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We present a new phenomenological gravitational waveform model for the inspiral and coales-
cence of non-precessing spinning black hole binaries. Our approach is based on a frequency domain
matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole
coalescence waveforms. We quantify the various possible sources of systematic errors that arise
in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria
based on minimizing these errors; we find that the dominant source of errors are those in the
post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the
gravitational radiation of non-precessing black hole binaries is presented that captures the phe-
nomenology of the hybrid waveforms. Its implementation in the current searches for gravitational
waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve
the reach of gravitational wave searches.

PACS numbers: 04.80.Nn, 04.30.Db, 04.25.Nx, 04.25.dc

I. INTRODUCTION

As a generalization of the classic Kepler problem in
Newtonian gravity, the binary black hole (BBH) system
in general relativity is of great interest from a fundamen-
tal physics viewpoint. Equally importantly, this system
has received a great deal of attention for its relevance
in astrophysics and, in particular, as one of the most
promising sources of detectable gravitational radiation
for the present and future generations of gravitational-
wave detectors, such as LIGO [1], Virgo [2], GEO600 [3],
LISA [4] or the Einstein Telescope [5]. The Kepler prob-
lem can be solved exactly in Newtonian gravity and it
leads to the well-known elliptical orbits when the sys-
tem is gravitationally bound. In contrast, in general
relativity, closed orbits do not exist and the BBH sys-
tem emits gravitational waves (GWs) which carry away
energy, thereby causing the black holes to inspiral in-
wards, and to eventually coalesce. The emitted GWs
are expected to carry important information about this
process, and it is one of the goals of gravitational wave
astronomy to detect these signals and decode them.

No analytic solutions of Einstein’s equations of gen-
eral relativity are known for the full inspiral and merger
of two black holes. Post-Newtonian (PN) methods can
be used to calculate an accurate approximation to the
early inspiral phase, using an expansion in powers of v/c
(where v is the orbital velocity and c is the speed of
light). As for the coalescence phase, starting with [6–8],
the late inspiral and merger has been calculated by large-
scale numerical solutions of the full Einstein field equa-

tions. Since the initial breakthroughs in 2005, there has
been dramatic progress in numerical relativity (NR) sim-
ulations for GW astronomy, including many more orbits
before merger, greater accuracy and a growing sampling
of the black hole-binary parameter space. A summary of
the published “long” waveforms is given in the review [9],
and a complete catalog of waveforms is being compiled
at [10]; more recent work is summarized in [11]. NR
results are now accurate enough for GW astronomy ap-
plications over the next few years [12], and have started
playing a role in GW searches [13, 14].

Given PN and NR results, it is promising to try and
combine them to produce “complete” inspiral-merger-
ringdown waveforms. PN techniques in their standard
formulation become less accurate as the binary shrinks,
and the approximation breaks down completely some-
where prior to the merger. NR waveforms, on the other
hand, become more and more computationally expensive
the larger the number of cycles that one wishes to sim-
ulate; the longest published data spans 16 orbits for the
equal-mass non-spinning case [15]. We therefore would
hope to combine PN and NR results in the region between
the point where NR simulations start and where PN
breaks down. To do this it is critical to verify that the PN
and NR results are in good agreement in this region and
that there is a consistent PN-NR matching procedure.
Much work has been done in comparing PN and NR re-
sults over the last 5-15 orbits before merger for a variety
of physical configurations, such as the equal-mass non-
spinning case [16–22], the equal-mass non-precessing-spin
case [23], and the unequal-mass spinning case [26]. The
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consistency of PN amplitudes during the merger and
ringdown has also been studied [16, 24, 25]. These stud-
ies suggest that a sufficiently accurate combination of PN
and NR results should be possible. One topic that has
not received much attention, however, is the systematic
errors that are introduced by different choices of match-
ing procedure.

One of the aims of this paper is to further understand
and quantify the various systematic errors that arise in
the matching procedure. There are thus far two kinds
of approaches to the PN-NR matching problem, both of
which have yielded successful results. The first is the
Effective-One-Body (EOB) approach [27–30]. Originally
motivated by similar techniques in quantum field theory,
the idea is to map the two body problem into an effec-
tive one-body system with an appropriate potential and
with the same energy levels as the two-body system. It
was shown [27] that the appropriate one-body problem
(for non-spinning black holes) is that of a single particle
moving in a deformed Schwarzschild spacetime. It turns
out that most parameters of this one-body system can
be found by using the appropriate PN calculations, and
the remaining parameters are calculated by calibrating
to NR simulations. This approach has been successful so
far for non-spinning systems where only a few parameters
need to be calibrated by NR [31–35]. The spinning case
is more complicated, and work is underway to extend the
parameter space described by the model [36].

A complementary approach is to perform a phe-
nomenological matching of the GW waveforms in a win-
dow (which could be either in the time or frequency do-
main) where both PN and NR are expected to be good
approximations to the true waveform. The first step is
to construct a hybrid PN-NR waveform by matching the
two waveforms within the matching window. The wave-
form is completely PN before this window, completely
NR afterward, and it interpolates between the two in
the matching window. Once the hybrid waveform is con-
structed and we are confident about the matching proce-
dure, the second step is to fit the hybrid waveform to a
parametrized model containing a number of phenomeno-
logical coefficients and finally to map them to the physi-
cal parameters of the system. The resulting model would
thus be parametrized by the masses and spins of the two
black holes (and eccentricity if appropriate). Most of the
work in this approach has thus far been based on match-
ing PN and NR waveforms in the time domain, but then
producing a phenomenological model in the frequency
domain, which is often more convenient for data-analysis
applications [37–40]. See also [41] for a complementary
construction. In this paper we take a slightly different
approach: both the construction of the PN-NR hybrid
waveform and the matching to a phenomenological model
are carried out in the frequency domain. The reasons for
this are twofold. First, we find it easier to work in the
frequency domain since the quantities used to estimate
the errors of our matching procedure and the goodness of
the fit, such as waveform overlaps, are conveniently for-

mulated in Fourier space. Second, and more importantly,
in light of the potential errors in the hybrid construction,
comparing results between two independent methods is
a valuable way of ensuring that the matching procedure
is robust. The frequency domain construction presented
here is complementary to the time domain method of [40].

The phenomenological waveform family presented
in [40] used a simple piecewise ansatz for the phase of
the hybrid PN-NR waveform, and another for the ampli-
tude. The resulting analytic model was found to agree
with the hybrid waveforms with overlaps above 98% for
most black hole binary systems that would be observ-
able by the current LIGO detectors. In this paper we
investigate whether the fidelity of the phenomenologi-
cal waveforms can be improved by using ansätze that
make smooth transitions between their inspiral, merger
and rindown forms. This procedure also allows us to fur-
ther test the robustness of the phenomenological model’s
construction to variations in its analytic form.

The main results of this paper are the following. We
construct hybrid waveforms for binary black hole sys-
tems with aligned spins in the frequency domain. We
do this by combining 3.5PN waveforms in the stationary
phase approximation with a number of NR results. We
show that this construction is internally consistent and
it yields hybrids which are, for the most part, sufficiently
accurate for the initial and advanced LIGO detectors.
Notably, the difference between the different PN approx-
imants is a more significant source of error than the nu-
merical errors in the NR waveforms. Using these hybrid
waveforms, we construct a phenomenological frequency-
domain waveform model depending on three parameters
(as in [40]) and covering the space of aligned spins and
moderate mass ratios. We show that the model fits the
original hybrid waveforms with overlaps better than 98%
for Advanced LIGO, and for the most part, better than
99% for essentially all black hole systems observable with
Advanced LIGO, i.e. for systems with total mass ranging
up to ∼ 400M�. These results are comparable to those
obtained in [40], suggesting that the phenomenological
construction is indeed robust.

Sections II and III describe the post-Newtonian wave-
form model and the numerical waveforms that we employ.
Section IV describes the fitting procedure and the vari-
ous systematic errors that appear in this procedure. It
quantifies the reliability of the waveforms for specific GW
detector and signal-to-noise ratios (SNRs). Section V fits
these hybrid waveforms to an analytic model. It shows
that the model provides a good representation of the hy-
brid waveforms and can be used in GW searches in the
appropriate parameter space. Finally, section VI con-
cludes with a summary and suggestions for future work.
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II. NUMERICAL SIMULATIONS OF
NON-PRECESSING BLACK HOLE BINARIES

In this section we summarize the numerical waveforms
used in this paper. Since the first successful numeri-
cal simulations of equal-mass, non-spinning binary black
hole mergers were published [6–8] the NR community
has continued exploring the parameter space of the BBH
system. Each black hole is described by a mass and a
spin vector, and the binary’s trajectory is described by
adiabatically evolving Keplerian orbits, so 17 parameters
are needed to describe the binary system (see e.g. [42]).
Besides the two masses and spin vectors, we need a fidu-
cial time t0 and orbital phase φ0 at t0, the distance to
the source and its sky-location, two parameters for the
unit vector normal to the orbital plane, and finally, if
non-circular orbits are considered, we additionally need
the eccentricity and the direction of the semi-major axis.
Sufficiently close to or during the merger, this description
in terms of Keplerian orbits will break down, and higher
order black hole multipoles might play a role as well.

Due to the complexity of this parameter space, most
match-filtered searches for coalescing binaries have so
far employed non-spinning templates, neglecting the ef-
fect of the spin by assuming a small, tolerable loss in
SNR [48–50]. Dedicated searches for spinning binaries
have attempted to model an enlarged parameter space
by using a template family designed to capture the spin-
induced modulations of the gravitational waveform [51].
In [51] the spin effects were modeled using unphysical
phenomenological parameters; however, it would be de-
sirable to devise searches for spinning systems based on
strictly physical parameters. Indeed, [52] showed that
from the point of view of detection efficiency at a given
false-alarm rate, a search based on non-physical spinning
templates is not superior to a non-spinning search un-
less specific signal-based vetoes and other tools are de-
vised. The performance of spinning searches would in-
crease with the use of templates determined by physi-
cal rather than phenomenological parameters. That was
the motivation for the waveform family presented in [40],
where as a first step in modeling the full spinning-binary
parameter space, only binaries with non-precessing spins
were considered. Additionally, it is known from PN treat-
ments of the inspiral and from numerical simulations of
the merger [53, 54], that the dominant spin effect on the
waveform is from the total spin of the system. Indeed,
in [40] it was found that the effect of the black hole spins
can be accurately modeled with only one spin parameter,
roughly corresponding to the total spin of the two black
holes. We adopt the same approach here.

