈p〉 for any initial distribution inspiral into the

origin. This captures the behavior of Gaussians plotted by Unruh and Zurek [16].

Xx\

X p\
M W

FIG. 1: The trajectory of the expectation values 〈x〉, 〈p〉.

2. Thermal Covariance

As we have seen, the only additional quantity that needs to be calculated besides the

propagator is the thermal covariance. Here we discuss the full-time evolution of the thermal

covariance, which can be most easily obtained from Eq. (IV.2). Using the addition formula

for the argument of the cosine function appearing in the definition of the noise kernel, one
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obtains the following expressions for the components of the thermal covariance, which only

involve calculating a single time integral besides the integral over frequencies:

σxxT (t) =

∫ ∞
0

dω I(ω) coth
( ω

2T

){
[G(t) ∗ cos (ωt)]2 + [G(t) ∗ sin (ωt)]2

}
, (IV.8)

σxpT (t) =
1

2
Mσ̇xxT (t), (IV.9)

σppT (t) = M2

∫ ∞
0

dω I(ω) coth
( ω

2T

){[
Ġ(t) ∗ cos (ωt)

]2

+
[
Ġ(t) ∗ sin (ωt)

]2
}
.(IV.10)

These results are expressed in terms of Laplace convolutions of the propagator with sinusoidal

functions which become trivial in Laplace domain, although one must eventually transform

back to compute the squares. Moreover, integrating by parts in the Laplace convolutions

and taking into account that G(0) = 0, the momentum covariance can be expressed in the

alternative form

σppT (t) = M2

∫ ∞
0

dω ω2 I(ω) coth
( ω

2T

){
[G(t) ∗ cos (ωt)]2 + [G(t) ∗ sin (ωt)]2

}
+M2 ν(0)G(t)2, (IV.11)

which is completely analogous to that for the position covariance, but with an effectively

higher-order spectral density due to the additional factor of ω2, plus a simple cut-off sensitive

transient term which decays with the characteristic relaxation rate. It becomes then obvious

that the momentum covariance will contain the dominant contribution to any potential

ultraviolet sensitivity of the thermal covariance, whereas the position covariance will contain

the dominant contribution to any possible infrared sensitivity.

In order to compute the evolution of the thermal covariance, especially when calculating

it numerically, it is often convenient to use the following alternative expressions, which can

be derived by differentiating with respect to time the xx and pp components of Eq. (IV.2):

σ̇xxT (t) = 2G(t) [ν(t) ∗G(t)] , (IV.12)

σ̇ppT (t) = 2M2Ġ(t)
d

dt
[ν(t) ∗G(t)] , (IV.13)

σxpT (t) =
M

2
σ̇xxT (t) = M G(t) [ν(t) ∗G(t)] , (IV.14)

where the convolution of the propagator with the noise kernel should be performed before

the frequency integral of the noise kernel. This will typically result in expressions more

amenable to numerics since one can avoid increasingly oscillatory integrands.
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For odd meromorphic spectral functions the frequency integral can be evaluated by con-

tour integration (and the residue theorem) using the rational expansion of the hyperbolic

cotangent

coth
( ω

2T

)
=

2T

ω
+

2

π

∞∑
k=1

ω
2πT

k2 +
(

ω
2πT

)2 . (IV.15)

One should then be left with a sum of terms rational in the Laplace domain, which can be

contracted into digamma or harmonic-number functions [respectively ψ(z) or H(z)], which

are asymptotically logarithmic. When transforming back to the time domain, the residues

of the hyperbolic cotangent additionally give rise to products of rational functions of k with

e−2πTtk. These terms contain all effects which decay at temperature-dependent rates and

can be expressed in terms of Lerch transcendent functions, Φ
(
z, 1, e−2πTt

)
, which are useful

for numerical calculations but not particularly insightful.

Fortunately, one can also derive a simple analytic expression for the late-time thermal

covariance, as shown in Appendix E:

σT (∞) =

∫ ∞
0

dω I(ω) coth
( ω

2T

)
Ĝ(+ıω)

 1 0

0 M2ω2

 Ĝ(−ıω), (IV.16)

which reduces the calculation of late-time uncertainties to a single integral. This relation

confirms that for late times the momentum covariance has precisely ω2 more frequency

sensitivity in its integrand.

3. Linear Entropy

In this subsection we investigate the linear entropy [32], which can be easily obtained

from the Wigner distribution as follows:

SL = 1− Tr(ρ2
r ) = 1− 2π

∫
d2qW 2

r (q, t). (IV.17)

In Fourier space it becomes

SL = 1− 1

2π

∫
d2k |Wr(k, t)|2, (IV.18)

and using the result in Eq. (IV.1) we finally get

SL = 1− 1

2π

∫
d2k

∣∣Wr

(
0,ΦT(t)k

)∣∣2 e−kTσT (t)k. (IV.19)
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At the initial time the linear entropy is that of the initial state, and at late times it tends

to SL = 1− (1/2)(detσ∞T )−1/2.

Alternatively, one can express the linear entropy in terms of an integral of the Fourier-

transformed reduced Wigner function at the initial time by introducing the change of vari-

ables k0 = ΦT(t)k. Eq. (IV.19) can then be written as

SL = 1− 1

2π

∫
d2k0 det[Φ(t)]−1 |Wr(0,k0) |2 e−kT

0 Φ−1(t)σT (t) Φ−T(t)k0

= 1− 1

2
√

det[σT (t)]

∫
d2k0 |Wr(0,k0) |2N

(
0,

1

2
ΦT(t)σ−1

T (t) Φ(t); k0

)
, (IV.20)

where N(µ,σ; k0) is a normalized Gaussian distribution for the variable k0 with mean µ

and covariance σ. For small times this integral is similar to that for the initial state, whereas

for long times the normalized Gaussian distribution becomes increasingly close to a delta

function.

For a Gaussian initial state Wr(0,k0) = exp
(
−kT

0 σ0k0 − ıkT
0 〈q〉0

)
the integral in

Eq. (IV.19) can be explicitly computed:

SL = 1− 1

2π

∫
d2k e−kT(Φ(t)σ0 Φ(t)T+σT (t))k

= 1− 1

2
√

det[Φ(t)σ0 Φ(t)T + σT (t)]
. (IV.21)

For these Gaussian states, reasonable linear entropy is synonymous with reasonable uncer-

tainty functions (i.e., the linear entropy will be positive if and only if the Heisenberg un-

certainty principle is satisfied). We will find that the late time uncertainty is well behaved.

The uncertainty at the initial and intermediate times should not violate the Heisenberg

uncertainty principle either.

4. Decoherence of a Quantum Superposition

In this section we will illustrate how one can get a useful qualitative picture of the phe-

nomenon of environment-induced decoherence from the the solutions of the master equation

given by Eqs. (IV.1)-(IV.2). In order to do that we will consider a quantum superposition,

|ψ〉 =
(
|ψ+〉 + |ψ−〉

)
/
√
K, of a pair of states |ψ±〉 which correspond to a pair of Gaussian

wavefunctions in position space separated by a distance 2δx and where K is an appropriate
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normalization constant. Specifically, we have

ψ±(x) = ψ0(x∓ δx), (IV.22)

ψ0(x) =
√
N(0, σxx0 ;x). (IV.23)

where N(µ, σ2;x) is a normalized Gaussian distribution for the variable x with mean µ and

variance σ2, and ψ0(x) is a reference Gaussian state centered at the origin.

Taking into account the definition of the Wigner function,

W (x, p) =
1

2π

∫ +∞

−∞
dy eipyρ(x− y/2, x+ y/2), (IV.24)

and applying it to the density matrix ρ(x, x′) = 〈x|ψ〉〈ψ|x′〉 we get

W (q) =
1

K

[
W+(q) +W−(q) + 2 cos(2δxp)W0(q)

]
, (IV.25)

where W+, W− and W0 are respectively the Wigner functions of the states |ψ+〉, |ψ−〉

and |ψ0〉. This Wigner function, plotted in Fig. 2, exhibits oscillations of size 1/δx along

the p direction. These oscillations are closely connected to the coherence of the quantum

superposition (and the existence of non-diagonal terms in the density matrix) and are absent

in the Wigner function for the incoherent mixture W (q) = (1/2)[W+(q) +W−(q)].

In this context the decoherence effect due to the interaction with the environment corre-

sponds to the washing-out of the oscillations in the reduced Wigner function as it evolves

according to the master equation. This can be seen rather simply from the result for the

solutions of the master equation obtained in this section and given by Eqs. (IV.1)-(IV.2).

Taking into account that the inverse Fourier transform of Eq. (IV.1) corresponds to a convo-

lution of the homogeneously evolving initial state and a Gaussian function with the thermal

covariance σT (t) as its covariance matrix, the Wigner function can then be expressed as

Wr(t,q) = det[Φ(t)]−1

∫
dq′N(0,σT (t); q− q′)Wr

(
0,Φ−1(t) q′

)
, (IV.26)

where the thermal Gaussian acts as a Gaussian smearing function which starts as a delta

function at the initial time and broadens with the passage of time until it eventually reaches

its asymptotic thermal-equilibrium value. Therefore, several aspects will be at play. On

the one hand, the initial state evolves as a phase-space distribution with trajectories corre-

sponding to the homogeneous solutions of the Langevin equation (II.18) and with the same

qualitative behavior depicted in Fig. 1 for the trajectories of 〈x〉 and 〈p〉. On the other
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X
p

FIG. 2: Wigner function associated with a state |ψ〉 =
(
|ψ1〉 + |ψ2〉

)
/
√
K which corresponds to

the coherent quantum superposition of two Gaussian wavefunctions in position space shifted by a

distance δx.

hand, by diagonalizing σT (t) at each instant of time one gets the principal directions and

the widths (σ1, σ2) of the Gaussian smearing function, which will average out any details

of those sizes along the corresponding directions. When σT (t) along the direction of the

interference oscillations of the Wigner function becomes comparable to their wavelength,

they get washed out and the Wigner function becomes equivalent to that of the completely

incoherent mixture. The time it takes for this to happen is known as the decoherence time

tdec.

Knowledge of the qualitative behavior of σT (t), combined with the fact that the phase-

space distribution det[Φ(t)]−1Wr

(
0,Φ−1(t) q′

)
is rotating with the characteristic oscillation

frequency and shrinking with the characteristic relaxation time is all that one needs to

understand how different initial states decohere as time goes by. In particular, if the deco-

herence time-scale, given by tdec, is much shorter than the characteristic oscillation period

and the relaxation time (but sufficiently longer than 1/Λ), one can approximate the phase-

space distribution by the initial reduced Wigner function (after any possible initial kick).

For instance, for an Ohmic environment in the high-temperature regime one can, under

those circumstances, approximately take σppT (t) ∼ D∞pp t with D∞pp ∼ 2Mγ0T and from the

condition
√
σpp(t) ∼ 1/δx obtain an estimated decoherence time tdec ∼ 1/(2Mγ0Tδ

2
x), in
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agreement with the standard result for this situation [33, 34]. On the other hand, if M , γ0

or δx are very small tdec can become comparable or larger than the dynamical timescales

1/Ω or 1/γ, and the previous estimate can no longer be applied because one needs to take

into account the evolution of σT (t), which is then less simple (it will roughly oscillate with

frequency Ω around a central value which increases with a characteristic timescale 1/γ until

it approaches the asymptotic thermal value), as well as the rotation and shrinking of the

initial Wigner function under the homogeneous evolution. Note also that if we had con-

sidered an initial superposition of Gaussian states peaked at the same location but with

different momenta, which corresponds to a Wigner function along the position rather than

momentum direction, the decoherence time would typically be much longer, since σxxT (t)

vanishes at the initial time and grows with a characteristic timescale of order 1/Ω. In that

case, the rotation of the Wigner function becomes important since the oscillations can then

be averaged out due to the larger values of σppT (t).

The zero-temperature regime for an Ohmic environment is also qualitatively different.

There is a substantial contribution to σppT (t) from a jolt of the diffusion coefficient Dpp for

times of order 1/Λ. However, this is actually regarded as an unphysical consequence of having

considered a completely uncorrelated initial state for the system plus environment, and this

kind of highly cut-off sensitive features at early times of order 1/Λ should disappear if one

considers a finite (cut-off independent) preparation time for the initial state of the system

coupled to the environment [35]. For further discussion on this point as well as a possible

way of avoiding these spurious effects and generating a properly correlated initial state by

using a finite switch-on time for the system-environment interaction see Appendix C 2. For

sufficiently weak coupling, M , or δx, tdec can become comparable or larger than the relaxation

time more easily than at high temperatures since the components σT (t) are much smaller

in this case. For example, the asymptotic thermal value of σpp is of order MΩ (for weak

coupling), much smaller than the high-temperature results, which is of order MT . In such

situations, the main effect of considering a sufficiently long time is through the shrinking of

det[Φ(t)]−1Wr

(
0,Φ−1(t) q′

)
and the size of its oscillations.

We have focused in this subsection on describing the qualitative features of the

environment-induced decoherence of an initial coherent superposition that can be easily

inferred from our general result for the evolution of the reduced Wigner function. A much

more quantitative study is possible by using the exact analytical results for the diffusion
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coefficients and, especially, σT (t), which will be presented in Secs. V and VI. We expect

agreement with the numerical results obtained in Ref. [34], although significant deviations

may appear when the nonlocal effects of dissipation are important (such as in the sub-ohmic

case) since previously obtained master equations are not valid in those regimes.

