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Abstract Second-generation interferometric gravitational-wave detectors will be op-

erating at the Standard Quantum Limit, a sensitivity limitation set by the trade off

between measurement accuracy and quantum back action, which is governed by the

Heisenberg Uncertainty Principle. We review several schemes that allows the quantum

noise of interferometers to surpass the Standard Quantum Limit significantly over a

broad frequency band. Such schemes may be an important component of the design of

third-generation detectors.

1 Introduction

The first generation large-scale laser interferometric gravitational-wave (GW) detectors

(LIGO [1,2], Virgo [3,4], GEO600 [5,6], and TAMA [7]) are either on duty now or have

finished the first stage of their life cycle and are in preparation to an upgrade. Second-

generation detectors, e.g., Advanced LIGO, Advanced Virgo, GEO-HF and LCGT aim

at increasing sensitivity by about one order of magnitude by means of quantitative

improvements (higher optical power, smaller losses) and evolutionary changes of the

interferometer configurations, most notably, by introduction of the signal recycling

mirror [8,9,10,11,12,13].

As a result, the second-generation detectors will be quantum noise limited. At higher

GW frequencies, the main sensitivity limitation will be due to phase fluctuations of

the light inside the interferometer (shot noise). At lower frequencies, the random force
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created by the amplitude fluctuations (radiation-pressure noise) will be the main or

among the major contrubutors into the sum noise. The best sensitivity point, where

these two noise sources become equal, is known as the Standard Quantum Limit (SQL)

[14], which, in a broader context, characterizes the regime in which the quantum mea-

surement error (shot noise) becomes equal to the back action noise (radiation pressure

noise) - the latter one being a consequence of the Heisenberg uncertainty principle.

Topologies of third-generation detectors are far from being established. For exam-

ple, a triangular or a rectangular shape of the vacuum system for the Einstein Telescope

(ET) [15]. It could accommodate several independent Michelson interferometers, but

evidently can be used also more “synergetically” for non-Michelson topologies. If third-

generation detectors are to improve sensitivities by yet another order of magnitude,

the main noise sources we face would be: (i) the low-frequency portion of the SQL, (ii)

thermal noises from suspension and mirror coatings, (iii) Newtonian gravity gradient

and vibrational seismic noises, and (iv) shot noise, where (i) – (iii) are mostly in low

frequencies (below 100 Hz), and (iv) is for high frequencies. Methods for tackling these

noises are orthogonal: (i) argues for heavy mirrors, lower optical power, (ii) argues for

heavy mirrors with large radii, and low temperature, (iii) requires careful design of

the suspension system and noise cancellation by monitoring ground-motion, and (iv)

argues for high optical power. Aside from increasing the arm length of the detector

(which improves sensitivity in the entire band but incurs huge cost), we may have to

consider separate detectors for coverage of the entire ground-based frequency window

of 1 Hz up to 10 kHz.

This paper focuses on designs of interferometers that beat the SQL significantly in

a broad frequency band, often named Quantum Non-Demolition (or QND) schemes. 1

In particular, we mainly consider three schemes: (i) the variational readout scheme, in

which frequency-dependent homodyne detection is implemented by means of additional

km-scale filter cavities, and allows broad-band back-action evasion for a broad-range of

interferometers (Sec 2), (ii) the speed meter, which measures speed of test masses, and

can easily evade back-action noise without broad-band frequency-dependent filtering

(Sec. 3), and (iii) the intracavity readout scheme, in which effect of the GW is first

transduced onto the motion of a mirror in its local inertial frame, via optomechanical

coupling, and then detected by measuring this local motion (Sec. 4).

It is sometimes argued that instead of overcoming the SQL it is possible just to

reduce its value by using heavier test masses which have naturally lower radiation-

pressure noise. However, we believe that QND techniques are still very useful because:

(i) the SQL scales with 1/
√
M , and therefore significantly heavier mirrors will be

needed, and they bring newer technical issues, (ii) conventional interferomter (will be

defined explicitly in the next section) has a noise spectrum that touches the SQL at

one frequency, and then increases sharply as f−2 at lower frequencies, which makes

QND schemes useful even for such heavy mirrors. While it is most probable that

QND schemes would be useful for low-frequency detectors, there is still indication

1 Initially (see [16]) this term was proposed for the specific class of quantum measurements
where the measured observable commutes with the unperturbed Hamiltonian and thus is not
“demolished” during the measurement (for example, energy of the oscillator non-linearly cou-
pled with the meter). In this case, monitoring of this observable with arbitrary high precision
is possible, allowing to detect arbitrary small external perturbation. Today the term QND is
frequently (and, in our opinion, imprecisely) applied to any mechanical measurement which
can overcome the free mass SQL within a certain frequency range. The three schemes consid-
ered in this paper, strictly speaking, do not comply with the initial QND definition. However,
they represent the closest approximation to it currently available.
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Quantity Description Quantity Description
c Speed of light T Input mirror transmissivity
~ Plank’s constant γ interferometer’s 1/2-bandwidth
ωo Optical pumping frequency Ic Circulating power
Ω Signal (side-band) frequency e−2r Power squeeze factor
L Arm length ζ Homodyne angle
M Mirror mass η Unified quantum efficiency

Table 1 Main notations used in this paper.

that configurations arising from the study of QND interferometers could improve high-

frequency sensitivities.

Throughout our review, we will assume that frequency-independent squeezed vac-

uum (which can serve for improving the interferometers’ sensitivity) is available for

injection into any port of the interferometer. For the sake of formulae simplicity we

confine ourselves to the particular case of phase quadrature squeezed light that is nec-

essary to reduce the photon shot noise dominating at high signal frequencies, as it was

first proposed by Caves [17]. More detailed analysis exceeds this paper frame and can

be found, for example, in the articles [18,19].