There are a number of NR simulations of non-
precessing systems for a variety of spin values and mass
ratios. Results with the BAM code are reported in [23] for
the orbital hang-up case and in [55] for anti-aligned spins.
The CCATIE simulations are presented in [40, 45, 56, 57];
a long spectral simulation with anti-aligned spins can be
found in [58].

1. NR waveforms and codes

The NR waveforms employed in the construction of
the hybrid model used in this paper are summarized in
Table I. They have been produced with four indepen-
dent NR codes, BAM, CCATIE, Llama and SpEC. The first
3 codes use the moving-puncture approach [7, 59] to solve
the Einstein equations in a decomposed 3+1 spacetime
while the last implements the generalized harmonic for-
mulation [20, 60]. BAM and CCATIE use computational
domains based on Cartesian coordinates, while the SpEC
code uses a sophisticated series of spherical and cylindri-
cal domains; in the wave zone, the outer computational
domains have the same angular resolution, thus the com-
putational cost only increases linearly with the radius of
the outermost shell. A summary of the properties of the
three codes is given in [12]. The Llama code [46, 61] is
based on finite differencing but the set-up of the numeri-
cal grid in the outer wave zone is, as in SpEC, also based
on spherical coordinates with constant angular separa-
tion. The large wave-zone enables accurate waveform ex-
traction at large distances, accurate extraction of higher
angular modes of the radiation, and it allows the outer
boundary to be far enough away so that it is causally
disconnected from the sphere where the radiation is ex-
tracted.

The BAM data-set #1 covers the parameter space of
non-spinning systems for several mass ratios during at
least the last 5 orbits before merger (length ∼ 1100 −
1450M , where M is the total ADM mass of the space-
time) [18, 38, 39, 55]. Data-set #2 consists of moderately
long simulations covering at least the last 8 orbits before
merger (length ∼ 1500−2200M) for equal-mass systems
with equal spins, and are described in depth in [23, 55].
Data-set #3 consists of unequal-mass, unequal-spins sim-
ulations [40]. Data-set #4 is a simulation with unequal
mass and unequal spins employed in the verification of
our fitting mode [40]. For the sets #1–4, initial momenta
for quasi-circular orbits were computed for non-spinning
cases according to the procedures described in [44], lead-
ing to low-eccentricity (e < 0.006) inspiral evolutions. A
number of different methods were used for the spinning
cases [23, 55, 62], depending on which method gave the
lowest eccentricity for a given configuration. The GW
radiation is calculated from the Weyl tensor component
Ψ4 (see e.g. [63]) and extracted at a sphere with radius
R = 90M . In all cases the uncertainty in the phase is less
than 0.1 rad during inspiral (up to Mω = 0.1), and less
than 0.5 rad during merger and ringdown. The uncer-
tainty in the amplitude is less than 0.5% during inspiral,
and less than 5% during merger and ringdown.

The CCATIE data-sets #5, #6 and #7ab correspond to
the s–, u–, r– and t–sequences studied in [54]. They
span the last ∼ 4 − 5 orbits before merger (length
∼ 500 − 1000M) and are in fact not sufficiently long
for use in the hybrid construction. They are still useful
to independently verify the reliability of our phenomeno-
logical fit. Data-set #5 corresponds to the hang-up con-
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TABLE I. NR codes and configurations used for the construction and verification of our hybrid waveforms and phenomenological
model. The mass ratio q is defined as m1/m2, assuming m1 > m2; χ1,2 are the dimensionless spins defined in Eq. (3.1); a
positive value of χ1,2 means that the spin is aligned with the orbital angular momentum L, and negative values are anti-aligned.

Data Set Code Mass ratios Spins Extraction of GW signal

#1 BAM [43, 44] q ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4} (χ1, χ2) = (0, 0) at r = 90M

#2 ” q = 1 (χ1, χ2) = (a, a), a ∈ ±{0.25, 0.5, 0.75, 0.85} ”

#3 ” q ∈ {2, 3, 4} (χ1, χ2) = (a, a), a ∈ {±0.5, 0.75} ”

#4 ” q = 3 (χ1, χ2) = (−0.75, 0.75) ”

#5 CCATIE [45] q = 1 (χ1, χ2) = (a, a), a ∈ {0, 0.2, 0.4, 0.6} at r = 160M

#6 ” q = 1 (χ1, χ2) = (a,−a), a ∈ {0, 0.2, 0.4, 0.6} ”

#7ab ” q = 1 (χ1, χ2) = (±0.6, a), a ∈ {±0.3, 0,−0.6} ”

#8 Llama [46] q ∈ {1, 2} (χ1, χ2) = (0, 0) Null Infinitya

#9 SpEC [47] q = 1 (χ1, χ2) = (0, 0) at r →∞b

a Only the GW radiation corresponding to the Llama q = 1 simulation has been extracted at future null-infinity using the
Cauchy-characteristic method; the q = 2 waveform has been extracted at finite radius and extrapolated to r → ∞.

b Using the extrapolation method described in [15] with extrapolation order n = 3.

figuration analogous to the BAM set #1; data-set #6 con-
sists of configurations with (χ1, χ2) = (a,−a), i.e. zero
net spin; data-set #7a was analyzed in [45] in the con-
text of the study of the recoil velocity (“kick”) of the
final merged black hole. GW radiation is extracted at
R = 160M via the Regge-Wheeler-Zerilli formalism for
perturbations of a Schwarzschild black hole [64–67].

Data-set #8 consists of two waveforms for non-
spinning black holes with mass ratios q = 1, 2. The black
holes are evolved with the Llama code according to the
set-up reported in [46]. The outer boundary is placed at
3600M and the initial separation is 11M , corresponding
to 8 orbits in the inspiral phase followed by merger and
ringdown. Wave extraction for the q = 1 configuration is
done via the Cauchy-characteristic method [68, 69], tak-
ing boundary data from the numerical spacetime for a
subsequent characteristic evolution of the metric to null-
infinity, thereby obtaining waveforms that are mathemat-
ically unambiguous and free of any systematic finite ra-
dius and gauge effects. The only remaining source of
error is due to numerical discretization. The equal-mass
waveform produced with this code was reported in [69],
while the q = 2 waveform is new. For these data, the
uncertainty in the phase is comparable to that of the BAM
waveforms, while the uncertainty in the amplitude is at
least an order of magnitude lower, because of the more
sophisticated wave extraction procedure [46, 68, 69].

Data-set #9 consists of a long non-spinning, equal-
mass simulation that follows 16 orbits of the binary
plus merger and ringdown of the final black hole (length
∼ 4300M). These are publicly available data [70] which
were originally computed using the SpEC code with neg-
ligible initial orbital eccentricity (∼ 5× 10−5). The GW
radiation is extracted via Ψ4 in a similar manner to #1–
4 and extrapolated to infinity. The phase uncertainty is
less that 0.006 rad during inspiral, and less than 0.02 rad

during merger and ringdown; the amplitude uncertainty
is less than 0.1% during inspiral, and less than 0.3% dur-
ing merger and ringdown. A full description of this simu-
lation is given in [15]. The long duration of the waveform
allows for its use in the estimation of the errors associated
with the length of the NR data. In particular, since it
contains physical information at lower frequencies, it can
be matched to PN results at lower frequencies, where the
PN errors are expected to be smaller (see the discussion
around the right panel of Fig. 6).

2. Going from Ψ4 to h

The gravitational waveforms calculated using NR
codes are typically reported in terms of the Weyl ten-
sor component Ψ4, which is a complex function that en-
codes the two polarizations of the outgoing transverse
radiation. Ψ4 is related to the two polarizations of the
gravitational wave perturbation h+,× (in the transverse-
traceless gauge) via two time derivatives

Ψ4 =
d2

dt2
[h+(t)− ih×(t)] . (2.1)

Going from Ψ4 to h+,× thus involves two time integra-
tions and requires us to fix two integration constants ap-
propriately, corresponding to the freedom to add a linear
function to the strain.

The frequency domain offers a straightforward way of
calculating the strain

h = h+ − ih× (2.2)

from Ψ4, since integration is replaced by division:

h̃NR(f) = − Ψ̃NR
4 (f)

4π2f2
= ANR(f) eiΦ

NR(f) , (2.3)
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FIG. 1. These figures demonstrate the strain waveform ob-
tained by the frequency domain division method of calculating
h from Ψ4. We consider the NR simulation from data-set #8
of Table I with q = 1, and we start with the dominant mode of
Ψ4 from this simulation. The upper panel shows Ã = r|h̃(f)|
(where r is the extraction radius) obtained by the frequency
domain division, and the lower panel shows h+(t). The win-
dow function employed by our inverse Fourier transform al-
gorithm is responsible for the partial loss of the first cycle of
the waveform. Nevertheless, a clean |h(t)| during the rest of
the inspiral is observed.

where x̃(f) denotes the Fourier transform of x(t) as de-
fined in Eq. (4.2). In the limit of large signal durations,
the integration constants only affect the zero-frequency
component of the signal in the frequency domain. For
finite duration signals, the effect of the integration con-
stants will spill over into higher frequencies like 1/f .
Since for our purposes, the numerical simulation provides
useful information only starting at a finite frequency, we
conveniently apply a high-pass filter to the data, thus
reducing the effect of the integration constants without
using a fitting procedure. When performing the divi-
sion in the frequency domain, tanh-window functions are
employed to pass-filter the data before computing the
Fourier transform. Fig. 1 illustrates the efficacy of our
approach for the Llama equal-mass waveform. Though
we do not discuss it further here, in general we find that
the time- and frequency-domain integration techniques,
both with some fine-tuning, yield comparable results.