B. Late-Time Dynamics

We now focus our attention on the dynamics generated by the stationary limit of the

master equation, assuming that one exists. For an Ohmic spectrum with a large cut-off the

pseudo-Hamiltonian H will reach its asymptotic value within the cut-off timescale, whereas

the diffusion D within the typical system timescales (although certain terms contributing to

the diffusion coefficients will decay at a temperature-dependent rate whenever this is faster);

see Sec. V for a detailed analysis of all these questions. In the weak-coupling regime this

leaves the majority of the system evolution within this late-time regime wherein the master

equation is effectively stationary. However, the existence of such a regime is not guaranteed

in general. For instance, in the sub-ohmic case the evolution can be persistently nonlocal

and the effectively local late-time regime discussed here need not exist, as will be shown in

Sec. VI A.

1. Late-Time Propagator

If the late-time stationary limit of the master equation exists, the late-time pseudo-

Hamiltonian operator will take the form

H =

 0 − 1
M

MΩ2
R 2Γ

 , (IV.27)

and can be effectively represented as arising from the propagator

ĜR(s) =
1
M

s2 + 2Γs+ Ω2
R

, (IV.28)

GR(t) =
1

MΩ̃R

sin
(

Ω̃Rt
)
e−Γt, (IV.29)

with Ω̃R =
√

Ω2
R − Γ2. This effective propagator GR(t) is not equivalent to the late time

limit of the true propagator G(t), but they should share the same asymptotic dynamics.
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Specifically if one can take the asymptotic expansion

G(t) = G∞(t) + δG(t), (IV.30)

where G∞(t) contains the asymptotic limiting behavior and δG(t) contains the early time

corrections, which decay faster at late times, then G∞(t) should directly yield Ω̃R and Γ in its

arguments, although a phase and amplitude difference between G∞(t) and GR(t) may exist.

This can be rigorously justified if γ̂(s) and, thus, Ĝ(s) are rational, which implies that the

time dependence of G(t) corresponds to damped oscillations with various timescales. On the

other hand, the sub-ohmic spectral distribution that will be studied in Sec. VI A provides

a pertinent counter-example [in that case G(t) decays as a negative power-law rather than

exponentially] which shows that this situations does not necessarily exist when the spectral

density function is not meromorphic.

If we indeed have a rational spectral density, then from the nonlocal propagator one only

needs to solve the characteristic equation

f 2 + 2γ̂(f) f + Ω2 = 0, (IV.31)

to obtain all the rates f associated with the propagator (this is the same equation whose

roots need to be found when decomposing the propagator in Laplace domain into simple

fractions). From Eq. (IV.31) and the positivity of the damping kernel, it follows that the

real part of f will always be negative definite. Those with the smallest real part in absolute

value give the late-time coefficients: the real part corresponds to −Γ and the imaginary one

to ΩR. A specific example can be found in Sec. V, where the Ohmic case with a finite cut-off

is studied in detail. On the other hand, if one treats the system-environment interaction

perturbatively, one can show that the late-time weak-coupling coefficients take the following

form:

f± = −Γ± ıΩR, (IV.32)

Γ = Re[γ̂(ıΩ)] +O(γ2), (IV.33)

ΩR = Ω− Im[γ̂(ıΩ)] +O(γ2), (IV.34)

which is in agreement with the results for the weak-coupling master equation obtained in

Ref. [31]. Any additional timescales would then be perturbations of the cut-off or other

timescales intrinsic to the spectral function.
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It should be noted that in general the late-time propagator discussed here cannot be

employed to calculate the diffusion coefficients or the thermal covariance, not even at late

times. This is because both quantities evaluated at an arbitrary time t get non-negligible

contributions involving the propagator at early times, as can be seen for instance from

Eqs. (III.17) and (IV.2). Nevertheless, one can still employ the late-time propagator to

obtain the late-time evolution of the thermal covariance (and the diffusion coefficients)

provided that one already has an accurate result for its constant asymptotic value [obtained

for example with Eq. (IV.16)], as will be illustrated next. In addition, one can also use the

propagator GR(t) given by Eq. (IV.29), which corresponds to the limit of local dissipation,

to calculate the thermal covariance and diffusion coefficients for an Ohmic environment with

a sufficiently large cut-off, since in that case the contribution from the extra early-time term

of the propagator can be neglected when calculating these quantities for times later than

Λ−1, as will be shown in Sec. V.

2. Late-Time Diffusion and Covariance

Given late-time master equation coefficients which have all taken their asymptotic values,

one can show that the evolution of the covariance in that regime is given by

σ(t) = σ∞T + Φ(t− ti) [σ(ti)− σ∞T ] ΦT(t− ti), (IV.35)

which is a solution of Eq. (III.39) as long as one assumes H(t) and D(t) to be time-

independent after some time ti in the late-time regime. Note that we have assumed that the

master equation coefficients reached their asymptotic values much faster than the relaxation

time (as illustrated in Appendix F with the example of the ohmic distribution, this may be

the case for finite temperature, but not necessarily so for zero temperature).

The asymptotic value of the late-time thermal covariance σ∞T has been reduced to a

single integral in Appendix E. From this single integral formulation, it is actually easier

to obtain first σ∞T , and then obtain the late-time diffusion coefficients using the Lyapunov

equation (III.26). However, it is interesting to note the inverse relation

σ∞T =

 1
MΩ2

R

(
1

2Γ
D∞pp −D∞xp

)
0

0 M
2Γ
D∞pp

 , (IV.36)
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for the following reason. As we have pointed out in Sec. IV A 2, only the momentum covari-

ance can contain the highest frequency sensitivities. From the Lyapunov solution we can see

that the regular diffusion coefficient would also contain such high-frequency sensitivities as

it alone determines the late-time momentum covariance. Therefore, the anomalous diffusion

coefficients must act as an “anti-diffusion” coefficient in keeping the position covariance free

of such sensitivities. On the other hand, only the position covariance can contain the lowest

frequency sensitivities and these must, therefore, be entirely contained in the anomalous

diffusion coefficient if they exist.

In summary, any specific features of the initial distribution decay away and at late times

the state tends generically to a Gaussian with a covariance matrix given by Eq. (IV.16). As

follows from Eq. (IV.6), the late-time position and momentum uncertainties are, therefore,

entirely given by the asymptotic values of the thermal covariance:

(∆x)2 = (σ∞T )xx, (IV.37)

(∆p)2 = (σ∞T )pp. (IV.38)

V. OHMIC CASE WITH FINITE CUT-OFF

A. The Nonlocal Propagator

The arguably simplest example of ohmic dissipation with finite cut-off that one can

construct corresponds to the following damping kernel:

γ̂(s) =
γ0

1 + s
Λ

. (V.1)

This damping kernel is constant at frequencies much smaller than the cut-off, but vanishes in

the high frequency limit. The corresponding spectral density also exhibits a rational cut-off

function, which decays quadratically for large frequencies:

I(ω) =
2

π
Mγ0 ω

[
1 +

(ω
Λ

)2
]−1

. (V.2)

Calculating the Green function amounts to factoring a cubic polynomial. Specifically, one

needs to factor (s2 + Ω2)(s+ Λ) + 2γ0Λs in the denominator of the Green function Ĝ(s). For

the underdamped system the effect of a large finite cut-off is to shift the system relaxation
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and oscillation timescales slightly:

γ? = γ0

[
1 + 2

γ0

Λ
+O

(
1

Λ2

)]
, (V.3)

Ω2
? =

Λ

Λ− 2γ?
Ω2. (V.4)

and to add an additional relaxation timescale comparable to the cut-off:

Λ? = Λ− 2γ?. (V.5)

If we parametrize everything in terms of these phenomenological frequencies, the Green

function for the fully nonlocal damping kernel can always be expressed as

Ĝ(s) =
1

M

s+ Λ

(s+ Λ?) (s2 + 2γ?s+ Ω2
?)
, (V.6)

without the need to explicitly factor a cubic polynomial, while the original parameters are

given by

γ0 =
Λ2
? + 2γ?Λ? + Ω2

?

(Λ? + 2γ?)2
γ?, (V.7)

Ω2 =
Λ?

Λ? + 2γ?
Ω2
?, (V.8)

Λ = Λ? + 2γ?. (V.9)

then we never have to actually factor the cubic polynomial.

After using partial fraction decomposition in Eq. (V.6), one can easily transform back to

the time domain and obtain the exact propagator for the nonlocal case:

G(t) =
Λ2
? + Ω2

?

(Λ? − γ?)2 + Ω̃2
?

[
GR(t)− 2γ?

Λ2
? + Ω2

?

(
ĠR(t)− e−Λ?t

M

)]
, (V.10)

where GR(t) is the late-time local propagator introduced in Eq. (IV.29). Note that as long

as Λ? > γ? the term proportional to e−Λ?t can be neglected at sufficiently late times, when

the terms involving GR(t) dominate. This corresponds to the late-time regime discussed in

Sec. IV B 1 [the term proportional to ĠR(t) simply causes a phase shift] and the late-time

master equation coefficients are, therefore,

Γ = γ?, ΩR = Ω?. (V.11)

In the high cut-off limit one recovers the usual coefficients γ0 and Ω. Furthermore, in that

limit one can approximate G(t) by GR(t) since the extra terms are suppressed by inverse
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powers of Λ2. For G(t) this is true even at arbitrarily early times of order Λ−1: although

the exponential factor is not suppressed, the prefactor 1/Λ2
? is sufficient to suppress its

contribution to G(t). This is not true, however, for G̈(t) (or higher-order derivatives), which

also appears in Φ(t). From Eqs. (II.34) and (II.23) we can see that the component involving

G̈(t) does not contribute to the thermal covariance, but whether it contributes to its time

derivative σ̇T (t) as well as to the diffusion coefficients, which are related to σ̇T (t) through

Eq. (III.20), is a bit more subtle. In order to analyze this point it is convenient to consider

Eq. (III.17). On the one hand, the time derivative acting on Φ(t − τ) in the second term

on the right-hand side of that equation will give rise to G̈(t − τ) and an unsuppressed

contribution from e−Λ?(t−τ). [Analogously to what was explained above for Eq. (II.34),

there is no contribution from the components of the transition matrix involving G̈(t), and

it can only arise when time derivatives act on other components.] On the other hand, the

additional time integral in that term when considering such a contribution will generate an

extra 1/Λ? factor as compared to the first term on the right-hand side of Eq. (III.17). Thus,

the final conclusion is that we can use the approximate local propagator GR(t) to calculate

the diffusion coefficients at arbitrary times in the large cut-off limit. Comparison of the

results evaluated using the exact expressions and plotted in Sec. V B and the approximate

results for the large cut-off limit also support this conclusion.

We close this subsection with a brief discussion of the possible dissipative regimes when

considering finite values of the cut-off in our spectral function, since the presence of this new

scale can give rise to a richer set of possibilities. For our rational cut-off function we have

three different dissipative regimes corresponding to the three shaded regions in Fig. 3. The

boundary between different regions corresponds to the values of the parameters for which a

pair of roots of the denominator of Ĝ(s) degenerate and change character, i.e. they change

from a complex conjugate pair to two real ones. Atop the diagram where Λ � Ω, lies the

regime of local dissipation, whereas along the bottom of the diagram where Λ� Ω, lies an

effectively sub-ohmic regime as Λ becomes an IR cutoff. The white shaded vertical stripe

to the left lies completely in the weak coupling regime and constitutes the underdamped

regime. This regime is as described previously with slowly decaying oscillations and a cut-

off-dependent decay rate. The grey shaded middle region denotes the overdamped regime.

This regime is also analogous to that of the simple and overdamped harmonic oscillator

but with an additional cut-off-dependent decay rate. The black shaded region to the right
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FIG. 3: Dissipative phases for Ohmic damping with finite rational cut-off. From left to right they

are underdamped in white, overdamped in grey, and strong coupling in black.

denotes a new nonlocal strong-coupling regime that emerges for a sufficiently strong coupling

(such that γ0 is large compared to the cut-off). Specifically, as derived from Eqs. (V.7)-(V.9),

the relevant scales for this regime in the limit of very strong coupling are

Λ? =
Ω2

2γ0

− Ω4

4Λγ2
0

+O
(

1

γ3
0

)
, (V.12)

γ? =
Λ

2
− Ω2

4γ0

+O
(

1

γ2
0

)
, (V.13)

Ω? = 2Λγ0 + Ω2 +O
(

1

γ0

)
. (V.14)

Hence, we can see that one has moderately damped, rapid oscillations plus an additional

slow decay rate.

B. Initial Jolts

Early studies by Unruh and Zurek [16] as well as HPZ [17] already revealed that at low

temperatures the normal diffusion coefficient Dpp(t) of an ohmic environment exhibited a
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strong cut-off sensitivity for very early times of order 1/Λ. As shown in the next section

and Appendix F, in the large cut-off limit where the use of the local propagator is a good

approximation one can obtain relatively simple analytic results. They confirm that for zero

temperature the normal diffusion coefficient, which vanishes at the initial time, exhibits an

initial jolt with an amplitude of order Λ peaked around a time of order 1/Λ and then decays

roughly like 1/t (for times much earlier than 1/Ω and 1/γ0).