Main notations used throughout the paper are listed in Table 1.

2 Variational Readout Schemes

2.1 Quantum position meter

As a starting point, we consider a Michelson interferometer with Fabry-Perot cavities

in its arms (as a position meter, in the sense that below the cavity linewidth, the

output phase modulation is directly proportional to the position of mirrors), which is

the standard design for the first and second generation detectors. We assume also that

the pump laser frequency is equal to the eigenfrequency of the interferometer anti-

symmetric (signal) mode. This means that either no signal recycling is used at all, or

both the arm cavities and the signal recycling cavity are tuned in resonance [20].2 We

shall refer to this scheme, with a homodyne detection of the output phase quadrature, as

a conventional interferometer. Ref. [18] gave a detailed treatment of quantum noises of

Fabry-Perot Michelson position meters. In the ideal lossless case (η = 1), the quantum-

noise spectral density of a position meter with homodyne detection angle ζ is

Sh
PM =

h2
SQL

2

e−2r + [cot ζ −KPM(Ω)]2e2r

KPM(Ω)
, (1)

where

hSQL =

r
8~

MΩ2L2
, (2)

2 In principle, the variant with non-zero opposite-sign detunings of the arm cavities and
signal recycling cavity is also possible, while it can be hrdly considered practical, as it provides
that same result but for higher (experimental) “price”.
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is its SQL 3, the function

KPM(Ω) =
2Ic

ISQL
c

γ4

Ω2(γ2 +Ω2)
(3)

describes the strength of optomechanical coupling (“PM” stands for “position meter”),

γ is 1/2-linewidth of the arm cavity,

Ic = 4 IBS/T (4)

is the total optical power circulating in both arms of the interferometer, IBS is the

input power at the beamsplitter, T is the power transmissivity of the arm cavities

input mirrors, and

ISQL
c =

McLγ3

4ωo
. (5)

This is the characteristic power required by a conventional interferometer without

squeezing to touch the SQL at Ω = γ. By “conventional interferometer”, we mean the

one with resonance pumping (no detuning) and with readout of output light phase

quadrature (ζ = π/2) that corresponds to the shot noise minimum (so-called classical

optimization). The total quantum noise spectral density of the conventional interfer-

ometer is equal to

Sh
PM(Ω) =

h2
SQL

2

»
e−2r

KPM(Ω)
+KPM(Ω)e2r

–
, (6)

It never goes below h2
SQL(Ω), but merely touches it at one given frequency defined

by the condition KPM(Ω)e2r = 1 (in particular, if Ic = ISQL
c e−2r, then at Ω = γ).

For example, for the Advanced LIGO parameters set (M = 40 kg, L = 4 km), and for

Ω = γ = 2π × 100 Hz, there will be ISQL
c ≈ 2× 840 kW.

2.2 Variational readout

The variational measurement technique of Kimble et al. [18] detects a frequency-

dependent quadrature given by

ζ(Ω) = arccotKPM(Ω) , (7)

by passing the light, leaving the main interferometer, through two additional Fabry-

Pérot filter cavities (Kimble filters), before performing conventional homodyne detec-

tion [18]. More generally, as shown in Appendix A of Ref. [21] and in [22], any rotation

of the form

cot ζ(Ω) =

Pn
j=1 ajΩ

2jP2n
j=1 bjΩ

2j
, anbn 6= 0 (8)

can be achieved with n filters.

3 We use the “one-sided” definition of the spectral density standard for the GW community.
In equations, we suppress the Ω dependence of Sh and hSQL.
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The bandwidths and detuning frequencies of the filters has to be of the same order

of magnitude as the detection frequency scale. In the ideal no-losses case, back-action

cancelation leads to

Sh
PM VM =

h2
SQLe

−2r

2KPM(Ω)
, (9)

which only contains shot noise, and can in principle beat the SQL arbitrarily, given

large enough circulating power Ic and/or squeeze factor e2r.

2.3 Optical losses

Optical losses play a crucial role in variational readout schemes, because cancellation

of radiation pressure noise is achieved with decreased signal content in the readout

quadrature [18]. Optical losses can arise from several origins, e.g., lossy mirrors, imper-

fect mode matching, finite quantum efficiency of photodetectors. For simplicity, we use

one effective noise that enters the final output field via an imaginary beamsplitter that

mixes output of ideal interferometer with an additional vacuum, with weights
√
η and√

1− η, where η can be viewed as an effective quantum efficiency of the photodetector.

In general, η depends on Ω. The main source of this dependence on frequency arise

from the filter and (if r 6= 0) arm cavities. For them,

1− ηcav ∼ cA2/(4Lγ) ∼ 102 ×A2 × (10 km/L) ×
“

100 s−1/γ
”
, (10)

where A2 is the loss per bounce. Assuming the moderately optimistic value of A2 ∼
10−5, 1 − ηcav ∼ 10−3 is an order of magnitude better than the 1 − η & 10−2 which

can be provided by modern photodetectors and the auxiliary output optics. Therefore,

we neglect in this section frequency dependence introduced by ηcav.

The total quantum noise spectral density of the lossy interferometer is

Sh
PM =

h2
SQL

2
× e−2r + ξ4loss/ sin2 ζ + [cot ζ −KPM(Ω)]2e2r

KPM(Ω)
, (11)

where we have introduced a convenient factor

ξloss = 4
p

(1− η)/η . (12)

In the conventional case of r = 0 and ζ = π/2, the influence of optical losses is

negligible: the factor 1/η only increases the shot noise by a few percents. However,

losses limit the gain in the shot noise spectral density, provided by squeezing (and thus

the gain in the optical power) by the value (1− η)/η. In the variational readout case,

losses become even more important because ζ tends to be small [Cf. Eq. (3) and (7)].