III. ANALYTICAL WAVEFORMS FOR
SPINNING BINARIES USING THE
POST-NEWTONIAN APPROACH

Coalescing compact binaries such as BBHs can be ac-
curately modeled by the PN approximation to general
relativity at least during the major part of the long inspi-

ral phase, under the assumptions of a weak gravitational
field [71]. In order to obtain an analytical description of
the early inspiral in the Fourier domain we construct the
TaylorF2 phase [72–75] and the 3PN amplitude [76, 77]
for compact binaries with comparable masses and spins
(anti-)aligned with the orbital angular momentum.

The PN expansion of the binding energy E of such
systems in the adiabatic approximation can be taken
from the literature, see for instance [71, 78–80] and ref-
erences therein. For the results shown here we include
leading order and next-to-leading order spin-orbit effects
[42, 81, 82] as well as spin-spin effects that appear at rel-
ative 2PN order [81, 83, 84]; note that the square terms
in the individual spins are valid only for black holes as
discussed in [80, 83, 84]. The notation used in this section
adopts unit total mass M = 1 and G = c = 1. Each black
hole is characterized by its mass mi and the magnitude
of its spin

Si = |χi|m2
i , i = 1, 2. (3.1)

The spin vectors are (anti-)aligned with the orbital an-
gular momentum L, where the sign of L · Si defines the
sign of χi. With the aim of matching to available NR
data, we use the PN spin definition that yields constant
spin magnitudes [82, 85]. The quantity

η =
m1 m2

M2
(3.2)

is the symmetric mass ratio. The PN expansion is written
in the dimensionless variable x, related to the orbital
angular frequency ω of the binary via x = ω2/3. To
summarize the structure of this derivation, we start by
giving the energy for the considered scenario as

E = −xη
2

6∑
k=0

ek x
k/2, (3.3)

where the coefficients ek are listed in Eq. (A1).
The other ingredient needed to describe an inspiraling

BBH as a sequence of quasi-circular orbits is the flux F ,
which we take at 3.5PN order including the same spin ef-
fects as for the energy. We additionally take into account
the 2.5PN correction of the flux due to the energy flow
into the BHs, calculated in [86]. The final result is

F =
32

5
η2x5

7∑
k=0

fk x
k/2 , (3.4)

where the coefficients fk are given in Eq. (A2).
The energy loss of the system due to gravitational ra-

diation is expressed as dE(t)/dt = −F(t), which trans-
lates to an evolution equation for the orbital frequency,
or equivalently

dx

dt
= − F(x)

dE(x)/dx
. (3.5)
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Starting from (3.5), different waveform models can be
constructed, for overviews see [20, 87]. For the purpose
of the results shown here, we shall give the relevant ex-
pressions in the frequency domain later and explicitly
construct only the TaylorT4 approximant, which is ob-
tained by expanding the right-hand side of Eq. (3.5) to
3.5PN order

dx

dt
=

64

5
ηx5

7∑
k=0

ak x
k/2 , (3.6)

with ak given in (A3).
Note that the formal re-expansion of the denominator

and the multiplication with the numerator in Eq. (3.5)
also yields contributions to higher orders than those in
Eq. (3.6). However, since 4PN and higher terms in flux
and energy are not fully determined, the expressions one
can compute for ak with k > 7 are incomplete. The same
applies to contributions of the spins at relative PN orders
higher than 2.5PN. When we later use the TaylorT4 ex-
pression (3.6) in this paper, we only expand it to 3.5PN
order but keep all the spin terms that appear, i.e. incom-
plete contributions in a6 and a7 are not neglected. Only
if higher order spin corrections at 3 and 3.5PN order be-
come available in energy and flux, the corresponding spin
terms in the TaylorT4 (and TaylorF2) description can be
completed.

In order to construct an analytical formula of the wave
signal in the Fourier domain, the stationary phase ap-
proximation is commonly used to obtain the TaylorF2
expression for the phase [72–75]. Below, we briefly reca-
pitulate the steps towards the derivation of this approx-
imant and provide the final result.

Expanding the inverse of relation (3.5), dt/dx =
−(dE/dx)/F , allows for the analytical integration of t(x).
The orbital phase φ can be integrated via

dφ

dt
= ω = x3/2 ⇒ dφ

dx
= −x3/2 dE(x)/dx

F(x)
(3.7)

to obtain φ(x). This is the definition of the TaylorT2
approximant. The (`,m) modes of the decomposition of
the gravitational radiation in spherical harmonics can be
approximated in the time domain by [76]

h`m(t) = A`m(t) e−imφ(t) , (3.8)

and the transformation to the frequency domain is car-
ried out in the framework of the stationary phase approx-
imation

h̃`m(f) =

∫ ∞
−∞

h`m(t) e2πiftdt (3.9)

≈ A`m(tf )

√
2π

mφ̈(tf )
eiψ

`m(f), (3.10)

where tf is defined as the moment of time when the in-
stantaneous frequency coincides with the Fourier vari-
able, i.e., mω(tf ) = 2πf . The phase in the frequency

domain is given by

ψ`m(f) = 2πf tf −mφ(tf )− π

4
. (3.11)

Given t(x) and φ(x) one can immediately change to the
Fourier variable by

x(tf ) = [ω(tf ) ]
2/3

=

(
2πf

m

)2/3

. (3.12)

Starting from the energy (3.3) and flux (3.4) consequently
leads to

ψ22(f) = 2πft0 − φ0 −
π

4

+
3

128η
(πf)−5/3

7∑
k=0

αk(πf)k/3,
(3.13)

with the corresponding coefficients αk of (A4). From
(3.11) one realizes that, in fact, Eq. (3.13) is valid for
all spherical harmonics with m = 2. The quantities t0
and φ0 are arbitrary and arise as integration constants
when calculating t(x) and φ(x). When implementing this
Fourier domain phase we also take into account the spin
terms that appear after re-expanding at 3PN and 3.5PN
order, although they are not complete.

The time-domain amplitude of the gravitational wave
was recently calculated at 3PN order by Blanchet et
al. [76]. We use the expression given by them for the
` = 2, m = 2 mode in combination with the spin cor-
rections provided in [25, 77]. In our notation, the time-
domain amplitude reads

A22(x) =
8η x

DL

√
π

5

6∑
k=0

Ak xk/2, (3.14)

where DL is the luminosity distance between source and
observer and the coefficients Ak are given in (A5).

From (3.10) we see that, in order to construct the
Fourier domain amplitude, an explicit expression for
φ̈ = d2φ/dt2 = ω̇ is needed. In [77] this is done by re-

expanding
√

1/ω̇ using the same ingredients as those un-
derlying the TaylorTn approximants. We may, however,
look at ω̇ = (3/2)

√
x ẋ and choose one “preferred” pre-

scription for ẋ without re-expanding the quotient. Aim-
ing at matching PN results to NR waveforms, we compare
different possibilities of replacing ẋ (namely by its Tay-
lorT1 and TaylorT4 description) and the re-expansion of
the form √

π

ω̇
≈
√

5π

96η
x−11/4

7∑
k=0

Sk xk/2 (3.15)

(see [77]) with data of numerical simulations in full gen-
eral relativity. The result in the equal-mass case can be
seen in Fig. 2. Note that the transfer to the Fourier
domain is completed by using (3.14) in (3.10) in combi-
nation with (3.12).
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FIG. 2. Different variants of constructing the PN Fourier
amplitude in the stationary phase approximation for the
equal-mass case. The labels explain how (π/φ̈)1/2 is treated
in (3.10). The thick curve shows data obtained by a nu-
merical simulation in full general relativity which begins at
Mf ≈ 0.008. The straight gray line illustrates the restricted
PN amplitude, |h̃22|DL = π

√
2η/3(πf)−7/6.

All variants of the 3PN Fourier amplitude agree rea-
sonably well with the numerical relativity data roughly
up to the frequency of the last stable circular orbit in the
Schwarzschild limit, Mf = π−1 6−3/2 ≈ 0.022. Due to a
comparable behavior even beyond this point we choose to
construct the Fourier amplitude of our post-Newtonian
model by using the TaylorT4 ẋ (3.6). The same choice
was employed e.g. in [88].

IV. MATCHING POST-NEWTONIAN AND
NUMERICAL RELATIVITY WAVEFORMS

A. Basic notions

The basic criteria for evaluating the goodness of fit for
the hybrid waveform require a notion of distance between
two GW signals h(t) and h′(t). The simplest notion is
the distance in the least-squares sense over an interval
t1 ≤ t ≤ t2 [37–39]

δt1,t2(h, h′) =

∫ t2

t1

|h(t)− h′(t)|2 dt . (4.1)

This can be used for the numerical relativity hNR(t) and
the post-Newtonian waveform hPN(t), with the interval
[t1, t2] being chosen so that both waveforms are reason-
ably good approximations (in a sense to be quantified
later). Thus, the PN waveform is taken up to t2 and the
NR waveform is taken to start at t1, and they overlap
within the interval [t1, t2].

Let us consider the frequency domain equivalent. Our

convention for the Fourier transform of a signal x(t) is

x̃(f) =

∫ ∞
−∞

x(t) e2πiftdt . (4.2)

One needs to be careful in converting the time interval
[t1, t2] to a frequency interval [f1, f2]. In principle, the
Fourier transform is “global” in time; signals that have
compact support in time cannot have compact support in
frequency, and vice versa. However, for the binary black
hole waveforms (prior to the ring-down stage) that we
are considering, the frequency always increases in time,
so that we can sensibly associate a frequency interval
[f1, f2] with a given time interval [t1, t2]. For these wave-
forms, we can consider the above distance definition in
the frequency domain:

δf1,f2(h, h′) =

∫ f2

f1

∣∣∣h̃(f)− h̃′(f)
∣∣∣2 df . (4.3)

We shall use such a norm (applied to the phase) for con-
structing the hybrid waveform.