Alternatively, one can obtain the exact analytic results for finite cut-off by computing

σ̇T (t) using Eqs. (IV.12)-(IV.14), as explained in Sec. IV A 2. The resulting expressions are

rather lengthy and not particularly insightful, and will not be reported here, but they have

been employed to plot some examples of exact results for the diagonal components of σ̇T (t)

and σT (t) in Figs. 4 and 5. From the different components of the thermal covariance and its

time derivative one can obtain the diffusion coefficients using Eq. (III.39), and in particular

one can see from Fig. 5 the presence of the jolt mentioned above.
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FIG. 4: Exact thermal covariance dynamics for · normalized position uncertainty MΩ?σ
T
xx(t) and

· · · normalized momentum uncertainty
σTpp(t)

MΩ?
in the highly non-Markovian regime with T = γ? =

Ω?
10 , Λ? = 100 Ω?.

It is important to emphasize that such kind of behavior, as well as an associated rapid

growth of σpp(t) and a slower growth of σxx(t) (which eventually decays exponentially within

the relaxation time-scale 1/Γ) until they both reach values which depend logarithmically on

Λ for large values of Λ, is a consequence of having started with a completely uncorrelated

initial stated. A possible way of generating a properly correlated initial state is by smoothly

switching on the system-environment interaction within a time-scale much longer than 1/Λ,

but longer than the other relevant time-scales of the system. This is discussed in some detail
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FIG. 5: Same plot as in the previous figure, but with a much larger time resolution, which reveals

the presence of the initial jolt in σ̇pp(t) peaked around t ∼ 1/Λ∗, while σxx(t) and σ̇xx(t) remain

essentially zero at those timescales.

in Appendix C 2. It also contains a number of technical details concerning the effects of the

switch-on function appearing in the dissipation kernel, which can be be mainly reabsorbed

in redefinition of the initial sate. The key point, however, is the role played by the switch-on

function appearing in the noise kernel, which eliminates the strong cut-off sensitivities and

jolts mentioned above when calculating correlation functions (the covariance matrix) and

its derivatives.

We conclude this subsection briefly mentioning some generally applicable bounds on the

growth of the different thermal covariance components. First, we note from Eq. (IV.2) that

the thermal covariance is positive definite as the noise kernel is a positive definite function.

We also note that the thermal covariance begins with σT (0) = 0 and σ̇T (0) = 0. Given that

this matrix is positive definite, the off-diagonal entries must be smaller than the average

(arithmetic or geometric) diagonal entries. But the off-diagonal σxpT (t) is proportional to

σ̇xxT (t) and we have, therefore, the constraint

|σ̇xxT (t)| ≤ 2

M

√
σxxT (t)σppT (t), (V.15)

which is also generally less than the late-time uncertainty as both σxxT (t) and σppT (t) begin

increasing and then proceed to undergo damped oscillations, wherein each cycle there is a net

increase in uncertainty. This constrains the growth of position uncertainty. If the uncertainty

function takes reasonable values, then the position uncertainty must have reasonable growth.

An analogous constraint can be placed upon the growth in momentum uncertainty by
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considering the positive definite matrix Φ̇ · ν · Φ̇T
which yields

|σ̇ppT (t)| ≤ 2M

√
σppT (t)

(
G̈ · ν · G̈

)
(t). (V.16)

So while the growth in position uncertainty is well constrained, growth in momentum is

much less constrained. Corresponding to this, we show in Sec. IV B 2 that the late-time

momentum uncertainty has much more sensitivity to the high frequency modes of the bath.

In terms of ohmic coupling, the initial linear jolts, σ̇Tpp ∼ Λ, and late-time logarithmic cut-off

sensitivity only occurs in the momentum uncertainty. The position uncertainty is relatively

well behaved in both respects, having only initial logarithmic jolts and no late-time cut-off

sensitivity at all. The (linear) momentum jolting occurs only for a short period of time,

∆t ∼ Λ−1. The result is a rapid momentum dispersion near the initial time, but bounded

logarithmically.

C. Full-Time Diffusion Coefficients for Large Cut-off

Full-time solutions for finite cut-off are completely possible given our analytic spectrum,

the exact nonlocal propagator in Sec. V A, and the contour integrals detailed in Sec. IV A 2.

Such resulting solutions were used to plot the early time evolution in Fig. 4, but they are a

bit cumbersome for publishing. Therefore, for pedagogical reasons we will restrict ourselves

to the high cut-off regime in this subsection since substantial additional simplifications can

be employed in that case. For nonlocal dissipation it is in general much easier to calculate

first the thermal covariance than the diffusion coefficients, but the situation will be different

here. The key point that will be exploited in this subsection is that for large cut-off the

propagator in the ohmic case can be approximated by the local one, GR(t), as discussed in

Sec. V A. The advantage of using the local propagator GR(t) is that only the term involving a

single time integral contributes to the expression for the diffusion coefficients in Eq. (III.17).

On the other hand, if one is only interested in the late-time asymptotic values of the diffusion

coefficients, one can obtain simple analytic results without the need to restrict oneself to

large values of the cut-off by using the results that will be presented in the next subsection.

The details of the derivation and the complete results for the diffusion coefficients at

arbitrary times are provided in Appendix F. Here we simply highlight the main results and

discuss some of their implications. Both diffusion coefficients can be written in the following
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compact form:

Dxp(t) = Dxp(∞)−Mγ0

{
ĠR(t) +GR(t)

(
2γ0 −

d

dt

)}
DF(t), (V.17)

Dpp(t) = Dpp(∞)−Mγ0

{
ĠR(t)

(
γ0 +

d

dt

)
+GR(t) Ω2

}
DF(t), (V.18)

where Dxp(∞) and Dpp(∞) are immediately obtained by multiplying Eqs. (F.3)-(F.4) by s

and taking the limit s → 0. The general expression for DF(t) is given by Eq. (F.9), but

a simple result for the zero temperature case is provided in Eq. (F.12). Essentially, DF(t)

decays in a manner slightly more complicated than that of exponential integrals with system,

coupling, and temperature timescales but such that temperature is the most dominant.

It is important to note that the coefficients Dxp(t) and Dpp(t) both exhibit logarithmic

divergences in the limit Λ → ∞. This has been pointed out for Dxp(t) in Ref. [36], where

the coefficients of the master equation were calculated perturbatively to second order in the

system-environment coupling constants (linear order in γ0). The fact that there is also a

logarithmic divergence in Dpp(t) was not seen in that reference because it is quartic in the

system-environment coupling constants (quadratic in γ0). Moreover, strictly speaking such

kinds of perturbative calculations cannot be employed to study the long time behavior since

they are only valid for t � γ−1
0 and they miss for instance the exponential decay of the

second and third terms on the right-hand side of Eqs. (F.5)-(F.6).

We close this subsection with some remarks about the late-time diffusion coefficients in

the weak coupling regime. Expanding Eqs. (F.3)-(F.4) perturbatively in γ0 we get

Dxp(∞) =
2

π
γ0 Re

[
H

(
Λ

2πT

)
− H

(
ıΩ

2πT

)]
+O(γ2

0), (V.19)

Dpp(∞) = γ0Ω coth

(
Ω

2T

)
+O(γ2

0). (V.20)

In comparison to the weak coupling master equation of Caldeira et al. [15], the normal

diffusion coefficient is the same to lowest order in the coupling, but the anomalous diffu-

sion coefficient is completely absent there. The largest contribution (in the weak coupling

regime) to the anomalous diffusion coefficient comes from the cut-off and it does not van-

ish at finite temperature (see Fig. 6). This logarithmic sensitivity does not enter into the

normal diffusion coefficient until second order, but in the anomalous diffusion coefficient it

is only proportional to one power of the coupling constant, which is the order to which the

master equation of Caldeira et al. [15] should be valid. In this weak-coupling perturbative
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FIG. 6: Late time Dxp for • high temperature or equivalently Caldeira, · HPZ at Λ = 103Ω and

Λ = 104Ω.

expansion, both diffusion coefficients are of order γ0 plus higher-order corrections, but they

give contributions of different orders to the late-time thermal covariance σ∞T , Sec. IV B 2.

Whereas D∞pp gives contributions of order 1 because it appears multiplied by a factor 1/γ0,

D∞xp gives contributions of order γ0. That is why the correct thermalization in the weak-

coupling limit was obtained in Ref. [15] despite having completely neglected the anomalous

diffusion coefficient. The origin of the mixed orders in γ0 appearing on the right-hand side

of Eq. (IV.36) can be ultimately traced to the fact that H contains terms both of order 1

and γ0, whose implication for σ∞T can be straightforwardly seen from the Lyapunov equation

(III.26).

D. Late-Time Covariance for Finite Cut-off

In Sec. V A the late-time dissipation and renormalized frequency coefficients were di-

rectly inferred from the nonlocal propagator to be γ? and Ω?, the result of factoring a cubic

polynomial in the nonlocal Green function. These coefficients are entirely non-perturbative

in both coupling and cut-off and completely determine the late-time propagator. The re-

maining part of the solution pertains to the emergence of the thermal covariance, whose
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late-time dynamics can be described as in Sec. IV B 2, given the late-time propagator and

the late-time thermal covariance. The late-time thermal covariance can also be related to the

late-time diffusion coefficients through the Lyapunov equation, Eq. (III.26), but the thermal

covariance is an easier quantity to compute. If interested in the diffusion coefficients, one

can then obtain them straightforwardly using Eq. (III.26).

For our spectral density the simplified integrals derived in Appendix E are contour in-

tegrals and can be evaluated via the residue theorem after using the rational expansion of

the hyperbolic cotangent, Eq. (IV.15). The result for the late-time, but non-perturbative

thermal covariance obtained in this way is

σxxT =
T

MΩ2
+

1

πMΩ̃?

Im

[
Λ? + γ? − ıΩ̃?

Λ? − γ? − ıΩ̃?

{
H

(
γ? + ıΩ̃?

2πT

)
− H

(
Λ?

2πT

)}]
, (V.21)

σppT = MT +
MΩ̃?

π
Im

[
Λ? + γ? − ıΩ̃?

Λ? − γ? − ıΩ̃?

(
1− ı γ?

Ω̃?

)2
{

H

(
γ? + ıΩ̃?

2πT

)
− H

(
Λ?

2πT

)}]
,(V.22)

where we assumed, as before, that Ω̃? =
√

Ω2
? − γ2

? is real and H[z] denotes the harmonic

number function defined in Sec. A 1. If one expands those expressions, and the expressions

below, under the assumption that Ω̃? is real, e.g. using Im[z] = (z − z̄)/(2ı), then one will

have the more general expressions which will apply even in the overdamped regime.

At high temperature all of the harmonic number functions vanish, leaving only the

first terms in Eqs. (V.21)-(V.22), which are proportional to temperature:

σxxT =
T

MΩ2
+O(T 0), (V.23)

σppT = MT +O(T 0). (V.24)

This corresponds to the high-temperature result of classical statistical mechanics. It is inter-

esting that this can happen for a finite cut-off and, therefore, outside the strict Markovian

limit.

At zero temperature the first terms in Eqs. (V.21)-(V.22) vanish and all of the harmonic

number functions can be equivalently evaluated as logarithms, so that the expression inside

the curly brackets can be simplified as follows:

H

(
γ? + ıΩ̃?

2πT

)
− H

(
Λ?

2πT

)
= ı cos−1

(
γ?
Ω?

)
− log

(
Λ?

Ω?

)
+O(T ). (V.25)

This generalizes the results of Unruh and Zurek [16], who explored the zero temperature

regime in the limit of local dissipation.
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Finally, in the weak coupling limit these expressions correctly reproduce the free ther-

mal state:

σxxT =
1

2MΩ
coth

(
Ω

2T

)
+O(γ0), (V.26)

σppT =
MΩ

2
coth

(
Ω

2T

)
+O(γ0). (V.27)

One can also see that at weak coupling the uncertainty function agrees with the weak

coupling approximation for moderate values of the cut-off scale, as shown in Fig. 7. Had one
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FIG. 7: Late time ∆x∆p for • high temperature, classical statistical mechanics, · · · weak coupling

approximation 1
2 coth Ω

2T · HPZ at Λ = 103Ω and Λ = 104Ω.

naively tried to have finite diffusion in the limit Λ→∞, subtracting by hand the log(Λ/Ω)

term, one would find a violation of the Heisenberg uncertainty principle at low temperature

and strong coupling (see Fig. 8), which renders the theory unphysical. Of course this does not

happen with the unsubtracted theory, as seen in Fig. 9. It is, thus, clear that the logarithmic

dependence on the ultraviolet cut-off that appears in the diffusion is a physically important

parameter and not something that can be subtracted away.

While the logarithmic sensitivity appears in both diffusion coefficients, it is suppressed

in the position uncertainty by inverse powers of the cut-off. For the momentum uncertainty,

the logarithmic sensitivity appears already to first order in γ0 (which is itself quadratic in

the system-environment coupling constant) and is otherwise unsuppressed. This behavior



48

0

0.5

1

Γ0

W

0

0.5

1

T

W

0

0.5

1

DxDp

FIG. 8: Late time ∆x∆p for the unphysical, subtracted theory.