A re-optimization of ζ(Ω) in presence of loss leads to

ζ(Ω) = arccot
KPM(Ω)

1 + ξ4losse
−2r

, (13)

which results in a total noise spectrum of

Sh
PM VM =

h2
SQL

2

"
e−2r + ξ4loss
KPM(Ω)

+
ξ4lossKPM(Ω)

1 + ξ4losse
−2r

#
, (14)
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where a back-action term, proportional to KPM(Ω), persists, albeit reduced by ≈ 1−η.

This presence of back-action leads to

Sh
PM VM

h2
SQL

≥ ξ2loss

s
e−2r + ξ4loss
1 + ξ4losse

−2r
(15)

(see also [18]), with equality achievable at the unique frequency at which two terms in

the square brackets in (14) are equal to each other (similar condition and estimate can

be found in the abstract to [18]). Thus,q
Sh

PM VM/hSQL = ξloss (16)

is the best SQL-beating factor one can hope to achieve given η without squeezing.

With sufficiently deep squeezing, e−2r � ξ4loss, it is possible to achieveq
Sh

PM VM/hSQL = ξ2loss . (17)

For η = 0.95, which is moderately optimistic for current photodiodes, the best loss-

limited SQL beating is
√
Sh/hSQL ' 0.5 without squeezing and

√
Sh/hSQL ' 0.22

with squeezing.

It is evident from this simple consideration that optical losses can become a real

problem for sub-SQL sensitivity schemes that rely on quantum noise reduction based

on optimal correlation between measurement and back action noise.

3 Quantum speed meter

3.1 Overview of speed meter topologies

One way of obtaining a sensitivity better than the SQL is to measure a QND ob-

servable that remains unperturbed by the meter’s back action during a continuous

measurement. Momentum p of a free mass is a QND observable, yet practical ways of

directly measuring the momentum of a free mass has not been invented. The closest is

to measure the speed v of a test mass — yet as soon as one couples v to an external

observable, the canonical momentum p becomes different from mv — and even though

the canonical momentum p remains QND, mv will be perturbed by a continuous mea-

surement. Nevertheless, speed meters turn out to offer broadband beating ofthe SQL

more easily than position meters. The basic idea of the quantum speed meter was first

proposed by Braginsky and Khalili in [23].

The general approach to speed measurement is to use pairs of position measure-

ments separated by a time delay τ <∼ 1/Ω, where Ω is the characteristic signal fre-

quency. The successive measurement should ideally be coherent, i.e., they should be per-

formed by the same photons. In Ref. [24], Braginsky, Gorodetsky, Khalili and Thorne

(BGKT) analyzed the microwave speed meter scheme first proposed in [23] in detail,

as a possible realization of local meter for an intra-cavity GW detector that will be

considered in Sec. 4. This scheme uses two identical coupled microwave resonators, as

shown in Fig. 1 (left), one of which (2) is pumped on resonance though the input waveg-

uide, so that another one (1) becomes excited at its frequency ωe. The eigenfrequency

of resonator 1 is modulated by the position x of the test mass, and puts a voltage

signal proportional to position x into resonator 2, and a voltage signal proportional
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Fig. 1 Left: schematic diagram of the microwave speed meter on coupled cavities as given in
[23,24]. Right: optical version of coupled cavities speed meter proposed in [21].

to velocity dx/dt into resonator 1. The velocity signal flows from resonator 1 into an

output waveguide, from which it is monitored. One can understand the production

of this velocity signal as follows. The coupling between the resonators causes voltage

signals to slosh periodically from one resonator to the other at the frequency Ω. After

each cycle of sloshing, the sign of the signal is reversed, so the net signal in resonator

1 is proportional to the difference of the position at times t and t+ 2π/Ω, i.e. is pro-

portional to the test-mass velocity so long as the test mass’ frequencies ω of oscillation

are ω � Ω. BGKT also proposed a scheme of an optical speed meter based on the

same principle, namely to use two coupled Fabry-Pérot cavities, with one pumped res-

onantly, and the second one kept unexcited and serving as a “sloshing cavity” (see

Fig. 4 of [24] for detail). This idea was further elaborated by Purdue, who found that

the BGKT two-cavity scheme, although can beat the SQL broadband, requires huge

pumping power, and can only evade classical laser noise if two such two-cavity schemes

are used simultaneously [25]. Purdue and Chen [21] subsequently improved upon the

BGKT two-cavity scheme, converting the differential mode of a Michelson interfer-

ometer into cavity 1, and an additional, km-scale cavity into cavity 2, thus making a

practical interferometer configuration, see Fig. 1 (right).

Khalili and Levin [26] proposed another version of speed-meter-based GW detector,

using a Doppler phase shift that appears in light wave after passing through a moving,

rigid, impedance-matched Fabry-Pérot cavity. It was suggested in [26] to attach small

rigid Fabry-Pérot resonators to test masses of GW detector and tune them in resonance

when at rest. When the cavity starts moving it sees the incoming light Doppler shifted,

and the light emerging from the other side gets phase shifted by δϕ = (ωoτ
∗/c) v, where

v is the cavity velocity, while ωo and τ∗ ∼ γ−1 are its eigenfrequency and ringdown

time, respectively. Unfortunately, the requirement that the cavity have to be a stiff

one puts limitation on the cavities length and thus on the achievable values of the

ringdown time τ∗. An estimate show, that due to this limitation, the optical power in

this scheme have to be unrealistically high to compensate the small factor ωoτ
∗/c.
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Fig. 2 Two possible optical realizations of zero area Sagnac speed meter. Left panel: The ring
cavities can be used to spatially separate the ingoing fields from the outgoing ones, in order
to redirect output light from one arm to another one [27]. Right panel: The same goal can
be achieved idea is realized using optical circulator consisting of the polarization beamsplitter
(PBS) and two λ/4-plates [28,29].