When evaluating the goodness of a hybrid waveform
for a particular detector, we need to consider detector-
specific inner products, which are convenient to describe
in the frequency domain. Let Sn(f) be the single-sided
power spectral density of the noise in a GW detector
defined as

E [ñ(f)ñ∗(f ′)] =
1

2
Sn(f) δ(f − f ′) . (4.4)

Here n(t) is the detector noise time series with ñ(f) its
Fourier transform, ∗ denotes complex conjugation and
E refers to the expectation value over an ensemble of
independent realizations of the noise, which is assumed
to be a zero-mean, stationary, stochastic process. This
equation implies that data at different frequencies are
independent, and is one of the reasons why working in the
frequency domain is so useful in data analysis. The time
domain description of the noise is more complicated; n(t)
and n(t+ τ) are in general not independent; E[n(t)n(t+
τ)] is generally non-zero. For stationary noise this is a
function C(τ) only of τ , and is related to Sn(f) via a
Fourier transform (see e.g. [89]).

Given Sn(f), we use the following definition of an inner
product between two signals x(t) and y(t)

(x|y) ≡ 4Re

∫ ∞
0

x̃(f)ỹ∗(f)

Sn(f)
df, (4.5)

where x̃(f), ỹ(f) are the Fourier transforms of x(t), y(t)
respectively. This inner product is appropriate for Gaus-
sian noise and forms the basis for matched filtering (see
e.g. [90]). It can be used to define a suitable notion of
distance between two signals h(t) and h′(t) as (δh|δh)1/2,
where δh(t) = h′(t)− h(t).

The distinguishability between h(t) and h′(t) in the
presence of noise can be understood with the following
construction. Following [91], we define a 1-parameter
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family of waveforms which interpolates linearly between
h(t) and h′(t) as

h′′(t;λ) = h(t) + λ δh(t) . (4.6)

We obviously have h′′(t; 0) = h(t), and h′′(t; 1) = h′(t).
The question of distinguishability between h(t) and h′(t)
now becomes one of estimating the value of λ (for the
extended signal model h′′(t;λ)) in the presence of noise.
If we use an unbiased estimator for λ, the variance σ2

λ of
the estimator is bounded from below by the Cramer-Rao
bound (see e.g. [92])

σ2
λ ≥ (δh|δh)−1 . (4.7)

This can be a useful bound for large SNRs, which is in
fact what we are interested in here; it is easier to dis-
tinguish between two loud waveforms and demands on
the waveform model are correspondingly more stringent.
Thus, a useful condition for being able to distinguish
between the two waveforms is σλ < 1. If h(t) is the
true waveform and h′(t) our approximation to it, then
we say that h′(t) is a sufficiently accurate approximation
if (δh|δh) ≤ 1. Assuming that (h|h) ≈ (h′|h′), it is clear
that (δh|δh) ∝ ρ2 where ρ = (h|h)1/2 is the optimal SNR.
Hence, as we just remarked, the two signals are easier to
distinguish when the detector is more sensitive, or when
the signal amplitude is larger. It will be convenient to
normalize the norm of δh and write this distinguishability
criterion as

1

ρ2
(δh|δh) ≥ 1

ρ2
. (4.8)

Thus, for a given detector, we choose a reasonable guess
ρ0 for the largest expected SNR and we compute the nor-
malized distance between the two waveforms (δh|δh)/ρ2.
If this exceeds 1/ρ2

0, then we consider that the detector
is able to distinguish between the two waveforms.

If we are interested in the less stringent requirement of
detection rather than in strict distinguishability, then a
sufficient condition is [91]

1

ρ2
(δh|δh) < 2ε, (4.9)

where ε is the maximum tolerated fractional loss in SNR.
More explicitly: if h(t) is the exact waveform and h′(t)
an approximation thereof, then the approximation is po-
tentially useful for detection purposes if (4.9) is satisfied
for an appropriate choice of ε. If we are willing to accept
e.g. a 10% loss in detection rate, then a suitable choice
is ε ≈ 0.10/3 ≈ 0.03 (corresponding to sources uniformly
distributed in space). This value of ε does not take into
account the additional loss in SNR due to discrete tem-
plate banks used in realistic searches. In practice one
might need to choose ε an order of magnitude smaller
than this so that the total fractional loss in SNR remains
acceptable. Since a more precise value is pipeline de-
pendent, we shall ignore this caveat and use ε = 0.03

as a convenient reference; the reader can easily scale the
results of this paper appropriately for different choices.

A useful way to describe the efficacy of approximate
waveform models is through the concepts of effectualness
and faithfulness introduced in [93]. Let hλ(t) be the ex-
act waveform with parameters λ and the approximate
waveform model be happ

λ (t). The ambiguity function is
defined as the normalized inner product maximized over
extrinsic parameters

A(λ, λ′) = max
t0,φ0

(hλ|happ
λ′ )√

(hλ|hλ)(happ
λ′ |h

app
λ′ )

, (4.10)

where t0 is the time offset between the two waveforms,
and φ0 is the initial phase. Performing a further maxi-
mization over the parameters λ′ of the model waveforms,
we define Â(λ) = maxλ′ A(λ, λ′). If Â(λ) exceeds a cho-
sen threshold, e.g. 0.97, then the waveform model happ

is said to be effectual. Effectual models are sufficient for
detection. In order to be able to estimate parameters
we also need the model to be faithful. This means that
the value of λ′ which maximizes A(λ, λ′) should not be
biased too far away from λ.

B. Issues in matching PN with NR

It is useful at this stage to discuss some of the issues
that arise in combining PN and NR results. The dis-
cussion here will be short and incomplete, and the topic
merits an in-depth investigation that is beyond the scope
of the present work. Our immediate aim is simply to spell
out some of the reasons why black hole parameters in the
PN and NR frameworks may not necessarily refer to the
same physical quantities. One should therefore not be
surprised that when combining NR and PN waveforms,
it might become necessary to vary the intrinsic black hole
parameters as well. This is not to say that either PN or
NR use incorrect definitions for black hole parameters,
both frameworks are in fact consistent within their do-
mains of applicability. The point rather is that the two
formalisms are quite different when viewed as approxima-
tion schemes to general relativity, and these differences
might need to be taken into account depending on the
accuracy requirements for the matching.

Since PN and NR are both used to address the BBH
problem, one could imagine starting with the two black
holes very far apart, evolve them using appropriate PN
equations of motion and compute the resulting wave-
forms. As one gets close to the merger, terminate the
PN evolution and use this end-point to construct initial
data for the full NR simulation which then evolves the
black holes through the merger and ringdown. However,
the formalisms and methods employed in the two cases
are radically different and there are potential difficulties
in carrying out this procedure.

The PN formalism is based on a perturbative expan-
sion in powers of the small parameter ε = v/c, where
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v is the orbital velocity and c is the speed of light. In
the usual formulations, PN theory uses a point-particle
description of the black holes, and their parameters can
be viewed as effective parameters which couple in the ap-
propriate manner with the external background gravita-
tional field (see e.g. [94, 95]). The goal of PN theory is to
find a 1-parameter sequence of solutions to the field equa-
tions gεµν to any specified order in ε. It has recently been
shown rigorously [96] that, in the cosmological setting
with gravitating perfect fluids, the 1-parameter family of
solutions exists and admits an expansion in εn to any or-
der. While similar results in the asymptotically-flat case
are not yet available, it is certainly reassuring to know
that PN works well in this non-trivial setting (in fact it
can be persuasively argued that the cosmological setting
is more relevant to GW observations than strict asymp-
totic flatness). The errors in PN waveforms are then due
to the systematic differences between the true waveform
and the asymptotic series expansion in εn truncated at a
finite order, and this error depends on which particular
PN expansion one chooses to use.

In contrast, numerical relativity is based on the 3+1
formulation of general relativity as an initial value prob-
lem, and one solves the resulting partial differential equa-
tions numerically. The GW signal is typically measured
at a large, but finite, coordinate distance from the source,
and encoded in Ψ4, the frame-dependent outgoing trans-
verse component of the Weyl tensor component. The
data from multiple coordinate radii are extrapolated to
asymptotic distances, or evaluated at null infinity in the
case that characteristic extraction is used [68, 69]. For
a given physical configuration (choice of masses, spins,
separation etc.), one specifies the initial data consisting
of the spatial metric and extrinsic curvature of the ini-
tial spatial slice. The physical initial data parameters
should be chosen to be as compatible as possible with
the spacetime computed in the PN formalism, and signif-
icant progress has been made in this regard [97, 98]. The
black holes here are not point particles but rather black
hole horizons. The parameters of the black hole are often
computed as integrals over the apparent horizon, and in
most cases the parameters used in constructing the ini-
tial data are also useful approximations to the true ones.
There are however possible systematic errors. For exam-
ple, if we are using the quasi-local horizon definitions,
an important requirement is that the horizon should lo-
cally be approximately axisymmetric. The methods for
finding the approximate symmetry vectors have become
increasingly accurate and reliable [99–103]. However, it
should be kept in mind that the assumption of approx-
imate axisymmetry is expected to become increasingly
worse closer to the merger. Furthermore, the very use of
apparent horizons is gauge dependent; using a different
time coordinate will lead to a different set of apparent
horizons and possibly also different values of the param-
eters. In the inspiral phase when the horizons are suffi-
ciently isolated this gauge issue is not expected to be a
problem, but as we get closer to the merger (this has not

yet been quantified), the variation in the parameters due
to gauge choices could become significant [104].

Let us elaborate a little more on the spin. Most post-
Newtonian treatments are based on the equations of mo-
tion derived in [105, 106]. The starting point is the spin
tensor Sµν constructed from moments of the stress en-
ergy tensor Tµν . Since Sµν has potentially 6 non-zero
independent components, the system for the 4 equations
of motion ∇µTµν = 0 is over-determined. One thus im-
poses the so-called spin supplementary conditions such as
Sµνpν = 0 or Sµνuν = 0 with pµ being the 4-momentum
and uν the 4-velocity. These different conditions lead to
physically different equations of motion and trajectories
[107]. On the other hand, for black holes in NR, a com-
mon method for evaluating spin employs the formalism
of quasi-local horizons [108]. The final result for the mag-
nitude of the horizon angular momentum is an integral
over the apparent horizon S:

J = − 1

8π

∮
S

Kµνφ
µdSν , (4.11)

where Kµν is the extrinsic curvature of the Cauchy slice,
φµ is a suitable approximate axial symmetry vector on
S [99–103], and dSb is the area element on the appar-
ent horizon. The direction of the spin is harder to find,
but some approximate methods are available [100, 109].
There is yet no detailed study of possible analogs of the
spin supplementary conditions in this formalism, or on
the equations of motion for horizons with a given set of
multipole moments. For a horizon with area A and spin
magnitude J , the mass is given by the Christodoulou
formula

m =

√
A

16π
+

4πJ2

A
. (4.12)

Hence, uncertainties in spin can also lead to uncertainties
in the mass.