0

0.5

1

Γ0

W

0

0.5

1

T

W

0.5

1

DxDp

FIG. 9: Late time ∆x∆p for the Λ = 103Ω theory.

had already been noticed for Gaussian wave-packets in the Ohmic environment [16, 37], and

as we have discussed in Sec. IV B 2, the position uncertainty will be free of the highest cut-off

sensitivities for any spectral density.

Finally, given that our results are nonperturbative, it is also interesting to point out what

happens in the highly nonlocal strong coupling regime mentioned Sec. V A. The late-time
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thermal covariance for this case essentially corresponds to taking the large Ω? limit limit of

Eqs. (V.21)-(V.22):

σxxT =
T

MΩ2
+

1

2MΩ?

+O
(

1

Ω2
?

)
, (V.28)

σppT =
MΩ?

2
+O(Ω0

?). (V.29)

For this model of strong coupling to the environment, and yet finite cutoff, the Brownian

particle will become strongly localized in position at late time and sufficiently low temper-

atures. And although the particle is localized in position, the uncertainty principle is not

violated but at most minimized in the zero temperature limit.

VI. SUB-OHMIC AND SUPRA-OHMIC CASES

A. Sub-ohmic with no Cut-off

As an example where the nonlocal effects of dissipation are important, we will consider

one of the most common and well-behaved sub-ohmic spectral densities, I(ω) ∝
√
ω, which

requires neither a UV nor an IR cut-off in the final results (although one still needs to

renormalize the frequency introducing a logarithmically divergent bare counterterm). Our

formulas will take a simpler form if we express our spectral density, in terms of a quadratic

coupling constant γ?, as follows:

I(ω) =
2

π
Mγ?
√
ω? ω, (VI.1)

ω2
? ≡ Ω2 + γ2

? . (VI.2)

It is then a straightforward calculation to find the propagator

Ĝ(s) =
1
M

s2 + 2Γ
√

2ω? s+ Ω2
, (VI.3)

which is amenable to partial fraction decomposition in
√
s as s is strictly positive. As we

have defined our nonlinear coupling strength in anticipation of this polynomial, the roots

of the quartic denominator rk : k ∈ {1, 2, 3, 4} can be shown to be the conjugate pairs

1√
2

(
+
√
ω? ± ı

√
ω? + 2γ?

)
and 1√

2

(
−√ω? ± ı

√
ω? − 2γ?

)
. After partial fraction decomposi-
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tion, we may cast our propagator in the form

Ĝ(s) =
4∑

k=1

Ak
M

1√
s− rk

, (VI.4)

Aj =
4∏

k=1
k 6=j

1

rj − rk
, (VI.5)

with inverse Laplace transform

G(t) =
4∑

k=1

Ak
M
rk e

r2kt erfc
(
−rk
√
t
)
, (VI.6)

where erfc(z) is the cumulative error function of the normal distribution, defined in Ap-

pendix A 3. There are additional terms from the individual Laplace transforms, like t−1/2,

but they vanish in the sum. Using Eq. (A.15) for the asymptotic expansion of erfc(z) in

order to expand the Green function in Eq. (VI.6) at late times, we obtain terms of the form

z ez
2

erfc(z) =
1√
π

∑
k=0

(−1)k
(2k)!

k!

1

(2z)2k
+

 0 Re[z] ≥ 0

2z ez
2

Re[z] ≤ 0
, (VI.7)

which we can use to expand the Green function in Eq. (VI.6) After grouping all the con-
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FIG. 10: Asymptotic expansion of sub-ohmic · propagator G(t) into · · · the local contribution and

• the nonlocal contribution for γ? = Ω
4 . The local contribution is initially more significant, but the

nonlocal contribution dominates eventually.

tributions together, we will find exponential terms with characteristic frequencies f =

−Γ ± ı
√
ω2
? + 2γ?ω?, which actually are the solutions to the characteristic rate equation

(IV.31) with smallest negative real part. These are the only terms that one would have con-

sidered if the local propagator GR(t) within the late-time approximation of Sec. IV B had
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been employed. In addition, and more importantly are the power-law decay terms which

admit no local representation.

This sub-ohmic model provides a perfect example showing when effectively local treat-

ments, such as that in Sec. IV B, will fail completely. At first the local contribution will

dominate and the master equation coefficients will appear to trend towards Γ ≈ γ? and

ΩR ≈ ω? + γ?. However, the nonlocal contribution (the power-law terms) will eventually

dominate the more swiftly decaying local contribution (the exponential terms) and a correct

treatment of the nonlocal dynamics will be required. In fact, as the nonlocal contribution

becomes comparable to the local contribution, the master equation coefficients will become

periodically divergent [this is related to the fact that det Φ(t) vanishes and changes sign at

those times.]. The underlying homogeneous evolution is well behaved and strictly dissipative

(the damping kernel is positive definite), but the localizing perspective of the master equa-

tion becomes divergently unnatural. Any errors, numeric or analytic, can be catastrophic

in the master equation perspective. In this respect, the subtleties missed in previous deriva-

tions of the master equation, as pointed out in Sec. III B and which are relevant whenever

nonlocal effects are important, will likely give rise to substantial discrepancies in this case.

The full-time evolution is rather complicated, but the late-time limit is very manageable.

For example, from Eq. (IV.16) we can express the late-time thermal position uncertainty as

σxxT (∞) = 2

∫ ∞
0

I(ω) coth
( ω

2πT

)
Ĝ(−ıω)Ĝ(+ıω) 2

√
ω d
√
ω, (VI.8)

where we have used the relation dω = 2
√
ω d
√
ω. The integrand is amenable to partial frac-

tion decomposition, after a rational expansion of the hyperbolic cotangent with Eq. (IV.15),

and can therefore be integrated without resorting to numerics. Additionally, and in contrast

to the ohmic case, the integrand is even in
√
ω for all temperatures, including zero, and

contour integration techniques are more generally applicable.

Strictly speaking we cannot compare exact sub-ohmic solutions to those obtained with

an incorrect master equation since the master equation will yield nonsense, but we can

compare the exact nonlocal dynamics to those obtained by extracting the local dynamics

and assuming it to be the dominant behavior. Obviously the effectively local approximation

is incorrect, but it should be good to zeroth order in the coupling and one might naively

expect that it might also behave reasonably for finite coupling strength. However, in Fig. 11

we compare the late-time uncertainty functions and show there to be sharp disagreement
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to the first two orders in the coupling constant squared (the slope and the curvature of the

curves on the plot).
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FIG. 11: Late-time sub-ohmic uncertainty function at zero temperature with the · exact nonlocal

solution and · · · fictitious effectively local solution. In the limit of vanishing dissipation, one has

the minimal uncertainty ground state (zero temperature thermal state) in each case.

B. Supra-ohmic with Finite Cut-off

The conventional wisdom has been to consider supra-ohmic spectral densities of the form

In(ω) =
2

π
M γn ω

(ω
Λ

)n
χ
(ω

Λ

)
, (VI.9)

where χ : [0,∞)→ [1, 0) denotes the cut-off regulator. Without a cut-off regulator, all supra-

ohmic couplings have greater than logarithmic high frequency divergence in the diffusion and

thermal covariance integrals (see Appendix E for exact integrals). Even when regulated,

the mere potential for divergence therefore corresponds to cut-off sensitivity from the high

frequency portion of noise integrals, which is balanced by the extra powers of cut-off in the

pre-factor of the above spectral density.

Here we will restrict our investigation to the following spectral density

I(ω) =
2

π
M γ2 ω

(
ω
Λ

)2(
1 +

(
ω
Λ

)2
)2 , (VI.10)
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because this example is exactly solvable. The corresponding damping kernel in Laplace

space is

γ̂(s) =
γ2

2

s
Λ(

1 + s
Λ

)2 . (VI.11)

One might be inclined to view this damping kernel as a tiny mass renormalization plus

even less significant higher order terms, but the effect quite different from that, as we

will see. After factoring the fourth-order polynomial, the fully nonlocal propagator can be

decomposed by partial fractions into two sets of timescales. Expanding perturbatively in γ2,

the first set of timescales correspond to the system frequency with weak damping

γ? = γ2

(
Ω
Λ

)2(
1 +

(
Ω
Λ

)2
)2 +O(γ2

2), (VI.12)

Ω? = Ω

1− γ2

Λ

1−
(

Ω
Λ

)2(
1 +

(
Ω
Λ

)2
)2 +O(γ2

2)

 , (VI.13)

while the second set of timescales correspond to quickly decaying nonlocal contributions

associated with the cut-off scale:

γΛ = Λ− γ?, (VI.14)

ΩΛ =
Ω

Ω?

Λ. (VI.15)

The situation is analogous to ohmic case with a finite cut-off except that the nonlocal part

of the propagator is also oscillating at the rate Ω̃Λ ≈
√
γ2Λ, for weak coupling and high

cut-off.

This form of spectral density was constructed only with well-behaved high frequency

contributions in mind. Nevertheless, as shown in Fig. 12, we find the conventional form of

spectral density to be inadequate. There is clearly some cut-off sensitivity in the thermal

covariance which is remedied by introducing an additional power of cut-off suppression. E.g.

the conventional form of spectral density is not well behaved, but the substitution

γ2 →
Ω

Λ
γ2, (VI.16)

is well behaved.

An explanation only emerges after a more thorough examination of the contour integrals.

The high-frequency regime, ω � Λ, is already rendered well behaved by the conventional
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FIG. 12: Late-time supra-ohmic uncertainty function at zero temperature for cut-offs between 100Ω

and 500Ω. The left plot is with a conventional coupling scale, while the right plot has decreased

the coupling strength by an extra power of the cut-off.

cut-off-dependent prefactor. The near-resonance regime, ω ≈ Ω, which produces the weak

coupling limit, also appears to be well behaved. There is only one remaining suspect and

it proves to be the culprit. The previously unaccounted for cut-off sensitivity arises here

from the nonlocal timescales of the propagator, i.e. the ω ≈ Λ regime. This is quite

surprising as unlike sub-ohmic coupling, supra-ohmic coupling does yield a well-behaved

local representation for its late-time dynamics. But residues of the contour integral which

correspond to the nonlocal timescales reveal the correct dominant behavior σpp ≈ 1
2
MΩ̃Λ =

1
2
M
√
γ2Λ, for weak coupling and high cut-off. Therefore the conventional, linear coupling

γ2 must be suppressed by an additional factor of the cut-off, else the momentum covariance

will be plagued by a
√

Λ sensitivity.

VII. GENERALIZATIONS OF THE THEORY

A. Influence of a Classical Force

In this section we consider the case of a classical force F (t) acting on the quantum oscil-

lator. This is done by adding a time-dependent potential −F (t)x to the system Lagrangian:

Ls =
1

2
M
(
ẋ2 − Ω2x2

)
+ F (t)x, (VII.1)
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which gives rise to the following additional source on the right-hand side of Eq. (II.18):

F(t) =

 0

F (t)

 . (VII.2)

Following our master equation derivation in Sec. III B, it is easy to see that such a deter-

ministic source in the Langevin equation simply adds a driving term to the master equation,

which becomes

∂

∂t
Wr(q, t) =

{
∇T

q H(t) q−∇T
q Feff(t) + ∇T

q D(t)∇q

}
Wr(q, t) , (VII.3)

where the effective force Feff(t) is given by

Feff(t) ≡ F(t) +

∫ t

0

dτ

{[
d

dt
+ H(t)

]
Φ(t− τ)

}
F(τ). (VII.4)

Note that the last term in Eq. (VII.4) is a consequence of having nonlocal dissipation and,

as we saw in Sec. III B, it vanishes for local dissipation.

Similarly, the method of Sec. II C, based on the solutions of the Langevin equation, can

be straightforwardly generalized to this case and one obtains the following result for the

time evolution of the reduced Wigner function:

Wr[t,k] =Wr

[
0,ΦT(t)k

]
e−

1
2
kTσT (t)k e−ık

T〈q〉F (t), (VII.5)

with a forced mean 〈q〉F (t) given by

〈q〉F (t) = (Φ ∗ F)(t). (VII.6)

On the other hand, one can alternatively use the method of characteristic curves to solve

the master equation, as done in Sec. III C 1. Fourier-transforming Eq. (VII.3), one gets an

equation analogous to Eq. (III.24) but with an extra term −ıkTFeff(t) on the right-hand

side. Following the same procedure as in Sec. III C 1, one finally obtains the same result as

in Eq. (VII.5) but with

〈q〉F (t) =

∫ t

0

dτ Φ(t, τ) Feff(τ). (VII.7)

Eqs. (VII.6) and (VII.7) can be shown to be equivalent as follows. First, one rewrites

Eq. (VII.4) as

Feff(τ) =

[
d

dτ
+ H(τ)

] ∫ τ

0

dτ Φ(τ − τ ′)F(τ ′). (VII.8)
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Next, one substitutes Eq. (VII.8) into Eq. (VII.7) and performs an integration by parts of

the derivative term. Finally, one takes into account that (d/dτ)
(
Φ−1(τ)

)
= Φ−1(τ)H(τ),

which follows from Eq. (III.14), and the result in Eq. (VII.6) is recovered. Hence, we

see that although Φ(t, τ) and Φ(t− τ) are different for nonlocal dissipation, this is exactly

compensated by the contribution from the second term on the right-hand side of Eq. (VII.4),

which does not vanish in that case.