Later on, the idea to use the zero area Sagnac interferometer [30,31,32] as a speed

meter was proposed independently by Chen and Khalili [27,28]. Further analysis with

account for optical losses was performed in Ref. [29] and with detuned signal-recycling

in Ref. [33]. Suggested configurations are pictured in Fig. 2. The core idea is that light

from the laser gets splitted by the beamsplitter (BS) and directed to Fabry-Pérot

cavities in the arms, exactly as in conventional Fabry-Pérot—Michelson GW interfer-

ometers. However, after it leaves the cavity, it does not go back to the beamsplitter,

but rather enters the cavity in the other arm, and only afterwards returns to the beam-

splitter, and finally to the photo detector at the dark port. The scheme of Ref. [27] uses

ring Fabry-Pérot cavities in the arms to spatially separate ingoing and outgoing light

beams to redirect the light leaving the first arm to the second one evading the output

beamsplitter. The variant analyzed in Ref. [28,29] uses polarized optics for the same

purposes: light beams after ordinary beamsplitter, having linear (e.g., vertical) polar-

ization, pass through the polarized beamsplitter (PBS), then meet the λ/4 plates that

transforms their linear polarization into circular one, and then enter the Fabry-Pérot

cavity. After reflection from the Fabry-Pérot cavity, light passes through λ/4-plate

again, changing its polarization again to linear, but orthogonal to the initial one. As

a result, the PBS reflects it and redirects to another arm of the interferometer where

it passes through the same stages, restores finally the initial polarization and comes

out of the interferometer. With the exception of the implementation method for this

round-robin pass of the light through the interferometer, both schemes has the same

performance, and the same appellation “Sagnac speed meter” will be used for them

below.

Visiting consequently both arms, counter propagating light beams acquire phase

shifts proportional to a sum of end mirrors displacements of both cavities taken with

time delay equal to average single cavity storage time τarm:

δφR ∝ xN (t) + xE(t+ τarm) , δφL ∝ xE(t) + xN (t+ τarm) . (18)

After recombining at the beamsplitter and photo detection the output signal will be

proportional to the phase difference of clockwise (R) and counter clockwise (L) prop-
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agating light beams:

δφR−δφL ∝ [xN (t)−xN (t+τarm)]− [xE(t)−xE(t+τarm)] ∝ ẋN (t)− ẋE(t)+O(τarm)

(19)

that, for frequencies � τ−1
arm, is proportional to relative velocity of the interferometer

end test masses. The presence of two counter propagating light beams exciting both

arm cavities in a symmetric way allows to mostly keep the traditional optical layout of

GW interferometers with two large scale high finesse Fabry-Pérot cavities, minimizing

the cost and the operation complexity of this scheme and allowing to switch between

the speed meter and ordinary position meter operation modes.

3.2 Speed meter sensitivity

As shown by Chen [27], a mapping exists between zero-area Sagnac and Michelson

speed meters, if tuned signal recycling is considered: both are characterized by two

optical resonators, with resonant frequencies located symmetrically around the carrier

frequency. Henceforth, we will use Sagnac speed meters as representative for different

possible speed meter realizations.

The quantum noise spectral density of a lossless speed meter is similar in form to

Eq. (1)

Sh
SM =

h2
SQL

2

e−2r + [cot ζ −KSM(Ω)]2e2r

KSM(Ω)
, (20)

where KSM is the optomechanical coupling of the speed meter as given in Ref. [27]

KSM(Ω) =
4Ic

ISQL
c

γ4

(γ2 +Ω2)2
, (21)

and

Ic = 8 IBS/T . (22)

Note that for a given IBS, this Ic is twice that of the position meter [Cf. Eq. (4)],

because here each beam visits both arms sequentially after leaving the beamsplitter.

The key advantage of speed meters over position meters is that at low frequencies,

Ω < γ, KSM is approximately constant and reaches maximum there

KSM(Ω � γ) ≈ 4Ic/I
SQL
c . (23)

As a consequence, a frequency-independent readout quadrature optimized for low fre-

quencies can be used:

ζ = arccotKSM(0) = arccot(4Ic/I
SQL
c ) , (24)

which gives the following spectral density

Sh
SM LF =

h2
SQL(Ω)

2

»
e−2r

KSM(Ω)
+
Ω4(2γ2 +Ω2)2

γ8
KSM(Ω)e2r

–
. (25)

Here the radiation-pressure noise (second term in bracket) is significantly suppressed

in low frequencies (Ω <∼ γ), and Sh
SM LF can beat the SQL in a broad frequency band.

By contrast, this is not possible for position meters, which have KPM ∼ 1/Ω2, see

Fig. 3 (left panel).
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Fig. 3 Variational position meter compared with speed meter. Left panel: optomechanical
coupling factors for position meter (KPM and speed meter (KSM) as functions of signal fre-
quency Ω. Right panel: SQL beating factors

√
Sh/hSQL for low frequency optimized speed

meter interferometer (Speed meter), variational position meter (Variational PM), variational

speed meter (Variational SM), and SQL-limited interferometer. In all cases, Ice2r = ISQL
c .

Variational readout technique [18] discussed in Sec. 2.2 can also be used to en-

hance the speed meters performance [21]. The optimal frequency-dependent readout

quadrature is given by

ζ = arccotKSM(Ω) , (26)

which gives a noise spectral density without the back action term:

Sh
SM VM =

h2
SQLe

−2r

2KSM(Ω)
. (27)

In right panel of Fig. 3 we plot the SQL-beating factors
√
Sh/hSQL for low-frequency

optimized speed meter (25), variational position (9) and speed meters (27). For com-

parison,
√
Sh/hSQL for the SQL-limited interferometer (6) is also given. One might

conclude from these plots that the variational position meter is clearly better than the

speed meter (except for high frequency area where the most sophisticated scheme of

variational speed meter has some marginal advantage) — however in the next subsec-

tion we demonstrate that optical losses change this picture radically.