As long as we are dealing with just the numerical or PN
waveforms by themselves, these small effects in the defini-
tions of mass and spin are not important for most appli-
cations. In fact, we can treat them as just convenient pa-
rameterizations of the waveform without worrying about
their detailed physical interpretation. However, when we
wish to compare the results from frameworks as different
as PN and NR this may no longer work. Depending on
the details of the matching procedure, systematic differ-
ences between the various definitions might need to be
taken into account, or at the very least they should be
quantified. If a particular case requires matching a very
long PN portion (depending on the total mass and the
lower-frequency cutoff of a particular detector), then even
a small change in the PN parameters at the matching fre-
quency can translate into a large phase difference at lower
frequencies. One valid approach is to not assume a priori
that the PN and NR parameters are equal to each other
but rather, for a given numerical waveform, we search
over PN waveforms in a particular PN approximant and
find the best fit values; we now turn our attention to this
procedure in the next subsection.
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C. An illustration for non-spinning systems

Let us now move to a concrete case of constructing
hybrid waveforms, considering the non-spinning Llama
waveforms, i.e. data set #7 in Table I. Recall that this
data set consists of two waveforms with non-spinning
black holes with mass ratios 1:1 (used in left and central
panels of Fig. 6) and 1:2 (Figs. 3, 4, 5 and right panel
of 6). Since these waveforms are calculated using the
Llama code with extraction at future null-infinity with
the Cauchy-characteristic method for the equal mass
case, or well into the wave-zone for the 1:2 case, we are
confident that systematic effects of waveform extraction
are small. Even for these waveforms, based on the discus-
sion above, in principle we should not rule out a small
mismatch in the values of the spin (and perhaps also
eccentricity) between the NR and PN waveforms. For
simplicity, let us consider only the possibility that the
symmetric mass ratio η could be different, and restrict
ourselves to non-spinning black holes and zero eccentric-
ity. We would like to match the Llama waveforms with
the frequency domain PN waveforms discussed in Sec. III
with the values of the spins set to zero. The total mass
M sets the scale for the time (and frequency); in addition
we have the extrinsic parameters for the time offset and
initial phase t0 and φ0. Furthermore, we only consider
the ` = m = 2 mode, so that the PN waveform is of the
form h̃PN(Mf ;φ0, t0, ηPN) in the frequency domain.

1. Fitting errors

For a given NR waveform hNR(t) we consider a time
window (t0, t0 + ∆t) or, alternatively, in the frequency
domain the matching region consists of a lower starting
frequency fL and a width ∆f . We match the two wave-
forms in a least-squares sense by minimizing the phase
difference in Fourier space

δ = min
t0,φ0,ηPN

∫ fL+∆f

fL

|δφ(f ; ηNR, ηPN, t0, φ0)|2Mdf ,

δφ(f) ≡ φNR(f ; ηNR)− φPN(f ; t0, φ0, ηPN) . (4.13)

We optimize δ over all allowed time and phase shifts,
i.e. (t0, φ0), and the PN intrinsic parameters λPN. Given
the previous discussion on the possible differences be-
tween the intrinsic parameters λ between the PN and
NR frameworks, here we have distinguished between the
intrinsic parameter η (3.2) appearing in hPN and hNR.
Note that we are not only neglecting spins and eccentric-
ity but also assume MPN = MNR = M . Future analyses
should successively drop these simplifications.

Let us now consider the choice of the optimal match-
ing window (fL, fL + ∆f), and the best fit values of
(φ0, t0, ηPN). For each window, the least squares pro-
cedure gives a best fit value ηPN = η(fL,∆f) and 1-σ
error estimates ∆η,∆φ0,∆t0. Our principle for choosing
(fL,∆f) is to pick the one for which the quality of fit
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FIG. 3. A contour plot for the fitting error ∆φ0 in the
(fL,∆f) plane. Here η is kept fixed to the NR value and
we optimize over φ0 and t0.

between the NR and PN waveforms is the best, i.e. to
minimize the fitting errors.

We first fix ηPN = ηNR, choosing the 1:2 waveform, and
consider fitting for (φ0, t0). The result for ∆φ0 is shown
in Fig. 3 as a contour plot in the (fL,∆f) plane. There
are clearly multiple best-fit islands but we already see
that the optimal window choice turns out to be a long
frequency width starting at low frequencies, or a rela-
tively short window starting closer to the merger. Re-
garding the increasing error PN most likely introduces
towards higher frequencies, we prefer using an early and
long matching window. Though we do not show it here,
the result is similar for the time offset t0.

It is more interesting instead to generalize this and
allow all three parameters (ηPN, φ0, t0) to vary. The main
result is displayed in Fig. 4, which shows contour plots
of the fitting errors ∆η, ∆φ0 and ∆t0 in the (fL,∆f)
plane. There are now clear and consistent minima for all
errors and thus a clear best choice for fL and ∆f . At
this optimal choice, we see that we can fit η, φ0 and t0 to
better than 10−3, 0.06 and 0.15M , respectively. Apart
from the error ∆η, the actual best fit value η is also of
great interest. Fig. 5 shows the value of η as a function of
the start frequency of the matching window fL and ∆f .
The x-axis on this plot is the start point of the fitting
window fL, and the color bar indicates ∆f . The most
trustworthy values correspond to the optimal choice of
(fL,∆f) obtained in Fig. 4; we indicate the union of all
three minimal-error islands as a rectangle in Fig. 5.

To summarize, from Figs. 4 and 5 we deduce that, if
we were to ignore ηNR (the value that the numerical sim-
ulation nominally assumes) and simply try to find the
best fit with the PN waveforms described in Sec. III,
then we can clearly estimate the best matching region
(fL, fL + ∆f) and a best fit value ηPN = η ± ∆η. This
procedure illustrates a trade-off between trying to match
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FIG. 4. Dependence of the fitting errors in η, φ0 and t0 on the frequency window (fL,∆f). Note that there is a clear
choice of (fL,∆f) ≈ (0.0093, 0.014) that optimizes the fit between the NR waveform and the PN waveforms with different
η. For a binary of total mass 10M�, for which the last stable orbit happens at 440 Hz, this corresponds to frequencies
(fL,∆f)|10M� ≈ (189, 284) Hz. This indicates that the optimal window for matching should start at the lowest reliable
frequency available from the NR waveform and extend roughly up to the last stable orbit, which usually quantifies the point
when the PN approximation starts to break down. Moreover, the plot on the left shows that the accuracy in η decreases
slowly with different choices of (fL,∆f), assuring that small changes in these values do not lead to large errors in the hybrid
construction. At the best fit point, the accuracy in η by this fitting procedure is better than 10−3.
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FIG. 5. Best fit value of η as a function of the start fre-
quency fL of the matching window for the waveform which
corresponds nominally to a mass ratio 1:2, i.e. ηNR = 2/9 =
0.222 . . .; this is shown by a horizontal dashed line. The ver-
tical dashed line at MfL = 0.009 is the start frequency of the
NR waveform. A rectangle highlights the region of minimal
fitting errors from Fig. 4. We see that the best determined
values of η are clearly less than ηNR.

at early frequencies, where our PN model is more reliable
and having a sufficiently long fitting window, in which a
considerable frequency evolution leads to an accurate es-
timate of the fitting parameters. The difference between
ηNR and ηPN for this case is seen to be ∼ 10%. This
by itself does not say that the uncertainty in η is 10%
because as we shall soon see, the uncertainties in the hy-
brid waveform are dominated by the uncertainties in the
PN model. In other words, the NR waveform is closer to
the true physical waveform within the matching window,

and we should not actually use the best fit value of ηPN
to construct the hybrid.

2. Accuracy of the hybrid waveform

Later we shall show a phenomenological fit for the hy-
brid waveform and we shall claim that the fit reproduces
the hybrid waveform sufficiently accurately, but here we
first ask whether the hybrid waveform is itself sufficiently
accurate subject to various errors. The basic criteria for
evaluating this is the notion of a distance between two
signals whose difference is δh, as given in Eq. (4.8). For
two signals h and h′, we shall consider the normalized
distance squared (δh|δh)/ρ2, where ρ is calculated from
our best model (3PN amplitude, 3.5PN TaylorF2 phase
combined with highest resolution NR waveform). Now
the total mass M becomes important. Previously, when
we looked at the least square fits in Eq. (4.13), the to-
tal mass appeared just as a scale factor. However, in
the inner product Eq. (4.5), the power spectral density
Sn(f) sets a frequency scale, and the value for (δh|δh)
becomes mass-dependent. We shall consider two design
noise curves, Initial and Advanced LIGO [110, 111]. We
are then addressing the question of how different our hy-
brids would be if we were to use a slightly different result
on either the NR or PN side.

On the NR side, we first consider data computed at
different resolutions. The Llama waveforms for the equal-
mass case have been computed at low, medium and high
resolutions corresponding to spacing h = 0.96, 0.80 and
0.64 on the wave extraction grid. The finest grid, i.e.
the grid covering the black hole, has a resolution of 0.02
for the finest resolution. This is scaled by 0.80/0.64 and
0.96/0.64 for the medium and low resolution runs respec-
tively. We combine these waveforms with the TaylorF2
model from Sec. III by using the optimal matching win-
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dow discussed around Fig. 3 and ηPN = ηNR. The result
is shown in the left panel of Fig. 6. Hybrids constructed
with medium- and high-resolution waveforms would be
indistinguishable even with Advanced LIGO at a SNR
of 80 over the considered mass range. Thus, we conclude
that the numerical errors related to a finite resolution are
not relevant in the hybrid construction process.