Note that just as all the temperature dependence appears entirely in the second cumulant,

or covariance, the external force only affects the first cumulant, or mean. Eq. (VII.5) shows

that the mean, 〈q〉(t), is shifted by 〈q〉F (t), which characterizes the response to the driving

force. In fact, using Eq. (II.21) one can immediately see that it corresponds to shifting 〈x〉

and 〈p〉 respectively by (G ∗ F )(t) and (MĠ ∗ F )(t), as one would expect.

B. N-Oscillator Master Equation

Our compact matrix notation allows a number of generalizations in a fairly straightfor-

ward fashion. As an illustration we present the generalization of our results for the master

equation and its solutions to the case of multiple system oscillators {xα} (which includes

the case of a higher dimensional oscillator) with arbitrarily bilinear coupling to themselves

and to the bath oscillators {yj}. We consider the system Lagrangian for N oscillators and

a generic bilinear term for the system-bath interaction:

Ls =
1

2

(
ẋTM ẋ− xTMΩ2 x

)
=

1

2

(
ẋαMαβẋ

β − xαMΩ2
αβx

β
)
, (VII.9)

Lint = yTc x = yiciβx
β, (VII.10)

where we used Einstein’s summation convention for repeated indices and the matrix c con-

nects system positions (denoted by Greek indices) to bath positions (denoted by Latin

indices). The matrices M and MΩ2 are symmetric and positive definite. The eigenvalues of

Ω correspond to the normal-mode frequencies, as will be seen from our Langevin equation.

The effects of the environment for the generalized situation described by Eqs. (VII.9)-

(VII.10) can be entirely encoded in a simple generalization of the spectral density as well as
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the noise and damping kernels:

Iαβ(ω) =
∑
k

δ(ω − ωk)
ckαckβ
2mkωk

, (VII.11)

ν(t, τ) =

∫ ∞
0

dω I(ω) coth
( ω

2T

)
cos[ω(t− τ)] , (VII.12)

Mγ(t, τ) =

∫ ∞
0

dω
I(ω)

ω
cos[ω(t− τ)] . (VII.13)

In fact, one can directly specify the system-environment coupling by giving the spectral

density matrix I(ω), which must be symmetric and positive semi-definite, as implied by

Eq. (VII.11). The Langevin equation in position space is then

M
(
s2 + 2s γ̂(s) + Ω2

)
x̂(s) = M (sx0 + ẋ0) + ξ̂(s), (VII.14)

which can solved via matrix inversion to find Ĝ(s), with which one can construct Φ(t)

and σT (t). However, closed-form evaluation of G(t) can be rather involved as even for

local dissipation the two-oscillator problem requires factoring a fourth-order polynomial. In

general, the N -oscillator problem will require factoring an order 2N polynomial for local

dissipation and at minimum 2N + 1 for nonlocal dissipation. We leave more thorough

discussion to our sequel paper where we will derive block-matrix equations analogous to

those herein.

VIII. DISCUSSION

Quantum Brownian motion of an oscillator coupled to a thermal reservoir of quantum

oscillators has been the canonical model for the study of open quantum systems where one

can use it to investigate all the environmental effects on an open quantum system it interacts

with, even of macroscopic scale, such as quantum dissipation, diffusion, decoherence and en-

tanglement. It also provides important information on quantum measurement, such as noise,

fluctuations, correlations, uncertainty relation and standard quantum limit in mesoscopic

systems. Many experiments have been carried out for testing these processes. An exact

master equation was reported some years ago [17] governing the reduced density matrix of

an open quantum system coupled to a general environment of arbitrary spectral density and

temperature. Subsequently there have also been claims of exact solutions [21]. We have

found many previous derivations to be correct for local dissipation, but containing errors or
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omissions for nonlocal dissipation; in their place we have presented the most complete and

correct derivation of the QBM master equation to date. In this paper we report on solutions

to this equation for a fairly general set of physical conditions and a generalization of the

QBM master equation to a system with an arbitrary number of oscillators. Most of the

previous results required one to solve integro-differential equations numerically, whereas we

have reduced everything to quadrature, which can be further simplified in many cases using

contour integration techniques. We expect these results to be useful in realistic settings for

the analysis of many problems which can be described by this model.

More specifically, we have found a compact expression for the general solution of this

master equation, showing that at late times it tends to a Gaussian state entirely characterized

by its asymptotic covariance matrix. For odd meromorphic spectral densities, and many

others, the result for this late-time covariance matrix can be evaluated as a simple contour

integral. As an example we provide explicit exact nonperturbative results for an ohmic

environment with a finite cut-off which are valid for an arbitrarily strong coupling. At

sufficiently low temperatures and strong coupling this equilibrium state becomes highly

squeezed and the system becomes extremely localized in position space, a phenomenon with

potentially interesting applications in the realm of mesoscopic systems.

The general solution of the master equation involves the matrix propagator of a linear

integro-differential equation. We have been able to solve these equations exactly for sev-

eral ohmic, sub-ohmic and supra-ohmic environments with a finite cut-off and studied the

evolution of the system for finite times. This is achieved using Laplace transforms and even-

tually transforming back to time domain. From such exact (and simple) solutions for the

propagator one gains highly valuable information. For instance, one can justify that using

the local propagator is a valid approximation for the ohmic environment in the large cut-off

limit. This approximation leads to great simplifications and we are then able to provide

relatively simple analytic expressions for the diffusion coefficients of the master equation at

all times. Similarly, our exact solutions for the propagator in specific examples of sub-ohmic

and super-ohmic environments reveal a dominant contribution from nonlocal dissipation ef-

fects. In the first case it is a consequence of long-time correlations, due to the low-frequency

modes of the environment, that become important at late times. In contrast, the source

of nonlocality in the supra-ohmic case is the UV regulator function, and it gives rise to a

marked cut-off sensitivity of the momentum covariance which had not been noticed so far.
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On the other hand, it should be pointed out that although the results for the exact propa-

gator of the integro-differential equation are rather simple, some of the general expressions

for the solutions of the master equation are rather lengthy and have not been reported here.

They have, nevertheless, been employed to evaluate and plot the exact time evolution of the

thermal covariance for an ohmic environment with a finite cut-off in Sec. V B.

It is important to discuss the cut-off sensitivity of the late-time covariance and diffusion

coefficients for an ohmic environment in the weak coupling regime. While σ∞xx is finite in

the infinite cut-off limit, σ∞pp depends logarithmically on Λ for large Λ already at order γ0

[Eq. (V.22)]. This means that it is absolutely necessary to consider a finite cut-off. The kind

of divergences that appear otherwise cannot be dealt with by renormalizing the frequency

or other bare parameters of the theory. In fact, as shown in Sec. V D, subtracting the

divergent term would lead to inconsistencies (violation of Heisenberg’s uncertainty principle).

Furthermore, from the late-time thermal covariance one can immediately obtain the late-

time diffusion coefficients as well (see the discussion at the end of Sec. V C). One finds then

that both the normal and anomalous diffusion coefficients are logarithmically sensitive to

large cut-offs. However, while this dependence appears in Dxp [Eq. (V.19)] at order γ0, in

Dpp it only appears at order γ2
0 , and it had been missed in previous analytic studies which

treated γ0 perturbatively to lowest order.

We would also like to stress the following point. When studying an ohmic environment

with a finite but large cut-off, it can be a good approximation to consider local dissipation

(infinite cut-off limit for the damping kernel) while keeping the cut-off finite in the noise ker-

nel. This has already been discussed above and justifies calculations like those of Ref. [16] up

to corrections suppressed by inverse powers of the cut-off. However, the opposite is not true:

it is essential to keep a finite cut-off in the noise kernel to avoid the divergences discussed

in the previous paragraph. This is precisely the origin of the divergences and pathological

behavior found in Ref. [21], where a finite cut-off was employed in the damping kernel but

not in the noise kernel. Instead one should use the same spectral function everywhere, which

means having a finite cut-off in both kernels, and everything would be well defined then.

Note that these divergences would appear in the momentum covariance even at asymp-

totically late times, as discussed in the previous paragraph. There is a different kind of

sensitivity to large values of the cut-off that is due to having started with a uncorrelated

state for the system and the environment. This gives rise to a jolt in the normal diffusion
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coefficient at early times of order 1/Λ with an amplitude proportional to Λ, as well as a

logarithmic dependence on the cut-off of σxx (and σpp) that decays exponentially with the

relaxation time-scale 1/Γ. They would not be present if one had started with an appropri-

ately correlated initial sate, and then prepared the system in a finite time (not suddenly).

Alternatively, this can be implemented by switching on the system-environment interaction

smoothly in a finite time much larger than 1/Λ, but shorter than the other dynamical scales

of the system.2

As a further generalization of the QBM master equation we have included the influence

of external forces. This modifies the dynamics by driving the mean position and momentum

just as with a classical driven system (even for nonlocal dissipation). In this model we

found that the force has no effect upon the width of the wave-packet or any cumulant other

than the mean. These results may be useful for the study of low-temperature measurements

of forced oscillators, which are relevant for experiments with nanomechanical resonators

[11, 12]. They also play a crucial role in future schemes for the detection of gravitational

waves with high-intensity laser interferometers, where the radiation pressure effects on the

cavity mirrors are important [38, 39].

Finally, we have extended the model of one quantum oscillator bilinearly coupled to

a thermal reservoir of oscillators to a model of multiple oscillators bilinearly coupled to

themselves and the bath in an arbitrary fashion. With this generalization, the potential for

application [40, 41] becomes almost endless and we leave further study to future research

[42].
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Appendix A: Special Functions

1. Harmonic Number

The harmonic number H(n) is a function similar to a logarithm, whose definition and

main properties are

H(n) =
n∑
k=1

1

k
, n ∈ Z+ (A.1)

H(0) = 0, (A.2)

γE = lim
n→∞

(H(n)− log (n)), (A.3)

where γE is known as the Euler-Mascheroni constant. Its generalization to the complex

plane exhibits similar properties and is given by

H(z) = γE + ψ(z + 1), z ∈ C, (A.4)

where ψ(z) is the digamma function, defined as

ψ(z) =
Γ′(z)

Γ(z)
. (A.5)

It satisfies the recurrence relation

ψ(z + 1) = ψ(z) +
1

z
, (A.6)

and its Taylor expansion around 1 as well as its asymptotic expansion for |z| → ∞ are given

respectively by

ψ(z + 1) = −γE +
∞∑
k=1

ζ(k + 1)(−z)k for |z| < 1, (A.7)

ψ(z) ∼ ln z − 1

2z
− 1

12z2
+ · · · if |arg (z)| < π, (A.8)

where ζ(n) is the Riemann zeta function.
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2. Exponential Integral

The exponential integral is a special function which is defined for |arg(z)| < π as

E1(z) =

∫ ∞
z

e−z
′

z′
dz′, (A.9)

and has a branch cut along |arg(z)| = π. Its series expansion is

E1(z) = −γE − ln z −
∞∑
n=1

(−1)n

nn!
zn, (A.10)

and its asymptotic expansion for |z| → ∞ is given by

E1(z) =
e−z

z

(
1− 1

z
+

2

z2
+ · · ·

)
. (A.11)

3. Error Function

The error function is defined as

erf(z) =
2√
π

∫ z

0

e−w
2

dw, (A.12)

where the path integration is subject to the restriction lim|w|→∞ |arg(w)| < π/4. In addition,

the complementary error function is defined as

erfc(z) =
2√
π

∫ ∞
z

e−w
2

dw = 1− erf(z). (A.13)

The series expansion is

erf(z) =
2√
π

∞∑
n=1

(−1)n

(2n+ 1)n!
z2n+1, (A.14)

and the asymptotic expansion for |z| → ∞ (and |arg(z)| < 3π/4) is given by

erfc(z) =
e−z

2

√
π z

(
1− 1

2z2
+

3

4z4
+ · · ·

)
, (A.15)

which along with the fact that erf(z) is odd, is sufficient to create an accompanying asymp-

totic expansion for |arg(z)| > 3π/4
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Appendix B: Some properties of Laplace Transforms

Given a real function f(t), defined for all real numbers t ≥ 0, its Laplace transform is

defined as

f̂(s) = L
{
f(t)

}
(s) =

∫ ∞
0−

e−stf(t)dt, (B.1)

where the one-sided limit from the left for the lower limit of integration is chosen so that

the transform of the Dirac delta function is one, i.e. L{δ(t)} = 1. The main properties used

in the paper are the following. First, the Laplace transform of a derivative is given by

L
{
ḟ(t)

}
(s) = sf̂(s)− f(0). (B.2)

And from this one can easily infer that the Laplace transform of an integral:

L
{∫ t

0

dτf(τ)

}
(s) =

1

s
f̂(s). (B.3)

Second, multiplying f(t) by an exponential corresponds to a translation of the Laplace

transform:

L
{
eatf(t)

}
(s) = f̂(s− a). (B.4)

Third, if the inverse Laplace transform of f̂(s) is f(t) θ(t), multiplying f̂(s) by an exponential

corresponds to a translation of the inverse Laplace transform:

L−1
{
easf̂(s)

}
(s) = f(t+ a) θ(t+ a). (B.5)

Fourth, the Laplace transform of a Laplace convolution is given by the product of the Laplace

transforms:

L
{

(f ∗ g)(t)
}

(s) = f̂(s) ĝ(s), (B.6)

where

(f ∗ g)(t) =

∫ t

0

dt′f(t− t′)g(t′). (B.7)

Fifth, the initial value theorem relates the initial value of a function f(t) and the infinite

limit of its Laplace transform as follows:

f(0+) = lim
s→∞

sf̂(s). (B.8)

Sixth, the final value theorem relates the infinite limit of a function f(t) and the initial value

of its Laplace transform as follows:

f(∞) = lim
s→0

sf̂(s), (B.9)
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provided that all the poles of f̂(s) are on the Re(s) < 0 half of the s complex plane.