3.3 Optical losses in speed meters

In speed meters, optical losses in the arm cavities significantly affect the sum noise

at low frequencies, even if 1 − ηcav � 1 − η, because the radiation pressure noise

component created by the arm cavities losses has frequency dependence similar to the

one for position meters (remind that KPM/KSM → ∞ if Ω → 0, see Fig. 3, left). In

this paper, we will use the following expression for the lossy speed meter sum noise

(which is still simplified, but takes the losses frequency dependence into account; more

detailed treatment of the lossy speed meter can be found in papers [21,29]):

Sh
SM =

h2
SQL

2


e−2r + ξ4loss/ sin2 ζ + [cot ζ −KSM(Ω)]2e2r

KSM(Ω)
+ ξ4cavKPM(Ω)

ff
, (28)

where ξcav = 4
p

(1− ηcav)/ηcav .
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Fig. 4 SQL beating factors
√
Sh/hSQL, in presence of optical losses (η = 0.95, ηcav =

1 − 10−3), for: low frequency optimized Sagnac speed meter interferometer (Speed meter),
variational position meter (Variational PM), variational Sagnac speed meter (Variational SM).

Left panel: Ic = ISQL
c and r = 0 (no squeezing). Right panel: Ice2r = 0.1ISQL

c and e2r = 10.

On both panels,
√
Sh/hSQL of lossless SQL-limited interferometer with Ice2r = ISQL

c is plotted
for comparison (SQL-limited).

The low-frequency optimized detection angle, in presence of loss, is

ζ = arccot
K(0)

1 + ξ4losse
−2r

= arccot
4Ic/I

SQL
c

1 + ξ4losse
−2r

, (29)

which gives

Sh
SM LF =

h2
SQL

2


e−2r + ξ4loss
KSM(Ω)

+
KSM(Ω)

1 + ξ4losse
−2r

»
Ω4(Ω2 + 2γ2)2

γ8
e2r + ξ4loss

–
+ ξ4cavKPM(Ω)

ff
, (30)

[compare with Eq. (25) and note the additional residual back action term similar to

one in Eq. (14)].

For a lossy variational speedmeter, repeating calculations of Sec. 2.3, we obtain

ζ(Ω) = arccot
KSM(Ω)

1 + ξ4losse
−2r

, (31)

which results in a total noise spectrum of

Sh
SM VM =

h2
SQL

2

"
e−2r + ξ4loss
KSM(Ω)

+
ξ4lossKSM(Ω)

1 + ξ4losse
−2r

+ ξ4cavKPM(Ω)

#
. (32)

It is easy to see that both low-frequency optimized and variational speed meters, op-

tical losses impose the same fundamental limitation (15) on the SQL beating factor√
Sh/hSQL.

In Fig. 4, the factors
√
Sh/hSQL for low frequency optimized lossy speed meter (30)

and lossy variational position and speed meters (14, 32) are plotted, for Ic = ISQL
c

without squeezing (left panel) and Ic = 0.1ISQL
c with 10 dB squeezing (right panel). In

both cases, realistic parameter η = 0.95 and ηcav = 1− 10−3 are assumed. These plots



12

indicate that in presence of optical loss, the speed meter provides better broadband

low-frequency sensitivity than variational position meters.

These plots also suggest that the interferometer’s bandwidth γ should be larger

than the band of interest. This sets a minimum requirement for ISQL
c [Cf. Eq. (5)],

and thus the necessary optical circulating power Ic. However, if a speed meter is only

used for lower frequencies, the necessary optical power may not be very high, even

without the squeezing. For example, M = 200 kg, L = 10 km, and γ = 100 s−1, then

ISQL
c ≈ 80 kW — only four times as high as in the initial LIGO detector. On the

other hand, for higher working frequnecies, the power requirements increase sharply.

For example, γ = 2π × 100 s−1 requires ISQL
c ≈ 20 MW.

3.4 Detuned speed meter and optical inertia

So far we considered only resonance tuned Sagnac speed meter. A convenient way of

detuning the Sagnac interferometer is to use the signal-recycled topology originally

proposed by Meers [34]: an additional mirror is placed at the dark output port of the

interferometer, reflecting parts of the signal modulation fields back into the interfer-

ometer and forming a cavity together with the input mirrors of the interferometer’s

arm cavities. When this new cavity is neither resonant nor anti-resonant with respect

to the carrier frequency, the signal mode of the interferometer also becomes detuned,

and the interferometer has a peak sensitivity around a non-zero resonant frequency.

Nearly all second generation GW detectors will make use of this technique.

In a detuned position meter, the optomechanical coupling induces a restoring force

onto the differential mode of the arm-cavities mirrors [35,36,20]: motion of mirrors pro-

duce phase modulation of the out-going light, which, through detuning, gets converted

into amplitude modulation and acts back onto the mirrors as a position-dependent

force. This optical spring can shift the pendulum frequency of the mirror and move it

into the detection band. In this case the interferometer’s sensitivity has two peaks, one

around the original optical resonance due to detuning, the other due to the upshifted

mechanical resonance. A full explicit expression for the quantum noise spectral density

can be found in Eq. (37) of Ref. [20].

The detuned Sagnac interferometer has also two resonances but both are of optical

nature, due to the existence of two optical resonators in the system; differently from

position meters, the optomechanical coupling in a Sagnac modifies the dynamical mass

of the mirrors, adding an optical inertia [33,37]. In a Sagnac, amplitude modulation

a entering from the dark port act successively on both cavities, and in low frequencies

FN
RP − F

E
RP ∝ ȧ(t) . (33)

In a detuned situation, a contains some of the out-going phase modulation, which is

proportional to ẋN−ẋE, and therefore the radiation-pressure force contains the mirrors’

acceleration:.