The uncertainties increase when comparing NR data
produced by different codes. Similar to the analysis of
different resolutions we calculate the distance of hybrid
waveforms for non-spinning black holes with mass ra-
tio 1:1 and 1:2. Results from data set #1 and #8 (see
Table I) were used, and the distance plot in the cen-
tral panel of Fig. 6 shows that the 1:2 waveform would
be distinguishable for Advanced LIGO at SNR 20 for
a total masses between ∼ 30M� and ∼ 65M�. Note
that these errors are dominated by our matching to PN
which possibly yields different fit parameters for the PN
model and therefore amplifies small differences in the NR
data. Towards higher masses, the influence of this match-
ing decreases as well as the distance of both waveform.
However, as we shall show next, all these errors are still
small compared to the intrinsic uncertainties introduced
by PN and they do not matter for Initial LIGO. If we care
only about detection with a minimal match ε = 0.03 [see
Eq. (4.9)], we have even less to worry about.

The errors on the PN side turn out to be much more
important. The right panel of Fig. 6 illustrates the effect
of using different PN approximants combined with the
same SpEC equal mass simulation. We first use the fit-
ting window discussed above, although the exceptionally
long SpEC waveform would allow a much earlier match-
ing. The dashed curve shows the difference in the hybrid
waveforms when we match the 3PN or 3.5PN phase fol-
lowing the TaylorF2 frequency domain approximants de-
scribed in Sec. III (the amplitude is taken at 3PN order
in both cases). We see that the difference between these
hybrids becomes significant even for Initial LIGO at SNR
of 8 between a total mass of ∼ 5M� and ∼ 35M�. Sim-
ilarly, the differences between the F2 and Taylor T1 &
T4 approximants are also significant. For detection with
ε = 0.03 [see Eq. (4.9)], we need to look at the horizontal
line with (δh|δh)/ρ2 = 0.06 in the right panel of Fig. 6.
Both in the 3PN/3.5PN distance (dashed line) and the
TaylorT1/TaylorF2 comparison (upper black solid line),
there is a small range of masses for which the difference
between the hybrids would matter even for detection.

As a reference, we make use of the fact that the nu-
merical data #9 (Table I) actually contains physical in-
formation to frequencies considerably smaller than the
matching window used for our hybrid production. We
therefore match the TaylorF2 phase at 3PN and 3.5PN
order also with a much earlier fitting window (roughly a
factor of 2 lower in frequency). The right panel of Fig. 6
shows that the difference indicated as “early match” re-
mains undetectable for a larger range of total masses.

Having carried out this study of errors for non-spinning
waveforms, we can now draw some conclusions for the

aligned-spin case. In principle, the procedure outlined
here remains valid; we should search over not only
{η, t0, φ0}, but now also over the spins {χ1, χ2}. We
would not expect the results to be better than shown here
for non-spinning waveforms because (i) we are adding
two more parameters and (ii) the waveforms #1-4 are
expected to have more wave-extraction systematic errors
than the Llama results considered here. Most impor-
tantly, as we have just seen, the intrinsic errors in PN
are more significant whereas the numerical accuracy is
not the bottleneck. The intrinsic parameter biases in PN
also show up when different PN models are compared
with each other. An extensive comparison of different PN
models is made in [87]; this paper quantifies the mutual
effectualness and faithfulness of the different PN mod-
els and shows that errors of ∼ 20% are not uncommon
for Advanced LIGO. The less than 10% discrepancy in η
shown in Fig. 5 is thus entirely consistent with the differ-
ences between different PN models. To address this, one
needs either improved PN models or a greater variety of
longer NR waveforms such as the long SpEC simulation.

As a simplification, in what follows below we will
choose the matching window based on maximizing over
the extrinsic parameters (t0, φ0) motivated by Fig. 3. In
that figure, we observe the best fit region extending di-
agonally from M∆f ≈ 0.013 on the y-axis, to the bot-
tom right corner. It turns out that for this diagonal,
the upper frequency of the window does not vary much,
0.020 . MfL + M∆f . 0.024, and we shall use this
fact below for constructing hybrid waveforms for aligned
spinning systems.

D. Construction of hybrid waveforms for aligned
spinning systems

Let us now proceed to the construction of a hybrid
waveform model for non-precessing, spinning systems
with comparable mass. Again, the waveforms described
in Sec. III will be the basis for our model at low frequen-
cies corresponding to the inspiral stage. On the other
hand, the NR simulations described as data-sets #1–3
in Table I contain physical information for frequencies
above Mf ≈ 0.009. We will refer to Fig. 3 to justify our
choice of an overlapping window at Mf ∈ (0.01, 0.02).

Once this interval is fixed, we now carry out the follow-
ing matching procedure for all NR simulations of data-
sets #1–3: PN and NR phases are aligned by fitting the
free parameters t0 and φ0 in Eq. (3.13); with a standard
root-finding algorithm (starting at the mid point of the
fitting interval) we find a frequency fΦ where PN and
NR phase coincide and construct the hybrid phase con-
sisting of TaylorF2 at f ≤ fΦ and NR data at f > fΦ.
An analogous procedure is applied to the amplitude, but
in this case there is no freedom for adjusting any param-
eters. Hence, we use an educated guess for the match-
ing frequency (compatible with that for the phase) and
find the root fA where the difference of PN and NR am-
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FIG. 6. Distinguishability of hybrid waveforms that have been constructed varying some of the hybrid ingredients at a time.
When indicated, the black/grey color code denotes that Initial/Advanced LIGO design curves have been used for the distance
calculation. The horizontal lines are the lines of constant SNR (in fact it is 1/SNR2); if the distance measure goes above them,
then the waveforms can be distinguished from each other. The left panel shows the effect of constructing hybrids from Llama

equal-mass waveforms at different resolutions. We consider the difference between the high-medium resolution waveforms, and
the high-low waveform resolutions. The central panel shows the effect of using NR waveforms produced with either BAM or
Llama codes. The solid lines indicate the normalized distance in the equal-mass case, dashed lines show the case of mass-ratio
1:2. The highest available resolution was always used. The panel on the right displays Initial LIGO’s ability to distinguish
hybrid waveforms constructed from different PN approximants. This plot shows that the hybrids are not sufficient for detection
at the ε = 0.03 level [Eq. (4.9)] only for a small range of masses. “Early match” is a reference for matching 3PN or 3.5PN F2
at early frequencies to the long equal mass SpEC waveform.

plitude vanishes. The hybrid amplitude consists of PN
before and NR after fA. Small wiggles in the NR am-
plitude, due to the Fourier transform, do not affect the
phenomenological fit significantly. The most important
ingredient for arriving at an effectual model is the phase.

Fig. 7 illustrates the above-described hybrid construc-
tion method for matching PN and NR data in the fre-
quency domain. The procedure does not require any re-
sizing the PN or NR data and allows for the construction
of waveforms containing all the information from the Tay-
lorF2 approximant at low frequencies and input from the
NR simulations for the late inspiral, merger and ring-
down. The resulting hybrid PN-NR data cover a part
of the parameter space corresponding to equal-valued,
(anti-)aligned spins for 0.16 ≤ η ≤ 0.25 and constitute
the “target”waveforms to be fitted by the analytical phe-
nomenological model described in Section V.

V. PHENOMENOLOGICAL MODEL

In this section we present the phenomenological model
developed in order to fit the hybrid PN-NR waveforms
of Section IV to an analytical formula. A geometric de-
scription of the procedure for constructing phenomeno-
logical waveforms parametrized by just the physical pa-
rameters is detailed in [39], and here we just summarize
it. Let M be the space of intrinsic physical parame-
ters that we are interested in. In the present case, this
is the four-dimensional space of the component masses
and spins λ = {M,η, χ1, χ2}. For each point λ in M,
let h(t;λ) be the true physical waveform that we wish
to approximate; in particular we consider only the dom-
inant ` = m = 2 mode in this paper. We start with
some known signals in this parameter space at N points

λ1, λ2, . . . , λN . We take these known signals to be the
hybrid waveforms whose construction we described ear-
lier. Here the NR waveforms are the BAM waveforms of
data sets #1-3 summarized in Table I, and the PN model
is the 3.5PN frequency domain model for aligned spins
described in Sec. III.

Given the finite set of hybrid waveforms constructed
from these ingredients, we wish to propose a phenomeno-
logical model hphen(t;λ) that interpolates between the
hybrid waveforms with sufficient accuracy. In construct-
ing this phenomenological model, it is convenient to work
not with the physical parameters λ, but rather with a
larger set of phenomenological parameters λ̃, which we

shall shortly describe. If M̃ is the space of phenomeno-
logical parameters, then we need to find a one-to-one

mapping M→ M̃ denoted λ̃(λ), and thus the subspace

of M̃ corresponding to the physical parameters. As the
end result of this construction, for every physical param-
eter λ, we will know the corresponding phenomenological
parameter λ̃(λ) and thus the corresponding phenomeno-

logical waveform hphen(t; λ̃(λ)).

Following the construction procedure of Section IV D,
we split our waveforms in amplitude and phase, both of
which shall be fitted to a phenomenological model

h̃phen(f) = Aphen(f) eiΦphen(f). (5.1)

For both the amplitude and the phase of the dominant
mode of the GW radiation, we make use of the insight
from PN and perturbation theory for the description of
the inspiral and ringdown of the BBH coalescence re-
spectively, and introduce a phenomenological model to
complete the description of the waveforms in the merger.
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A. Phase model

The PN approach for the GW radiation based on the
stationary phase approximation, introduced in Eq. (3.13)
of Section III (used with t0 = φ0 = 0), gives an adequate
representation of the phase of the dominant mode dur-
ing the adiabatic inspiral stage of the BBH coalescence
ψ22

SPA(f). As the system transitions towards the merger
phase, it is expected that further terms in the expan-
sion are required to capture the features of the evolution.
With this ansatz in mind, we propose a pre-merger phase
ψ22

PM(f) of the form

ψ22
PM(f) =

1

η

(
α1f

−1/3 + α2 + α3f
2/3 + α4f

)
, (5.2)

where the αk coefficients are inspired by the SPA phase,
redefined and phenomenologically fitted to agree with the
hybrid waveforms in the region between the frequencies
fISCO = (π 63/2)−1 and fRD given in Eq. (5.4).