Seventh, the inverse Laplace transform of f̂(s) can be calculated using Bromwich’s integral,

which involves an analytic continuation of f̂(s) in the complex plane:

f(t) = L−1
{
f̂(s)

}
(s) =

1

2πı

∫ α+ı∞

α−ı∞
estf̂(s)ds, (B.10)

where α is a real number chosen so that the integration path lies within the region of

convergence of f̂(s), i.e., α > Re(sj) for every singularity sj of f̂(s).

Bromwich’s integral illustrates the close relationship between the Laplace transform and

the Fourier transform through analytic continuation. However, even if all the singularities

of f̂(s) lie on the Re(s) < 0 half of the complex plane, the relation is not direct because

the Laplace transform involves an integral with domain [0,∞) rather than (−∞,∞). The

precise relationship can be understood as follows. Consider a real function f(t) defined for

all real values of t and whose Fourier transform is f̃(ω). It is useful to define the following

additional Fourier transforms:

f̃±(ω) =

∫ ∞
−∞

dt e−ıωtf(t) θ(±t) , (B.11)

such that f̃(ω) = f̃+(ω) + f̃−(ω) and which satisfy the property f̃±(−ω) =
(
f̃±(ω)

)∗
since

f(t) is real. Assuming that the Laplace transform f̂(s) has no singularities for Re(s) > 0, it

can be related by analytic continuation to f̃+(ω):

f̃+(ω) = lim
ε→0

f̂(ε+ ıω). (B.12)

If f(t) is an even function, one has f̃−(ω) = f̃+(−ω), and using Eq. (B.12) one can then

write

f̃(ω) = f̃+(ω) + f̃+(−ω) = lim
ε→0

(
f̂(ε+ ıω) + f̂(ε− ıω)

)
. (B.13)

Similarly, if f(t) is an odd function, one has f̃−(ω) = −f̃+(−ω), which implies

f̃(ω) = f̃+(ω)− f̃+(−ω) = lim
ε→0

(
f̂(ε+ ıω)− f̂(ε− ıω)

)
. (B.14)
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Appendix C: System-Environment Interaction and Renormalization

1. Renormalization and the Damping Kernel

Let us consider the Langevin equation associated with some arbitrary time-dependent

bath couplings cn(t) (possibly including switch-on functions) and renormalization MδΩ2(t).

(L · x)(t) = Mẍ(t) +M
(
Ω2 + δΩ2(t)

)
x(t) + 2

∫ t

0

dτ µ(t, τ)x(τ), (C.1)

where our suggested renormalization will be

MδΩ2(t) = 2
∑
k

c2
n(t)

2mnωn
, (C.2)

which is equivalent to placing the system-environment interaction within the square of the

environment potential, essentially placing the environment in equilibrium around the sys-

tem. Defining the damping kernel such that µ(t, τ) = −M(∂/∂τ) γ(t, τ) then produces the

Langevin equation

(L · x)(t) = Mẍ(t) + 2M

∫ t

0

dτ γ(t, τ) ẋ(τ) +MΩ2
R(t)x(t) + 2Mγ(t, 0)x(0), (C.3)

Ω2
R(t) ≡ Ω2 + δΩ2(t)− 2γ(t, t), (C.4)

where no approximations nor assumptions have been made. Phenomenologically speaking,

if we consider local damping γ(t, τ) = γ0 δ(t − τ), then there would be an accompanying

infinite subtraction from the system frequency of γ0 δ(0). Therefore some renormalization

must be made so that the free and coupled theory have any resemblance. The finial slip term

is relatively less worrisome, even in the limit of local damping, as its infinite force would

only be imparted for an infinitesimal amount of time.

For constant couplings, which produce stationary kernels, the corresponding stationary

damping kernel is fully constrained to be the positive-definite kernel

γS(t, τ) =
1

M

∑
k

cos[ωn(t− τ)]
c2
n

2mnω2
n

, (C.5)

which preferences the renormalization in Eq. (C.2) for which Ω2
R(t) = Ω2

For variable couplings one has to be much more careful in defining a damping kernel which

has appropriate limits and behavior. One might suspect the more general non-stationary

damping kernel to be the positive-definite kernel

γP(t, τ) ≡ 1

M

∑
k

cos[ωn(t− τ)]
cn(t)cn(τ)

2mnω2
n

, (C.6)
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however this function is not an anti-derivative of the non-stationary dissipation kernel.

2. Initial-Time Divergences, Coupling Switch-on and Initial-State Distortion

a. Initial-Time Divergences and Coupling Switch-on

The derivation of the HPZ master equations relies upon the key assumption that the

system and environment are initially uncorrelated. For an ohmic environment, this gives

rise to an initial “jolt” in the normal diffusion coefficient of the master equation with a

characteristic time-scale of order Λ−1 and an amplitude proportional to Λ. Similarly, the

frequency Ω2
R(t) in the master equation starts with a large value of the order of Λ and

decreases to moderate values in a time of order Λ−1.

The physical origin of the jolts in the coefficients of the master equation as well as other

initial time divergences, such as the divergent contributions to correlation functions of system

observables that are due to divergent boundary terms at the initial time (see Appendix D

in Ref. [43]), can be understood as follows. In general when a system couples to an en-

vironment with an infinite number of modes, well-behaved states exhibit correlations with

arbitrarily high-frequency modes. In contrast, states that are uncorrelated for sufficiently

high frequencies (such as completely factorizable states) are pathological. For instance, in

the limit of infinite cut-off they have infinite energy (even with an origin of energies such that

the ground state of the whole interacting system has vanishing energy) and their Hilbert

space is unitarily inequivalent to the space of physical states, spanned by the basis of energy

eigenvectors of the whole system Hamiltonian including the system-environment interaction.

(Of course for a finite UV cut-off there are no divergences or unitary inequivalence, but the

potentially divergent terms are very sensitive to changes in the value of the cut-off.) Physi-

cally acceptable initial states that correspond to the thermal equilibrium state for the whole

system can be obtained using Euclidean path integrals [44]. However, the instantaneous

preparation functions employed in Ref. [44] to produce other states in addition to the ther-

mal equilibrium state still give rise to initial divergences, as explained in Ref. [45]. In order

to obtain finite results, one needs to prepare the new initial state within a non-vanishing time

[35], which corresponds to a physically more realistic situation. The alternative approach

that we follow here is to switch on the system-environment interaction smoothly within a
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time ts much longer than Λ−1 but shorter than any other relevant time-scale of the problem.

In this way the factorized initial state, which is perfectly acceptable in the uncoupled case,

becomes more adequately correlated with the arbitrarily high-frequency modes in a regular

fashion.

When adding the short time switch-on function to the spectral density to turn on the

interaction gradually, as in Eq. (II.2), the initial jolt is no longer present in the results for

the diffusion coefficients, which behave smoothly during the switch-on time. Furthermore,

for times much longer than ts the contribution to Eq. (III.17) from the switch-on period is

negligible and one can simply use that equation without including any switch-on function.

This point is implicitly exploited throughout the paper: unless explicitly stated, our cal-

culations of the diffusion coefficients do not take into account the switch-on functions and

the results for those coefficients should only be regarded as valid for times sufficiently larger

than ts, while their values during that period should be smoothly interpolated so that they

vanish at the initial time.

Either the quick transition from the bare frequency to the renormalized one (in the

absence of a smooth switch-on function) or switching on the interaction in a finite time

ts can have a non-negligible effect on the homogenous solutions of the Langevin equation

even for times much larger than Λ−1 or ts. Fortunately, as we will show in the remaining

subsections, the effect can be entirely accounted for by a finite shift of the initial momentum

and the corresponding transformation of the initial state.

b. Initial Kick (finite cutoff, vanishing switch-on time)

We start by considering the case in which there is no switch-on time and analyze the

effect of the slip term in the Langevin equation. To review, from Eq. (II.13) the solution

with the slip is

x̂(s) = M (sx0 + ẋ0) Ĝ(s) + Ĝ(s)ξ̂(s), (C.7)

whereas one can easily infer that the solution without the slip would similarly be

ŷ(s) = M (sy0 + ẏ0 + 2γ̂(s) y0) Ĝ(s) + Ĝ(s)ξ̂(s). (C.8)
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Most generally, in the nonlocal case, the slip can be identified with the transient driving

force

Fγ(t) = 2γ(t)x0, (C.9)

whose contribution to the solution is simply G(t) ∗ Fγ(t). In the limit of local dissipation,

one can see that the effect is a kick to the initial state such that the solutions before and

after the kick can be related via

y0 = x0, (C.10)

ẏ0 = ẋ0 − 2γ0x0. (C.11)

This constitutes a distortion of the initial state: ẋ0 → ẋ0 − 2γ0x0, which occurs within the

cutoff timescale. The effect of such an initial kick can be entirely absorbed in a redefinition

of the initial state, as will be discussed in Sec. C 2 d.

c. Initial Kick (large cutoff, non-vanishing switch-on time)

Next, we consider the model of otherwise stationary dissipation, γ(t − τ) if the system-

environment coupling cn(t) were constant, but with a non-vanishing switch-on time ts and

smooth switch-on function such that θs(0) = 0. Integrating the dissipation kernel by parts

in Eq. (C.1) we obtain the Langevin equation

ẍ(t) + 2

∫ t

0

dτ γP(t, τ) ẋ(τ) + Ω2x(t) = −2 θs(t)

∫ t

0

dτ γ(t− τ)θ̇s(τ)x(τ), (C.12)

γP(t, τ) ≡ γ(t− τ) θs(t)θs(τ), (C.13)

where we have not yet made any approximations as to the timescales of the dissipation kernel

and switch-on function, but have introduced the natural renormalization in Eq. (C.2). The

right-hand-side of this expression describes what is essentially a slip in either the limit of

local dissipation or vanishing switch on time, as for x(t) slowly evolving one has a convolution

of the distributions γ(t) and θ̇s(t) which is also a distribution localized near the initial time.

If we take the high cutoff limit such that γ(t−τ) = γ0 δ(t−τ), which should be acceptable

for Λ� t−1
s , then we obtain a Langevin equation with parametric damping

ẍ(t) + 2γ0 θ
2
s (t) ẋ(t) + Ω2x(t) = −γ0 δs(t)x(t) (C.14)

δs(t) ≡
d

dt
θ2

s (t), (C.15)



69

where δs(t) is a representation of the delta function in the limit of vanishing switch-on time.

For a very rapid switch-on function we have δs(t)x(t) ≈ δs(t)x(0) and therefore this term

is also a slip as considered in the previous section. This slip will produce a distortion of the

initial state: ẋ0 → ẋ0 − γ0x0, which occurs within the switch-on timescale. For times much

larger than ts, this effect can also be entirely absorbed into a redefinition of the initial state,

as described in next subsection.

d. Initial-State Distortion

In Sec. C 2 b we calculated that in a particular limit of Ω� Λ� t−1
s one obtains a kick to

the initial state of ẋ0 → ẋ0−2γ0x0 which occurs within the slower cutoff timescale. Whereas

in Sec. C 2 c we calculated that in a particular limit of Ω � t−1
s � Λ one obtains a kick to

the initial state of ẋ0 → ẋ0−γ0x0 which occurs within the slower switch-on timescale. From

the exact relation in Eq. (C.12), if one tries to enforce both high cutoff and short switch-on

time then there will be a kick ẋ0 → ẋ0 − cγ0x0 which occurs in the slower of the cutoff and

switch-on timescales. And if the stationary damping kernel γ(t) and switch-on function’s

derivative θ̇s(t) are suitably well-behaved distributions, then this kick is bounded such that

0 ≤ c ≤ 2.

From these results one might be tempted to consider modifying the Lagrangian by in-

troducing a suitable time-dependent frequency renormalization counterterm δΩ2
kick(t) =

−cγ0δ(t). However, even though an appropriate choice of time-dependent counterterm could

compensate and effectively remove the effect of the initial kick in either case, a truly finite

cutoff is still necessary to have a finite thermal covariance and the switch-on function for

the system-environment interaction is still useful in avoiding the more cut-off sensitive ini-

tial jolts in the diffusion coefficients [the key point in those cases is the dependence on the

switch-on function of the noise kernel shown in Eq. (II.5)].