FN
RP − F

E
RP ∝ −Mopt (ẍN − ẍE) . (34)

Here Mopt is the effective optical inertia which can be either positive or negative. Be-

cause this treatment is true for all frequencies below the optical resonances, it is possible

to achieve M + Mopt � M for a broad frequency band — this leads to a broadband

amplification of GW signal, and may allow us to circumvent the fundamental limit of

(15) imposed by optical losses.
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d) The optical lever scheme:
two additional mirrors B1

and B2 reduce the opti-
cal power passing through
the central mirror C and
increase the central mirror
signal displacement.

Fig. 5 Transition from the solid-state bar detector to the optical bars/optical lever intracavity
readout scheme.

4 Intracavity measurement

4.1 The idea of “optical bars” and “optical lever” topologies

QND versions of traditional interferometer schemes, like, for example, quantum speed

meter considered in the previous section, allow to suppress the back-action noise. What

remains is (in the ideal lossless case) the pure measurement noise, which spectral density

has the following general structure:

Sh =
4

L2
Sx , (35)

where the equivalent position noise spectral density Sx, for given value of γ, is pro-

portional to the arms length L, see, e.g. Eqs. (9, 27), and inversely proportional to

circulating power Ic. Therefore, the displacement sensitivity can be improved (that

is, Sx can be reduced) by simple increase of power and by using interferometers with

shorter arms length L. However, the signal displacement itself is proportional to the

length of the arms:

x = Lh/2 (36)

[hence the factor 4/L2 in Eq. (35)], and therefore, sensitivity for the GW signal h goes

down with the arm length decrease.

In this reasoning, one important assumption was made silently, namely, that the

values of L which appear in Eq. (36) and in Sx, are equal to each other. This is the
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case for contemporary laser interferometric GW detectors, but is not, for example,

for solid-state ones. Consider a hypothetic bar detector with optical readout shown in

Fig. 5(a). Here two stiff bars transfer displacements of the test masses, produced by the

GW signal, to end mirrors of the standard Fabry-Pérot—Michelson interferometer. In

principle, in this case the arms length Larm [which appears in Eq. (36)], can be much

longer than the cavities length Lcav (which appears in Sx), and the optical power in

the interferometer can be reduced proportionally to Lcav/Larm without loss of the

sensitivity.

The “only” necessary condition here is that the bars rigidity K has to be strong

enough to provide the lowest mechanical eigenfrequency higher than the signal fre-

quency Ω. Of course, for kilometer-scale arms of modern GW detectors, this condition

can not be fulfilled using ordinary solid-state bars. However, they can be replaced by

two new long Fabry-Pérot cavities, where, using an additional detuned pumping, the

optical spring can be created [38,39,36], see Fig. 5(b). In essence, this is the so-called

local readout topology considered in [41].

The first proposed intracavity readout scheme, the optical bars one [42], was based

on the same principle. It is shown in Fig. 5(c). Here optical springs are created in the

system of two cavities CE1 and CE2 coupled by means of partly transparent central

mirror C. Optical eigenfrequencies of this system form a set of doublets, with frequencies

in each doublet separated by the sloshing frequency

ΩB =
c
√
TC

L
, (37)

where TC is the central mirror power transmissivity. If the upper frequency mode of

some of the doublets is pumped then optical field acts as two springs one of which is

located between the mirrors E1 and C and the second one (L-shaped) — between the

mirrors E2 and C, with the rigidities equal to

K(Ω) ≈ 4ωoI
bar
c

Lc

ΩB

Ω2
B −Ω2

, (38)

where Ibar
c is the optical power circulating in each of these cavities. Similar to previous

two schemes, these springs transfer displacement of the end mirrors E1, E2, produced

by the GW signal, to the central mirror C1 displacement. This displacement, in turn,

has to be monitored by attaching local meter to it, which plays the role of the central

interferometer in schemes of Figs. 5(a,b).

Mechanical dynamics of the optical bars system, with its three movable mirrors

coupled by means of frequency-dependent rigidity (38), is quite sophisticated. Depend-

ing on mirrors masses, optical power Ibar
C and sloshing frequency ΩB , it can have two

resonances (the mechanical and the optical ones [36]), or one second-order resonance

[39], which can significantly increase the central mirror signal displacement in narrow

band. However, in typical broadband regimes with flat mechanical transfer function,

which are more interesting for GW experiments, the signal displacements of the central

mirror meter is equal to displacement of the end mirrors:

xs(Ω) =
ME

2ME +MC
Lh(Ω) , (39)

where h(Ω) is the GW signal (see the next subsection for more detail).

In the article [43] an improved version of the optical bars scheme, which allows to

increase xs, was proposed. It differs from the original one by two additional mirrors I1
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and I2, see Fig. 5(d), which turn the arms into two Fabry-Pérot cavities. This scheme

was called optical lever because the signal displacement gain which it provides is similar

to the one which can be obtained by ordinary mechanical lever with arms lengths ratio

equal to

z =
2

π
F , (40)

where F is the finesse of these Fabry-Pérot cavities. With this addition, Eq. (39) takes

the following form:

xs(Ω) =
zMarm

2Marm + z2MC
Lh(Ω) , (41)

where

Marm =
MEMI

ME +MI
(42)

is the reduced mass of the new arm cavities mirrors.

4.2 The optical bars regimes

It follows from this consideration, that the optical bars approach allows to replace the

task of measurement of tiny variations of relative position of test masses separated by

kilometers-scale distances by much more easy task of measurement of the same or, in

the optical lever case, even amplified displacements of test masses located close to each

other (the central mirror C relative to a reference object placed outside of the optical

field).