As for the post-merger phase, the Teukolsky equa-
tion [112] describes the ringdown of a slightly distorted
spinning black hole. The metric perturbation for the fun-
damental mode at large distances can be expressed as an
exponential damped sinusoidal

h22
ring(t) =

AringM

r
e−πfRDt/Q e−2πifRD t, (5.3)

where M is the mass of the ringing black hole, r the
distance from the source, and Q and fRD correspond,
respectively, to the quality factor of the ringing down and
the central frequency of the quasi-normal mode. These
can be approximated with an error ≤ 2.5% in the range
a ∈ [0, 0.99] by the following fit [113]

fRD(a,M) =
1

2π

c3

GM

[
f1 + f2(1− a)f3

]
, (5.4)

Q(a) = q1 + q2(1− a)q3 , (5.5)

where fi = {1.5251,−1.1568, 0.1292} and qi = {0.7000,
1.4187,−0.4990}, i = 1, 2, 3 as given in Table VIII of [113]
for the (l,m, n) = (220) mode. A full description of
quasi-normal modes can be found in the review [114].
The quantity aM2 is the spin magnitude of the final black
hole after the binary has merged, which can be inferred
from the spins of the two black holes. In our case, we use
the fit presented in [57], which maps the mass-ratio and
spins of the binary to the total spin a of the final black
hole.

The analytical treatment of the ringdown (5.3) moti-
vates a linear ansatz for the post-merger phase ψ22

RD(f)
of the form

ψ22
RD(f) = β1 + β2f. (5.6)
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FIG. 9. Map of the phenomenological parameters to the physical parameters of the binary.

The transition between the different regimes is
smoothened by means of tanh-window functions

w±f0 =
1

2

[
1± tanh

(
4(f − f0)

σ

)]
(5.7)

to produce the final phenomenological phase

Φphen(f) = ψ22
SPAw

−
f1

+ ψ22
PMw

+
f1
w−f2 + ψ22

RDw
+
f2
, (5.8)

with f1 = 0.93fISCO, f2 = 1.1fRD and σ = 0.015.
We choose these particular transition points after hav-
ing found them to provide the best match between the
hybrids and the phenomenological model.

B. Amplitude model

In a similar manner to the phase, we approach the
problem of fitting the amplitude of the GW by noting
that the PN amplitude obtained from the SPA expression
could be formally re-expanded as

ÃPN(f) = CΩ−7/6

(
1 +

5∑
k=2

γkΩk/3

)
, (5.9)

where Ω = πMf . We introduce a higher-order term to
model the pre-merger amplitude ÃPM(f)

ÃPM(f) = ÃPN(f) + γ1f
5/6, (5.10)

where the γ1 coefficient is introduced to model the am-
plitude in the pre-merger regime.

The ansatz for the amplitude during the ringdown is

ÃRD(f) = δ1L (f, fRD(a,M), δ2Q(a)) f−7/6, (5.11)

where only the width and overall magnitude of the
Lorentzian function L(f, f0, σ) ≡ σ2/

(
(f − f0)2 + σ2/4

)
are fitted to the hybrid data. The factor f−7/6 is intro-
duced to correct the Lorentzian at high frequencies, since

the hybrid data shows a faster fall-off. The phenomeno-
logical amplitude is constructed from these two pieces in
a manner analogous to the phase

Ãphen(f) = ÃPM(f)w−f0 + ÃRD(f)w+
f0
, (5.12)

with f0 = 0.98fRD and σ = 0.015. Fig. 8 demonstrates
how this phenomenological ansatz fits the hybrid am-
plitude in a smooth manner through the late inspiral,
merger and ringdown.

C. Mapping the phenomenological coefficients

Our models for the amplitude and phase involve 9 phe-
nomenological parameters {α1, . . . , α4, β1, β2, γ1, δ1, δ2}
defined in Eqs. (5.2), (5.6), (5.10) and (5.11). We now

need to find the mapping M → M̃ from the physical
to these phenomenological parameters. Following [40] we
construct the quantity χ ≡ (1+δ)χ1/2+(1−δ)χ2/2 with
δ ≡ (m1 −m2)/M that encodes the BH spins weighted
by their relative masses. Thus, our phenomenological
waveforms are parametrized only by the symmetric mass
ratio η and the spin parameter χ, as well as by the total
mass of the system M through a trivial rescaling. Fig. 9
shows the mapping of αk, βk, γk and δk to surfaces in
the (η, χ)–plane.

The 9 phenomenological coefficients introduced in our
model, denoted generically by Λk, are expressed in terms
of the physical parameters of the binary as

Λk =
∑

i+j∈{1,2}

ζ
(ij)
k ηiχj , (5.13)

which yields 5 coefficients ζ(ij) for each of the 9 parame-
ters, as given in table II.

We evaluate the goodness of fit between the phe-
nomenological model and the hybrid waveforms in terms
of the overlap, i.e. O = A(λ, λ), with A being the am-
biguity function defined in Eq. (4.10). In evaluating the
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TABLE II. Coefficients to map the 9 free parameters Λk of
our phenomenological model to the physical parameters of the
BBH binary.

Λk ζ(01) ζ(02) ζ(11) ζ(10) ζ(20)

α1 1.77 0.76 0.79 16.25 −43.96

α2 32.19 −8.39 −37.76 −181.51 462.75

α3 19.59 −3.80 57.95 153.35 −1589.01

α4 −825.04 −51.00 880.73 2085.25 −3335.87

β1 352.77 −34.25 −947.46 −950.10 2854.37

β2 −7073.81 −253.57 19724.30 15328.10 −48961.30

γ1 5.05 −4.58 −79.08 −58.61 708.25

δ1 −0.03 0.02 0.25 0.15 0.85

δ2 −0.95 0.38 4.85 6.39 −12.91

overlap, we maximize over the extrinsic parameters t0, φ0

as indicated in Eq. (4.10), but for the results shown in
Fig. 10 and upper panel of Fig. 11 we do not perform
the additional maximization over the model parameters
λ′. Thus, the results discussed below can be viewed as a
lower bound on the effectualness.

Figs. 10 and 11 illustrate the result using the design
curve of the Advanced LIGO detector. Fig. 10 shows
the overlap between the hybrid waveforms constructed
in Sec. IV D and their corresponding phenomenological
fit. The match approaches unity by construction at low
masses and degrades with increasing total mass. Never-
theless, for none of the hybrid waveforms employed in the
construction of our model does the overlap fall below a
value of 0.98, thus reflecting the fact that the phenomeno-
logical model effectually represents the target signals.

We have constructed a gravitational waveform model
for binary black hole inspiral and coalescence starting
with a particular set of simulations, and using a par-
ticular ansatz for the waveform. Is this model robust,
and is it consistent with waveforms from other numer-
ical simulations? In the upper panel of Fig. 11, and
as a further test to assess the robustness of our model,
we compute the overlap between the phenomenological
waveforms and the NR data-sets #4-7 that were not used
in the construction of the model. At low masses, there
is no contribution of these short NR waveforms in the
frequency band of interest for Advanced LIGO, and it
turns out that the overlaps can be computed only for
M & 100M�.

From the upper panel of Fig. 11, we see that over-
laps > 0.98 are obtained for most of the configurations;
again calculated without any maxmization over the in-
strinsic model parameters η and χ. This is roughly con-
sistent with Fig. 10 which shows the overlap of the model
with the original set of hybrid waveforms. This is reas-
suring, but two particular configurations, corresponding
to one BAM waveform from data-set #4 and one CCATIE
waveform from data-set #7b (t-sequence) present over-
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FIG. 10. Overlaps between the hybrid waveform constructed
according to the procedure described in Sec. IV D and the
proposed phenomenological fit for Advanced LIGO. The la-
bels indicate the values of (η, χ) for some configurations. We
plot O(λ) = A(λ, λ), i.e. we compute the ambiguity function
(4.10) without maximizing over the parameters of the model
waveform; this is a lower bound on the effectualness.

laps < 0.98, clearly below the rest of the data shown.
We note that these simulations correspond to asymmet-
ric spins and/or unequal masses, and lie in the region of
the parameter space for which we have less input from
NR simulations. Nevertheless, a real GW search for these
systems would in principle proceed by searching over
the (unknown) physical parameters of the system. In
this spirit, we have maximized the overlap between our
phenomenological model and the NR data over η and χ
but keeping M fixed, obtaining overlaps > 0.99 for the
two mentioned worse cases, as shown in the lower panel
of Fig. 11. The bias in the maximized parameters are
∆η ≈ 6 × 10−3,∆χ ≈ 8 × 10−2 in both cases. These
improved overlaps obtained by maximizing the ambigu-
ity function prove that our model is effectual and, thus,
sufficient for detection. We shall study its effectualness
and faithfulness in greater detail in a forthcoming paper.

VI. SUMMARY AND FUTURE WORK

The aim of this paper has been to construct an ana-
lytical model for the inspiral and coalescence of binary
black hole systems with aligned spins and comparable
masses in circular orbits. Since this requires merging
post-Newtonian and numerical relativity waveforms, one
of the main themes has been to quantify the internal con-
sistency of hybrid waveforms. This is important because
even if one succeeds in finding a useful fit for a family of
hybrid waveforms, one still needs to show that the hybrid
one started with is a sufficiently good approximation to
the true physical waveforms. We investigated the sys-
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FIG. 11. Upper panel: non-maximized overlaps O(λ) between
the NR data-sets #4–7ab and the predicted phenomenological
waveforms from our model for Advanced LIGO. The labels in-
dicate the values of (η, χ) for some configurations. Note that
the short duration of the NR data prevents us from com-
puting overlaps at lower masses. Lower panel: maximiza-
tion over the model parameters λ′ for the two configurations
that presented the worse overlaps in the above panel. The
arrows point towards the result of computing the ambigu-
ity function with a maximization over η and χ, keeping M
fixed. The maximum bias on the maximized parameters is
∆η ≈ 6× 10−3,∆χ ≈ 8× 10−2.

tematics of constructing hybrid waveforms for accurate
non-spinning waveforms based on the Llama code and
we saw that neither the numerical errors nor the hybrid-
construction errors are significant. This suggests that in
order to improve the accuracy of hybrid waveforms, we
require either longer NR waveforms so that the matching
with PN can be done earlier in the inspiral phase, or im-
proved PN models that are more accurate at frequencies
closer to the binary merger.