Moreover, the effect of any such kick can easily be accounted for by simply distinguishing

between the “bare” initial state before the kick and the “renormalized” state immediately

after the kick. Following the approach in Ref. [19] one can easily see that this initial kick

translates into a distortion of the Wigner distribution from the bare initial state to a shifted

one

Wbare(x, p)→ Wren(x, p) = Wbare(x, p− cMγ0x). (C.16)
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This phase-space transformation has a Jacobian matrix K with determinant equal to one:

K =

 1 0

−cMγ0 1

 det K = 1. (C.17)

Therefore, it is simple to calculate renormalized expectation values in terms of bare expec-

tation values and vice versa:

〈A(x, p)〉 ren
or
bare

=

∫∫
dxdpA(x, p)Wren

or
bare

(x, p), (C.18)

〈A(x, p)〉ren = 〈A(x, p+ cMγ0x)〉bare . (C.19)

We can immediately see that the normalization, linear entropy (see Sec. IV A 3) and state

overlap are all unchanged by the kick. We can also check that the Heisenberg uncertainty

relation is also preserved as follows. First, we start with the covariance matrix for x and p

corresponding to the Wigner distribution

σ =

 σxx σxp

σpx σpp

 , (C.20)

with σxx = 〈xx〉ren, σxp = σpx = 〈xp〉ren and σpp = σpp = 〈pp〉ren, and which transforms in

the following way under linear phase-space transformations:

σ → Kσ KT . (C.21)

Hence, from Eq. (C.17) we have

detσbare = detσren . (C.22)

Finally, one takes into account that

(detσ) ≥ ~2

4
, (C.23)

corresponds to the formulation in terms of the Wigner function of the generalized Heisenberg

uncertainty relation due to Schrödinger [46, 47]:

〈
∆x2

〉 〈
∆p2

〉
−
〈

1

2
{∆x,∆p}

〉2

≥ ~2

4
, (C.24)

where {Â, B̂} ≡ ÂB̂ + B̂Â.
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Furthermore, by switching to the density matrix formalism, we can see that pure states

are mapped to pure states and positivity is preserved. It is a straightforward calculation to

show that

ρbare(x, y)→ ρren(x, y) = e+ıcMγ0x2/2ρbare(x, y)e−ıcMγ0y2/2. (C.25)

Therefore, if we start in a pure state, which acts as a projection operator

ρ2
bare = ρbare , (C.26)

then it is fairly easy to see that this will hold for the distorted state. Additionally, given the

positivity condition

〈ψ|ρbare|ψ〉 ≥ 0, (C.27)

for all vectors |ψ〉, then it is easy to see that the distorted state will also fulfill this condition

by simply considering the vectors eıcMγ0x2/2ψ(x) in position representation.

In summary, the new Wigner function that results from the transformation defined by

Eq. (C.16) always corresponds to a physical density matrix since the transformation pre-

serves the normalization and the real-valuedness of the Wigner function (implying the nor-

malization and hermiticity of the density matrix) as well as the positivity of the associated

density matrix. Therefore, if one is interested in analyzing the evolution of a certain state

of the system better correlated with the environment, one can simply take such a state as

Wren(x, p) and study its evolution for t � min[ts,Λ
−1] by considering the Langevin equa-

tion without the term that gives rise to the initial kick. However, given any Wren(x, p) it

is always possible to follow in detail the evolution during the switch-on time by inverting

Eq. (C.16) to obtain the corresponding initial Wigner function before the interaction was

switched on and using the full Langevin equation with the contribution from the right-hand

side of Eq. (C.12) included. In general this approach can be regarded simply as a formal

procedure to generate a better correlated initial state, but the explicit construction involving

unitary evolution for the whole system at all times guarantees that the result is well defined

(i.e. the exact solutions of the master equation obtained in this way preserve the positivity

of the density matrix).3

3 Using this approach the system-environment correlations at high frequencies will be the same as those
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Appendix D: Peculiarities of Propagators and Green Functions Associated with

Integro-differential Equations

In this Appendix we discuss a subtle mathematical point which, to the best of our knowl-

edge, has been missed in the existing literature on master equations of QBM models. It

has to do with properties of Green functions which are satisfied for ordinary differential

equations but not for integro-differential equations. Thus, it becomes particularly relevant

whenever the nonlocal aspects of the dissipation kernel cannot be neglected.

Consider an integro-differential equation of the form

q̇(t) +

∫ t

0

dτ H(t− τ) q(τ) = ξ(t), (D.1)

with the kernel H(t− τ) given by Eq. (II.19). Its solutions can be written as

q(t) = Φ(t) q0 + (Φ ∗ ξ)(t), (D.2)

where q0 specifies the initial conditions and the matrix propagator Φ(t) is given by

Eq. (II.23). As far as the homogeneous solutions are concerned, the values of a solution

at two different times τ and t are related by the transition matrix Φ(t)Φ−1(τ). On the

other hand, for some given initial conditions the inhomogeneous solutions are obtained by

integrating the source with the retarded matrix propagator Φret(t− τ) = Φ(t− τ) θ(t− τ),

as shown in Eq. (D.2).

In the case of a linear differential equation (i.e. for a local damping kernel), the retarded

matrix propagator and the transition matrix are related in a simple way: Φret(t − τ) =

Φ(t)Φ−1(τ) θ(t− τ). This can be seen by realizing that Φ(t) θ(t− τ) satisfies the differential

equation except for a delta function that results from differentiating the theta function,

and that the two expressions are equal to the identity matrix at t = τ . In contrast, for

an integro-differential equation (a nonlocal damping kernel) Φ(t)Φ−1(τ) θ(t − τ) no longer

corresponds to the retarded matrix propagator because Φ(t) θ(t − τ) does not satisfy the

of other properly correlated states (such as the global equilibrium states considered in Ref. [44] or states

prepared from those in a finite time). However, in general the correlations for low frequencies will differ

and the states of the whole system plus environment will not be equivalent even if their reduced Wigner

functions are the same. In particular this implies that even if the reduced Wigner functions of the two

states coincide at some given time, they will in general evolve differently (until thermal equilibrium for

the whole system is reached).



73

integro-differential equation, which can be seen (for t > 0) as follows:

Φ̇(t) = −
∫ t

0

dτ ′H(t− τ ′) Φ(τ ′) 6= −
∫ t

τ

dτ ′H(t− τ ′) Φ(τ ′)

= −
∫ t

0

dτ ′H(t− τ ′) Φ(τ ′) θ(τ ′ − τ), (D.3)

where the discrepancy is due to a term of the form
∫ τ

0
dτ ′H(t − τ ′) Φ(τ ′) (with t > τ),

which vanishes in the case of nonlocal damping kernel and hence a nonlocal kernel H(t−τ ′),

but does not vanish in the nonlocal case. On the other hand, Φret(t − τ) does satisfy

the integro-differential equation with a delta source, as it should. This point, which can be

alternatively seen in Laplace space fairly easily, follows from the fact that Φ(t) is a solution of

the integro-differential equation by construction, together with the translational invariance

of this kind of solutions [i.e. if Φ(t) is a solution, Φ(t − τ) is also a solution4]. Such a

translational invariance follows quite straightforwardly from the causal and translationally-

invariant nature of the kernel H(t− τ ′) as well as the matrix propagator’s support only for

non-negative values of its argument:

Φ̇ret(t− τ) = −
∫ t−τ

0

dτ ′H(t− τ − τ ′) Φ(τ ′) + I δ(t− τ)

= −
∫ t

τ

dτ ′′H(t− τ ′′) Φ(τ ′′ − τ) + I δ(t− τ)

= −
∫ t

0

dτ ′′H(t− τ ′′) Φ(τ ′′ − τ) + I δ(t− τ), (D.4)

where I is the identity matrix and we used the fact that Φ(τ ′) = 0 for τ ′ < 0 in the last

equality.

From the previous discussion it immediately follows (taking t > τ) that, contrary to the

local case, the matrix propagator does not factorize in the nonlocal case, i.e.

Φ(t− τ) 6= Φ(t)Φ−1(τ). (D.5)

This lack of factorizability also implies that the Green function or, equivalently, the matrix

propagator Φf(t, τ) for the integro-differential equation when the boundary conditions are

specified at some final time [and given by Eq. (II.27)] is no longer an advanced propagator,

4 Note that if one uses a convention according to which Φ(t) = 0 for t < 0, then the notation Φ(t) θ(t) is

redundant.
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i.e. it is no longer true that Φf(t, τ) = 0 for t > τ . This can be proved by contradiction. If

one considers τ > t > τ ′ in Eq. (II.27) and assumes that Φf(τ, τ
′) = 0, one is left with

0 = −Φ(τ, t) Φ(t− τ ′) + Φ(τ − τ ′). (D.6)

Taking the limit τ ′ → t− of Eq. (II.27) and taking into account that limu→0+ Φ(u) = I, one

finally obtains Φ(τ − t) = Φ(τ)Φ−1(t), which is in contradiction with Eq. (D.5). Therefore,

the assumption Φf(τ, τ
′) = 0 for τ > τ ′ cannot be true in the nonlocal case.

These facts or closely related ones have been missed in the existing literature on master

equations for QBM models. As a consequence, the existing results for the coefficients of the

master equation are mathematically incorrect unless strictly local dissipation is considered,

and can give rise to significant discrepancies whenever nonlocal effects are important. We

close this appendix by briefly describing how this affects the different existing approaches to

deriving the exact master equation for QBM models. One class of derivations [18–20] involve

an intermediate step where the solution of an integro-differential equation like Eq. (D.1) with

specified boundary conditions (position and velocity) at a final time is needed. The previous

discussion directly applies to this class of derivations and the main consequences are that

the Green functions appearing there are not advanced and the explicit expressions which

were provided, based on the assumption that those Green functions were advanced, are

incorrect. Nevertheless, the results in those references can be easily corrected by removing

the qualification of “advanced” propagator and discarding the explicit expressions for that

Green function. The results would then become equivalent to the general result that we have

obtained in Sec. III B, although one would need to find a way to construct the Green function

explicitly. We provide such an explicit construction of the corresponding matrix propagator

Φf(τ, τ
′) in Eq. (II.27), where it is expressed in terms of known quantities, namely, Φ(t)

as given by Eq. (II.23). Note, by the way, that if one had truly advanced propagators,

one could show that the terms involving triple time integrals in the results for the diffusion

coefficients [such as Eqs. (B.17)-(B.18) in Ref. [19]] actually vanish. In fact, these terms

correspond to the last term on the right-hand side of our Eq. (III.11), which only vanishes

for local dissipation, as can be seen from Eqs. (III.17), (III.14) and the discussion above.

A second class of derivations, including HPZ’s original derivation for arbitrary temper-

ature and spectral function, relies on the use of Green functions for the same integro-

differential equation, but associated with mixed boundary conditions which correspond to
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specifying the position at the initial and final times. Explicit expressions are provided for

those Green functions G(t, s) in terms of homogeneous solutions u1(τ) and u2(τ) which van-

ish at the final and initial times respectively. Unfortunately, although those expressions are

standard results for ordinary differential equations, they are not valid for nonlocal integro-

differential equations. This is because they involve the sum of two terms, each one of them

being a certain solution of the homogeneous integro-differential equation times θ(t− s) and

θ(s− t) respectively [see Eq. (2.34) in Ref. [17]]. However, for similar reasons to those given

above and illustrated by Eq. (D.3), when multiplied by the theta functions those solutions

cease to satisfy the integro-differential equation.

Finally, a third class of derivations [21] are based on showing that the solutions of the

Langevin equation can be equivalently understood as solutions of a local ordinary differential

equation rather than an integro-differential one. This is true for the homogenous solutions of

the Langevin equation and corresponds to the equivalence (after inverting and transposing)

between the matrix propagator Φ(t) associated with the Langevin equation and the matrix

propagator Φk(t) associated with the ordinary differential equation (III.30), which we found

in Sec. III C 1. However, such an equivalence is not true for inhomogenous solutions of the

nonlocal Langevin equation. On way of seeing this is by realizing that since Eq. (III.30)

is an ordinary differential equation, its retarded matrix propagator does factorize. But if

the inhomogeneous solutions of the local equation constructed with that propagator were

also solutions of the inhomogeneous Langevin equation, it would imply that the retarded

propagator associated with the latter also factorizes, which is not true for nonlocal dissipa-

tion, as we showed above.5 In particular, the derivation of Eq. (2.18) in Ref. [21] is valid if

one takes a vanishing inhomogeneous source F (t). Nevertheless, when deriving Eq. (2.18)

for a non-vanishing source, the authors implicitly assumed that if the homogenous solutions

of the Langevin equations satisfy a local differential equation, the inhomogeneous solutions

of the Langevin equation should also satisfy the inhomogeneous version of the same local

equation. As we have explained, it turns out that this is only true for local dissipation. Not

surprisingly, making use of Eq. (2.18) the authors derive a master equation with diffusion

coefficients lacking the terms with triple time integrals mentioned above, which in reality

5 To use this argument directly one should consider the equation satisfied by [ΦT
k (t)]−1 rather than

Eq. (III.30), which is satisfied by Φk(t). That equation can be easily obtained by transposing and taking

the matrix inverse of Eq. (III.30) applied to Φk(t), and it is still a local linear differential equation.
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should only vanish for strictly local dissipation.

Appendix E: Derivation of the Late-Time Thermal Covariance

Here we present the derivation of the general single-integral representation of the late-

time thermal covariance. For the sake of brevity we will work out the explicit case of the

late-time position uncertainty. The late-time momentum uncertainty is analogous and the

cross-correlation vanishes at late times, as implied by σxpT (t) = (M/2)σ̇xxT (t) if σxxT (t) tends

to a constant asymptotic value.