The evident price is the additional long cavities where optical bars have to be

created. The optical power requirements for these cavities were estimated in Sec. 4 of

paper [44]. Assuming, that the central mirror mass is sufficiently small:

MC <
Marm

z2
. (43)

which maximizes its signal displacement, and signal frequencies are below the sloshing

frequency: Ω < ΩB , three working regimes are available, depending on the optical

power.

Strong pumping:

K(0) =
4ωoI

bar
c

LcΩB
> MarmΩ

2 . (44)

In this regime, optical bars work as absolutely stiff rods, transfering 100% of signal

displacement of the end mirror to the central one [see Eqs. (39, 41)], and vice versa,

the local meter back action force from the central mirror to the end ones. The simplest

option for the local meter in this case is just an ordinary position meter with the

sensitivity correponding to the SQL for the equivalent mass Marm/z2:

Slocal
x (Ω) ' 2~z2

MarmΩ2
. (45)

Due to amplification factor z, the net sensitivity in this case corresponds to the SQL

for the mass Marm:

Sx(Ω) ' 2~
MarmΩ2

. (46)
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Of course, using a QND local meter with sub-SQL sum noise, proportionally better

sensitivity can be obtained.

The optical power required to create such stiff optical bars is relatively high. It

follows from Eq. (44), that there has to be

Ibar
c >

MarmLcΩ
3
B

4ωo
. (47)

The right hand side is equal to ISQL
c of the interferometer with the same arms length,

mirrors mass, and with the bandwidth γ equal to ΩB , see Eq. (5). It is important,

however, that Ibar
c does not depend on the required sensitivity (which is defined by

the local meter), while in the ordinary topologies, the power increases as square of the

signal displacement which has to be detected, see, e.g., Eqs. (9, 27).

Intermediate pumping:

z2MCΩ
2 < K(0) =

4ωoI
bar
c

LcΩB
< MarmΩ

2 . (48)

This regime, being the most interesting one, was considered in detail in paper [45].

Here, the optical bars are stiff enough to provide Eqs. (39, 41), but not enough to

transfer the local meter back action force to the heavy end mirrors. As a result, the

local meter “sees” an additional back action noise. However, this noise can be excluded

from the local meter output signal using frequency-independent cross correlation of

the measurement and back-action noises. This kind of the noises correlation can be

created relatively easy using homodyne detector with properly set homodyne angle ζ

to measure local meter output signal. In this case, the same sensitivity (46) as in the

previous case can be obtained, but with significantly less optical power in the “optical

bar” cavities. Similar to the previous case, a QND local meter with sub-SQL sum noise

will be able to provide proportionally better sensitivity.

It was shown in paper [45], that the most fundamental limitation on optical power

in this regime is imposed by the power fluctuations in the “optical bar” cavities, created

by the optical losses. Perturbation of the central mirror position by the random force,

produced by these fluctuations, is characterized by the following spectral density:

Sloss '
~Lc

4ωoIbar
c

γ . (49)

This equation has the the structure similar to the displacement noise spectral densities

Sx of “ordinary” interferometers, with γ replaced by some frequency dependent factor

of the same order of magnitude. However, in the latter case, there has to be γ & ΩGW,

where ΩGW ∼ 10 - 100 s−1 is characteristic GW signal frequency, while in former one,

γ is limited only by the optical losses in the arm cavities:

γ =
cA2

4L
(50)

and, for L ∼ 10 km and A2 ∼ 10−5, can be as small as γ ∼ 0.1 s−1. This bandwidth

corresponds to the 2 - 3 orders of magnitude smaller value of the noise spectral density

for the same optical power, or, alternatively, to 2 - 3 orders of magnitude lower optical

power for the same spectral density.
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Fig. 6 Left: practical version of the optical lever intracavity scheme. Right a possible topology
of the local meter.

Weak pumping:

K(0) =
4ωoI

arm
c

LcΩB
< z2MCΩ

2 . (51)

In this regime, central mirror signal displacent does not reach the level of Eqs. (39, 41).

Therefore, more sensitive QND local meter is required. Taking also into account that

reduced optical power means increased noise (49), it can be concluded that at present

this regime can not be considered as interesting one.

4.3 Implementation issues

It follows from the above estimates, that central mirror C, while being relatively small,

has to tolerate significant incident optical power. In case of the original optical bars

scheme, the reasonable mass of this mirror can be few kilograms, and the optical power

— up to hundreds of kilowatts. In the optical lever scheme, light power impinging on

central mirror is z times smaller, but the mass has to be z2 lighter (down to sub-gram

range). However, the power which passes through the central mirror can be radically

decreased by using the mirror with both surfaces carrying reflective coatings. The short

Fabry-Pérot cavity formed by these two coatings has to be tuned in anti-resonance. In

this case, the amplitude transmissivity of this mirror will be equal to the square of one

coating transmissivity, and power inside the mirror will be reduced by the factor equal

to finesse of this cavity.

Some other implementation issues were addressed in paper [46], where more prac-

tical version of the optical lever intracavity topology, shown in Fig. 6, was considered.

The following improvements were proposed.

Symmetrization of the topology. The evident disadvantage of simple schemes shown

in Fig. 5(c,d) is their asymmetry: pumping power enters the “north” (vertical on the

picture) arm first and only then, through the coupling mirror C, the “east” one. Due

to this asymmetry the input optical field amplitude fluctuations will create differential
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pondermotive force acting on the central mirror and imitating gravitational-wave sig-

nal. In order to eliminate this effect, symmetric power injection scheme has to be used.

It consists of the beamsplitter BS and two power injection mirrors D1 and D2 placed

symmetrically on both sides of the central mirror C.