With the hybrid waveforms for non-precessing systems
in hand, we constructed an analytical model for the wave-
form which has an overlap of better than 98% for Ad-
vanced LIGO with the hybrid waveforms for systems with
a total mass ranging up to ∼ 400M�. Since these over-
laps are comparable to those achieved with the alterna-

tive phenomenological waveform construction presented
in [40], we conclude that this process is robust, and, in
particular, its accuracy is not affected by the way in
which the transitions between inspiral, merger and ring-
down are modeled.

In the future we will study in greater detail the effectu-
alness and faithfulness of this waveform model, thereby
quantifying more precisely its performance for detection
and parameter estimation. In this context it is impor-
tant to extend this work to modes higher than the dom-
inant ` = 2, m = ±2 spherical harmonics. It was shown
recently [115] that the overlap with the real signal can
possibly be affected by the inclusion of higher modes up
to the order of ∼ 1%, which is comparable or greater
than the disagreement we find between hybrid and phe-
nomenological model.

We will further quantify the behavior of our templates
in real non-Gaussian detector noise, and use them in
real searches for gravitational wave signals. Eventu-
ally, work is underway in extending the model to in-
clude precessing spins. Our phenomenological model
can be readily applied to existent GW detection efforts
within the LIGO/Virgo Scientific Collaborations. Ongo-
ing searches are already making use of inspiral-merger-
ringdown waveforms, such as the EOBNR family and the
phenomenological family of [37–40] in the form of soft-
ware injections and as filter approximants. Our newly
developed frequency-domain matching procedure should
serve to cross-check the validity of these alternative ap-
proaches and to complement them.
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Appendix A: PN expansion coefficients

For the convenience of the reader we explicitly give all the PN expansion coefficients used in Section III as functions
of the symmetric mass ratio η (3.2), the dimensionless spin magnitudes χi = (Si · L̂)/m2

i , where L̂ is the unit angular
momentum vector, and χ = χ1m1/M + χ2m2/M . The energy (3.3) is given in terms of

e0 = 1, e1 = 0, e2 = −3

4
− η

12
, e3 =

8

3
χ− 2

3
η(χ1 + χ2),

e4 = −27

8
+

19η

8
− η2

24
− χ2, (A1)

e5 =
72− 31η

9
χ− 45η − η2

9
(χ1 + χ2),

e6 = −675

64
+ η

(
34445

576
− 205π2

96

)
− 155η2

96
− 35η3

5184
.

The flux coefficients read

f0 = 1, f1 = 0, f2 = −1247

336
− 35η

12
, f3 = 4π − 11

4
χ+

3η

2
(χ1 + χ2),

f4 = −44711

9072
+ 2χ2 + η

(
9271

504
− χ1χ2

8

)
+

65η2

18
,

f5 = −π
(

8191

672
+

583

24
η

)
+ χ

(
135

112
+

1189

126
η

)
+ (χ1 + χ2)

(
111

56
η − 1459

126
η2

)
− 3

4
χ3 +

9η

4
χχ1χ2, (A2)

f6 =
16π2

3
+

6643739519

69854400
− 1712γE

105
− 856

105
ln (16x) + η

(
41π2

48
− 134543

7776

)
− 94403η2

3024
− 775η3

324
,

f7 = π

(
−16285

504
+

214745η

1728
+

193385η2

3024

)
.

γE ≈ 0.5772 is the Euler constant.
The TaylorT4 approximant can be written as a series (3.6) with the following coefficients

a0 = 1, a1 = 0, a2 = −743

336
− 11η

4
, a3 = 4π − 113

12
χ+

19η

6
(χ1 + χ2),

a4 =
34103

18144
+ 5χ2 + η
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13661

2016
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(
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(
20π

3
− 1135
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χ

)
η(χ1 + χ2) +

(
64153
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η

)
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(
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144
η − 3037

144
η2

)
χ1χ2,

a7 = −π
(
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− 358675

6048
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1512
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)
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(
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27216
− 757699
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3

8
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)
.

Note that the spin-dependent terms that appear at 3 and 3.5 PN order (i.e., in a6 and a7) are not complete since the
corresponding terms are not known in energy and flux. However, in this re-expansion they do appear as contributions
from lower order spin effects and we keep them.

The TaylorF2 description of the Fourier phase (3.13) is expressed in terms of

α0 = 1, α1 = 0, α2 =
3715

756
+

55η

9
, α3 = −16π +

113

3
χ− 38η

3
(χ1 + χ2) ,
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The comment we just made about the spin contributions at 3 and 3.5 PN order holds for the α-coefficients of the
TaylorF2 phase as well. Also, note that the contributions in α5 that are not proportional to ln(πf) could be absorbed
in a re-definition of the undetermined additional phase φ0 that appears in Eq. (3.13). (A similar discussion can be
found in [75].) However, since we chose to set φ0 = 0 when combining this phase description with other analytical
formulas in our phenomenological model (5.8), it is important to keep all terms in α5.

The time-domain amplitude coefficients collected from [25, 76, 77] read
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B. Brügmann, Class. Quant. Grav., 25, 114035 (2008),
arXiv:0711.1097 [gr-qc].

[26] M. Campanelli, C. O. Lousto, H. Nakano, and
Y. Zlochower, Phys. Rev., D79, 084010 (2009),
arXiv:0808.0713 [gr-qc].

[27] A. Buonanno and T. Damour, Phys. Rev., D59, 084006
(1999), arXiv:gr-qc/9811091.

[28] A. Buonanno and T. Damour, Phys. Rev., D62, 064015
(2000), arXiv:gr-qc/0001013.

[29] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys.
Rev., D57, 885 (1998), arXiv:gr-qc/9708034.

[30] T. Damour, P. Jaranowski, and G. Schaefer, Phys.
Rev., D62, 084011 (2000), arXiv:gr-qc/0005034.

[31] A. Buonanno et al., Phys. Rev., D76, 104049 (2007),
arXiv:0706.3732 [gr-qc].

[32] A. Buonanno et al., Phys. Rev., D79, 124028 (2009),
arXiv:0902.0790 [gr-qc].

[33] T. Damour, A. Nagar, E. N. Dorband, D. Pollney,
and L. Rezzolla, Phys. Rev., D77, 084017 (2008),
arXiv:0712.3003 [gr-qc].

[34] T. Damour, A. Nagar, M. Hannam, S. Husa, and
B. Brugmann, Phys. Rev., D78, 044039 (2008),
arXiv:0803.3162 [gr-qc].

[35] T. Damour and A. Nagar, Phys. Rev., D79, 081503
(2009), arXiv:0902.0136 [gr-qc].

[36] Y. Pan et al., Phys. Rev., D81, 084041 (2010),
arXiv:0912.3466 [gr-qc].

[37] P. Ajith et al., Class. Quant. Grav., 24, S689 (2007),
arXiv:0704.3764 [gr-qc].

[38] P. Ajith, Class. Quant. Grav., 25, 114033 (2008),
arXiv:0712.0343 [gr-qc].

[39] P. Ajith et al., Phys. Rev., D77, 104017 (2008),
arXiv:0710.2335 [gr-qc].

[40] P. Ajith et al., (2009), arXiv:0909.2867 [gr-qc].
[41] R. Sturani et al., (2010), arXiv:1005.0551 [gr-qc].
[42] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.

Thorne, Phys. Rev., D49, 6274 (1994).
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Iyer, Phys. Rev. Lett., 93, 091101 (2004), arXiv:gr-
qc/0406012.

[80] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev.,
D74, 104005 (2006), arXiv:gr-qc/0508067.

[81] L. E. Kidder, Phys. Rev., D52, 821 (1995), arXiv:gr-
qc/9506022.

[82] L. Blanchet, A. Buonanno, and G. Faye, Phys. Rev.,
D74, 104034 (2006), arXiv:gr-qc/0605140.

[83] T. Damour, Phys. Rev., D64, 124013 (2001), arXiv:gr-
qc/0103018.

[84] E. Poisson, Phys. Rev., D57, 5287 (1998), arXiv:gr-
qc/9709032.

[85] G. Faye, L. Blanchet, and A. Buonanno, Phys. Rev.,
D74, 104033 (2006), arXiv:gr-qc/0605139.

[86] K. Alvi, Phys. Rev., D64, 104020 (2001), arXiv:gr-
qc/0107080.

[87] A. Buonanno, B. Iyer, E. Ochsner, Y. Pan, and
B. S. Sathyaprakash, Phys. Rev., D80, 084043 (2009),
arXiv:0907.0700 [gr-qc].

[88] J. S. Read et al., Phys. Rev., D79, 124033 (2009),
arXiv:0901.3258 [gr-qc].

[89] A. Papoulis and S. Unnikrishna Pillai, Probability, Ran-
dom Variables and Stochastic Processes, 4th ed. (Mc-
Graw Hill Higher Education, 2002).

[90] C. W. Helstrom, Elements of signal detection and es-
timation (Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1995) ISBN 0-13-808940-X.

[91] L. Lindblom, B. J. Owen, and D. A. Brown, Phys. Rev.,
D78, 124020 (2008), arXiv:0809.3844 [gr-qc].

[92] A. Stuart, K. Keith Ord, and S. Arnold, Kendall’s Ad-
vanced Theory of Statistics:Volume 2A -Classical Infer-
ence and and the Linear Model, 6th ed. (Wiley, 2009).

[93] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys.
Rev., D57, 885 (1998).

[94] W. D. Goldberger and I. Z. Rothstein, Phys. Rev., D73,
104029 (2006), arXiv:hep-th/0409156.

[95] R. A. Porto and I. Z. Rothstein, Phys. Rev., D78,
044012 (2008), arXiv:0802.0720 [gr-qc].

[96] T. A. Oliynyk, Commun. Math. Phys., 295, 431 (2010),
arXiv:0908.2836 [gr-qc].

[97] S. Husa, J. A. Gonzalez, M. Hannam, B. Brügmann,
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