We start with the full-time, exact expression

σxxT (t) =

∫ ∞
0

dω I(ω) coth
( ω

2T

)∫ t

0

dτ1

∫ t

0

dτ2G(t− τ1) cos[ω(τ1 − τ2)]G(t− τ2), (E.1)

=

∫ ∞
0

dω I(ω) coth
( ω

2T

)∫ t

0

dτ ′1

∫ t

0

dτ ′2G(τ ′1) cos[ω(τ ′1 − τ ′2)]G(τ ′2), (E.2)

where in the second line we made the simple change of variables τ ′i = t − τi for i = 1, 2.

Introducing the additional change of variables τ ′′1 = τ ′1 + τ ′2, the result can be rewritten as

σxxT (t) =

∫ ∞
0

dω I(ω) coth
( ω

2T

)∫ t

0

dτ ′2

∫ τ ′2+t

τ ′2

dτ ′′1 G(τ ′′1 − τ ′2) cos[ω(τ ′′1 − 2τ ′2)]G(τ ′2). (E.3)

The double time integration can then be split into two parts:∫ t

0

dτ ′2

∫ τ ′2+t

τ ′2

dτ ′′1 =

∫ t

0

dτ ′2

∫ t

τ ′2

dτ ′′1 +

∫ t

0

dτ ′2

∫ t+τ ′2

t

dτ ′′1 . (E.4)

At sufficiently late times the contribution form the second integration domain can be ne-

glected and we can approximate the whole integral as follows:∫ t

0

dτ ′2

∫ τ ′2+t

τ ′2

dτ ′′1 ≈
∫ t

0

dτ ′2

∫ t

τ ′2

dτ ′′1 =

∫ t

0

dτ ′′1

∫ τ ′′1

0

dτ ′2, (E.5)

The next step is to express the cosine in complex form with exponential functions. Once that

is done, it is not difficult to manipulate the result into the form of a Laplace convolution:

σxxT (t) ≈
∫ ∞

0

dω I(ω) coth
( ω

2T

)∫ t

0

dτ Re
{[
e−ıωτG(τ)

]
∗
[
e+ıωτG(τ)

]}
, (E.6)

where we renamed τ ′′1 as τ . Using the property of frequency shifting in the Laplace domain,

i.e. L{eλtf(t)} = f̂(s− λ), we obtain

σ̂xxT (s) ≈
∫ ∞

0

dω I(ω) coth
( ω

2T

) 1

s
Ĝ(s+ ıω) Ĝ(s− ıω). (E.7)
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Application of the final value theorem, as given by Eq. (B.9), then immediately reveals the

exact late-time covariance

σxxT (∞) =

∫ ∞
0

dω I(ω) coth
( ω

2T

)
Ĝ(+ıω) Ĝ(−ıω). (E.8)

Proceeding in a completely analogous way, one can obtain the result for the momentum

covariance and the cross correlation. For the cross correlation, the time derivative of one

of the propagators gives an extra factor (s + ıω) in the expression in Laplace space. When

taking the real part, as in Eq. (E.7), one is left only with s, which cancels out the factor

1/s in Eq. (E.8). Application of the final value theorem, as given by Eq. (B.9), gives then

a vanishing result for the asymptotic value of the cross-correlation: σxpT (∞) = 0. As for

the momentum covariance, the two time derivatives, one for each propagator, give an extra

factor (s2 +ω2) in the expression in Laplace space. When taking the real part and applying

the final value theorem, one is left with

σppT (∞) = M2

∫ ∞
0

dω I(ω) coth
( ω

2T

)
ω2Ĝ(+ıω) Ĝ(−ıω). (E.9)

Taking into account Eqs. (E.8)-(E.9) and the vanishing value of the asymptotic cross corre-

lation, the asymptotic value of the thermal covariance matrix can be written as

σT (∞) = Sy

∫ ∞
0

dω I(ω) coth
( ω

2T

)
Φ̂(+ıω) [ 0 0

0 1 ] Φ̂
T
(−ıω), (E.10)

where Sy denotes matrix symmetrization.

Appendix F: Moderate-Time Diffusion for Ohmic Case with Large Cut-off

In this appendix we calculate the diffusion coefficients for the ohmic case using the local

propagator GR(t) instead of the exact one, which is a valid approximation in the high cut-

off regime, as discussed in Sec. V A. The big advantage of using GR(t) is that only the first

term on the right-hand side of Eq. (III.17), which involves a single time integral, will give

a non-vanishing contribution. Furthermore, the Laplace transforms of the corresponding

equations for the diffusion coefficients exhibit a rather simple form if one takes the following

steps. First, one writes the cosine of the noise kernel in exponential form; next, manipulates

the time integral until one has a Laplace convolution; and then uses frequency shifting in

the Laplace domain, i.e. eλtf(t)→ f̂(s−λ). After some algebraic manipulations one finally
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gets

D̂xp(s) = −1

s

∫ ∞
0

dω I(ω) coth
( ω

2T

)
Re
[
ĜR(s+ ıω)

]
, (F.1)

D̂pp(s) = +
1

s

∫ ∞
0

dω I(ω) coth
( ω

2T

)
Re
[

ˆ̇GR(s+ ıω)
]
. (F.2)

Our late-time Green function (IV.29) is rational in the Laplace domain [with late-time

coefficients given by Eq. (V.11)]. Moreover, the spectral density I(ω) in Eq. (V.2) is mero-

morphic with a finite number of poles. Together with the rational expansion of the hyperbolic

cotangent in Eq. (IV.15), this implies that the frequency integrals over ω in the above dif-

fusion coefficients become sums over k of trivial contour integrals in the Laplace domain.

Still in the Laplace domain, these sums can be identified as harmonic number functions (or,

equivalently, digamma functions):6

D̂xp(s) =
2γ0

πΩ̃s
Im

 γs + ıΩ̃

1−
(
γs+ıΩ̃

Λ

)2

{
H

(
Λ

2πT

)
− H

(
γs + ıΩ̃

2πT

)}
−2γ0T

Λs

1(
1 + γs

Λ

)2
+
(

Ω̃
Λ

)2 , (F.3)

D̂pp(s) =
2γ0

πΩ̃s
Im


(
γ0 + ıΩ̃

)(
γs + ıΩ̃

)
1−

(
γs+ıΩ̃

Λ

)2

{
H

(
Λ

2πT

)
− H

(
γs + ıΩ̃

2πT

)}
+

2γ0T

s

1 + s
Λ(

1 + γs
Λ

)2
+
(

Ω̃
Λ

)2 , (F.4)

where γs = γ0 + s. Note that by making use of the final value theorem in Eq. (B.9), we

only need to discard the overall 1/s factor and replace γs with γ0 in Eqs. (F.3)-(F.4) to

obtain the late-time asymptotic values Dxp(∞) and Dpp(∞). The H(z) functions are the

harmonic number function discussed in Appendix A 1. These terms make up, among other

things, the well known log(Λ/Ω) divergence. They behave asymptotically like logarithms

6 Many of the expressions derived throughout this paper assume underdamping, i.e. γ0 < Ω with Ω̃ =√
Ω2 − γ20 . They can be used for the overdamping regime by making the following analytical continuation:

Ω̃→ ıγ̃ with γ̃ =
√
γ20 − Ω2 real.

Therefore, Eqs. (F.3)-(F.4) can be applied to the overdamping case if the Im and Re terms are first

expanded assuming that Ω̃ is real, and then the analytical continuation Ω̃→ ıγ̃ is made.
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but with H(0) = 0, making both their high and zero temperature limits trivial. At high

temperature, all of the harmonic number functions vanish, leaving only the second terms

which are proportional to the temperature. At zero temperature, all of the harmonic number

functions can be equivalently evaluated as logarithms.

The diffusion coefficients can be expressed in the time domain as their asymptotic val-

ues plus damped oscillating differential operators acting on the same decay function DF(t)

(although the sums over k cannot in general be identified with any simply behaved special

functions):

Dxp(t) = Dxp(∞)−Mγ0

{
ĠR(t) +GR(t)

(
2γ0 −

d

dt

)}
DF(t), (F.5)

Dpp(t) = Dpp(∞)−Mγ0

{
ĠR(t)

(
γ0 +

d

dt

)
+GR(t)Ω2

}
DF(t), (F.6)

with the thermal decay function

DF(t) = −
cot
(

Λ
2T

)
e−Λt(

1 + γ0
Λ

)2
+
(

Ω̃
Λ

)2 +
2

π
TS(t), (F.7)

TS(t) =
∞∑
k=1

(
Λ

2πT

)2(
Λ

2πT

)2 − k2

k e−2πTkt(
k + γ0

2πT

)2
+
(

Ω̃
2πT

)2 . (F.8)

For numerical evaluation purposes, it is useful to express this thermal sum in terms of Lerch

transcendent functions

TS(t) = Re

 1− ıγ0
Ω̃

1−
(
γ0+ıΩ̃

Λ

)2 Φ1

(
γ0 + ıΩ̃

2πT
; 2πTt

)− SyΛ

 Φ1

(
Λ

2πT
; 2πTt

)
(
1− γ0

Λ

)2
+
(

Ω̃
Λ

)2

 , (F.9)

with the definitions of the Lerch Φ1 and symmetric part being

Φ1(z;λ) =
∞∑
k=1

e−λ

k + z
, (F.10)

Syz [f(z)] =
f(+z) + f(−z)

2
. (F.11)

The decay function is such that at the initial time it causes cancelation with the asymptotic

values and the diffusion coefficients vanish. In this (asymptotic) high temperature perspec-

tive, the decay function contains two terms. The first decays at a cut-off dependent rate and

can be expressed in closed form. The second decays with primarily temperature dependent

rates and cannot be expressed in closed form with intuitive functions. It contains the initial
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time cancelation of the log(Λ/Ω) divergence. Although well convergent at moderate times,

the sum’s contribution to the regular diffusion coefficient is very slow to converge at the

initial time, even for moderate temperatures; see Fig. 14.

While our expressions (F.3)-(F.4) can easily give us the zero temperature diffusion coef-

ficients at asymptotically late time, they cannot easily give us the corresponding moderate

time behavior in closed form. Moreover, the zero temperature limit of coth(ω/2T )→ sgn(ω)

means that our diffusion coefficient integrals cannot be cast as closed contour integrals.

Nevertheless, the frequency integrals can be performed and the results expressed in terms

of exponential integrals with predictable time scales. At zero temperature (and in the high

cut-off limit) we find the decay function to take the following form:

lim
T→0

DF(t) =
2

π

d

dt

Re

E1

([
γ0 + ıΩ̃

]
t
)

ıΩ̃ e−(γ0+ıΩ̃)t

− SyΛ

[
E1(Λt)

Λ e−Λt

] , (F.12)

where E1(z) is the exponential integral, defined in Appendix A 2, which behaves like e−z/z for

large z. It should be noted that unlike the asymptotic limits of the diffusion coefficients, the

full time behavior is highly sensitive to the form of the cut-off regulator at low temperature.

For our smooth regulator, we find relatively smoothly evolving diffusion coefficients (similar

to the result in Ref. [17] at T = 10 Ω) all the way down to zero temperature. In contrast,

a sharp cut-off of the form I(ω) ∝ θ(ω − Λ) would produce the same average behavior,

but with a slowly decaying envelope modulating of considerable oscillations at the cut-off

frequency.

Analogous functions appear when we approximate the thermal sum in (F.8) [together

with the first term on the right-hand side of (F.7), which cancels any spurious poles at

Λ = 2πTk] as an integral with a comparably soft cut-off:

∞∑
k=1

(
Λ

2πT

)2(
Λ

2πT

)2 − k2
f(k) ≈

∫ ∞
ki

dk

(
Λ

2πT

)2(
Λ

2πT

)2
+ k2

f(k) , (F.13)

where ki ≈ 1. Still in the high cut-off limit, we find this qualitative approximation of the

decay function to be

DF(t) ≈ 2

π

d

dt

Re

E1

([
2πTki + γ0 + ıΩ̃

]
t
)

ıΩ̃ e−(γ0+ıΩ̃)t

− SyΛ

[
E1([2πTki + ıΛ] t)

ıΛ e−ıΛt

] , (F.14)

where we have discarded all finite terms at the initial time which decay at cut-off rates,

as our approximation ultimately ruins the behavior of DF(t) there. Thus, when using this
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approximate decay function, the time-dependent, decaying part of the diffusion coefficients

must be “clamped” at the initial time. At moderate times, our approximation reveals the

0.00 0.02 0.04 0.06 0.08 0.10
W t

1

2

3

4

DF

Γ0=
W

10
T=0

FIG. 13: Zero temperature decay functions for · zero temperature, · · · qualitative approximation

at Λ = 103Ω. The slopes differ near the initial time (within the cut-off time scale).

exact same form of exponential integral behavior as in the zero temperature limit. But the

temperature enters in such a way that the exponential decay inherent in E1 is not balanced

out with a e−2πTkit factor. Therefore, temperature is an inherently stronger relaxation scale

here [although there are additional e−γ0t factors from GR(t) functions in the full diffusion

coefficients].
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