Power recycling mirrors. Without power recycling mirrors P1, P2 one quarter of input

power is reflected from the mirrors D1 and D2 back to the laser, another quarter is

reflected to the side direction, and only one half enters the scheme. The mirrors P1, P2

cancel both reflected beams and increase twice the circulating power inside the scheme,

for the same value of input power.

Signal recycling mirror. The power injection mirrors D1,2 transmittances create an

additional source of optical losses in the scheme. It can be removed using symmetry of

the scheme. Indeed, similar to traditional interferometric gravitational-wave detectors

topology, the mean value of optical power circulating inside the scheme depends on the

bandwidth of the symmetric optical mode which is coupled to the “western” port of the

beamsplitter, and the detector sensitivity depends on the bandwidth of anti-symmetric

mode which is coupled to “south” port of the beamsplitter. The only difference is that in

traditional topology the anti-symmetric mode bandwidth has to be close to the signal

frequency Ω to provide optimal coupling to photodetector, while in the intracavity

topology it has to be as small as possible. Therefore, high-reflectivity signal recycling

mirror S has to be placed in the “south” port as shown in Fig. 6.

5 Discussion

Our estimates show that use of speed meter topology could provide at least two to

threefold reduction of quantum noise level in relatively wide frequency band with re-

spect to the level of free mass Standard Quantum Limit, with this limitation mostly

owing to optical losses in readout photodetectors. Using injection of squeezed vacuum

into the interferometer dark port, it is possible to overcome the SQL by 4-5 times, but

in narrower band of frequencies (see formula (15) and the discussion thereunder). Opti-

cal losses in arm and filter cavities for variational readout schemes, though being order

or two of magnitude lower than those of photodetectors, show up in low frequencies

due to the inherent frequency dependence they enter the final quantum noise spectral

density, thus limiting the useful frequency bandwidth of the interferometer.

However, as we have shown variational speed meter is less succeptible to this loss

source than the position meter, thus making the former evident candidate for implen-

mentation, given the traditional Michelson-like topology and only slight deviation from

well established and robust techniques of the first generation detectors are chosen as a

strategy of development towards the third generation devices. Worth noting is the fact,

that due to the flat low-frequency behavior of the speed meter quantum noise spectral

density, even modest SQL-beating factor leads to a huge sensitivity gain compared

to conventional SQL-limited interferometers, see for example Fig. 4, where this gain

reaches two orders of magnitude.

An important issue is the optical power that has to circulate in the interferometers

to achieve sub-SQL sensitivity. It depends sharply (as ∼ Ω3) on the signal frequency

Ω (in part, because the free mass SQL for GW signal h (and displacement x) itself
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depends on frequency as ∼ Ω−1) and could potentially be a serious problem for de-

tectors, targeted at higher frequencies. The evident way to relax this requirement is to

use squeezing. However, this solution is also severely limited by optical losses in pho-

todetectors, deteriorating injected light squeeze factor as a result of mixing with loss

related vacuum fields. For example, moderate optimistic value of the unified quantum

efficiency η = 0.95 limits the effective squeeze factor to . 13 dB.

Another possibility to increase sensitivity we consider here is to use intracavity

readout schemes. The main advantage of these schemes is that their sensitivity can

be increased without increase of optical power. Only some fixed threshold value of

the power is required in order to create sufficienly stiff optical springs. This value is

governed mainly by optical losses and can be much smaller than ISQL
c . The gain in

the optical power is proportional to the ratio of interferometer bandwidths required for

ordinary and intracavity readout schemes respectively. In the first case, the bandwidth

has to be of the same order of magnitude as the desired GW signal band, namely

10 - 100 s−1. In the second one, it is limited only by the mirrors absorption and can be

as small as 0.1 s−1 [see discussion around equation (49)].

An important implementation advantage of the intracavity schemes is that costly

part of the setup, namely kilometer-scale optical cavities, is, in essence, nothing more

than a simplified version of the “ordinary” signal-recycled interferometer without any

readout optics, except for those used for the scheme locking. On the other hand, the

the intracavity scheme performance is mostly defined by the sensitivity of its second,

cheaper because of small size, but completely not developed part: the local meter. It

is easy to see, that in the flat sentitivity area Ω < ΩB , the SQL beating factor of the

whole scheme is equal to one of the local meter. Therefore it has to make use of some

QND technique described in our review, or others not mentioned here due to limited

scope of this article.

Another important issue is classical noises in the local meter. On the one hand,

smaller test mass means increased suspension and mirror surface noises (due to smaller

laser beam radius). On the other hand, the optical lever topology allows to increase

the signal displacement of the mirror. This issue was discussed briefly in the paper [40],

where it was shown that reducing the mirror mass at least does not degrade the signal

to noise ratio.

It is not obligatory for the local meter to be an optical device, moreover it could

be a SQUID-based microwave QND-meter, like speed meters of [23,24], or some other

high precision superconductive sensor. More traditional for laser gravitational-wave

detectors optical sensors with time-domain variational readout (see [46] and references

therein) could also be considered as an options.

An interesting intermediate variant which does not differ so radically from tradi-

tional schemes is a detuned signal-recycled Michelson interferometer where the differ-

ential motion of the end mirrors is coupled to the differential motion of the input ones

by the optical springs, and the input mirrors motion is monitored by means of the

second pump (the local readout scheme [41]). If the output port of the main interfer-

ometer is closed, then Eqs. (38, 39) also hold with ΩB replaced by optical resonance

frequency [36], Ibar
c by Ic, MC by the mass of the input mirrors and ME by the reduced

mass of the end mirrors.

Summing up, we can conclude that intracavity schemes can potentially beat the

SQL by larger factor than more traditional extracavity detectors using much smaller

circulating optical power, given substantial research effort is put on development of

high precision small scale local meter.
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