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Significant achievements in high-sensitivity measurements will soon allow us to probe quantum
behaviors of macroscopic mechanical oscillators. In a recent work [arXiv: 0903.0079], we formulated
a general framework for treating preparation of Gaussian quantum states of macroscopic oscillators
through linear position measurements. To outline a complete procedure for testing macroscopic
quantum mechanics, here we consider a subsequent verification stage which probes the prepared
macroscopic quantum state and verifies the quantum dynamics. By adopting an optimal time-
dependent homodyne detection in which the phase of the local oscillator varies in time, the condi-
tional quantum state can be characterized below the Heisenberg limit, thereby achieving a quantum
tomography. In the limiting case of no readout loss, such a scheme evades measurement-induced back
action, which is identical to the variational-type measurement scheme invented by Vyatchanin et al.
but in the context for detecting gravitational waves. To motivate macroscopic quantum mechan-
ics experiments with future gravitational-wave detectors, we mostly focus on the parameter regime
where the characteristic measurement frequency is much higher than the oscillator frequency and
the classical noises are Markovian, which captures the main feature of a broadband gravitational-
wave detector. In addition, we discuss verifications of Einstein-Podolsky-Rosen-type entanglement
between macroscopic test masses in future gravitational-wave detectors, which enables us to test
one particular version of gravity decoherence conjectured by Diósi and Penrose.

I. INTRODUCTION

Due to recent significant advancements in fabricating
low-loss optical, electrical and mechanical devices, we will
soon be able to probe behaviors of macroscopic mechani-
cal oscillators in the quantum regime. This will not only
shed light on quantum-limited measurements of various
physical quantities, such as a weak force, but also help us
to achieve a better understanding of quantum mechanics
on macroscopic scales.

As a premise of investigating macroscopic quantum
mechanics (MQM), the mechanical oscillator should be
prepared close to be in a pure quantum state. To achieve
this, there are mainly three approaches raised in the lit-
erature: (i) The first and the most transparent approach
is to cool down the oscillator by coupling it to an ad-
ditional heat bath that has a temperature Tadd much
lower than that of the environment T0. As a result, the
oscillator will achieve an effective temperature given by
Teff = (T0 γm+Tadd Γadd)/(γm+Γadd) with γm and Γadd

denoting the damping due to coupling to the environ-
ment and the additional heat bath, respectively. In the
strong-damping regime with Γadd ≫ γm, we achieve the
desired outcome with Teff ≈ Tadd. Since the typical op-
tical frequency ω0 can be much higher than kBT0/~, a
coherent optical field can be effectively served as a zero-
temperature heat bath. Indeed, by coupling an oscillator
parametrically to an optical cavity, many state-of-the-
art experiments have demonstrated significant cooling of
the oscillator, achieving a very low thermal occupation
number [1–16]. Similar mechanism also applies to the
electromechanical system as demonstrated in the exper-

iments [17–19]; (ii) The second approach is to introduce
additional damping via feedback, i.e., the so-called cold-
damping. The feedback loop modifies the dynamics of
the oscillator in a way similar to the previous cooling
case. Such an approach has also been realized experi-
mentally [20–22]. If the intrinsic mechanical and elet-
rical/optical qualities of the coupled system are high,
those cooling and cold-damping experiments can even-
tually achieve the quantum ground state of a mechani-
cal oscillator [23–28]; (iii) The third approach is to con-
struct a conditional quantum state of the mechanical os-
cillator via continuous position measurements. Quantum
mechanically, if the oscillator position is being contin-
uously monitored, a certain classical trajectory in the
phase space can be mapped out, and the oscillator is
projected into a posteriori state [29] which is also called
a conditional quantum state [30–35]. Given an ideal con-
tinuous measurement without loss, the resulting condi-
tional quantum state of the oscillator is a pure state.

Recently, we theoretically investigated the third ap-
proach for general linear position measurements in great
details [35]. The analysis of this work is independent
of the scale and mass of the oscillator — these parame-
ters will only modify the structure of arising noises. In
particular, we applied our formalism to discuss MQM
experiments with macroscopic test masses in future
gravitational-wave (GW) detectors. We demonstrated
explicitly that given the noise budget for the design sen-
sitivity, next-generation GW detectors such as Advanced
LIGO [36] and Cryogenic Laser Interferometer Observa-
tory (CLIO) [37] can prepare nearly pure Gaussian quan-
tum states and create Einstein-Podolsky-Rosen-type en-
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FIG. 1: (Color online) A schematic plot of a Wigner function
W (x, p) (left) and the corresponding uncertainty ellipse for
the covariance matrix Vcond (can be viewed as a projection
of the Wigner function). The center of the plot is given by
the conditional mean (xcond, pcond). The Heisenberg limit is
shown in a unit circle with radius given by the zero-point fluc-
tuation ~/(2mωm). For a pure Gaussian conditional quantum
state, the area of the ellipse, i.e., π detVcond/(2mωm)2, is also
equal to that of Heisenberg limit. Therefore, the uncertainty
product detVcond can be served as an appropriate figure of
merit for quantifying purity of a quantum state.

tanglement between macroscopic test masses. Besides,
we showed that the free-mass Standard Quantum Limit

(SQL) [38–40] for the detection sensitivity

SSQL
x (Ω) =

2~

mΩ2
, (1)

where m is mass of the probing test mass and Ω is the
detection frequency, also serves as a benchmark for MQM
experiments with GW detectors.
More concretely, a Gaussian conditional quantum state

is fully described by its Wigner function as shown
schematically in Fig. 1. It is given by

W (x, p) =
1

2π
√

detVcond
exp

[

−1

2
~XVcond−1 ~XT

]

.

(2)

Here ~X = [x− xcond, p− pcond] with xcond and pcond de-
noting conditional means of oscillator position x and mo-
mentum p, and Vcond is the covariance matrix between
position and momentum. Purity of the conditional quan-
tum state can be quantified by the uncertainty product
which is defined as

U ≡ 2

~

√
detVcond =

2

~

√

V cond
xx V cond

pp − V cond
xp

2
(3)

which is also proportional to square root of the area of
the uncertainty ellipse as shown in Fig. 1. In Ref. [35],
we related this uncertainty product U of the conditional
quautum state of test masses in GW detectors to the
SQL-beating ratio of the classical noise, and the amount
of entanglement between test masses to the size of the
frequency window (ratio between upper and lower ends
of that frequency window) in which the classical noise
goes below the SQL.
A state-preparation stage alone does not provide a

complete test of MQM. This is because the measurement
data in the state-preparation process only allow us to

FIG. 2: (Color online) A schematic plot of random walk of
the conditional quantum state, i.e., its Wigner function, in
the phase space. Its center is given by the conditional mean
[xcond(t), pcond(t)], with the uncertainty given by conditional
variances V cond

xx,pp,xp. To verify the prepared conditional quan-
tum state, the only knowledge that verifier needs to know is
classical information of the conditional mean provided by the
preparer if noises are Markovian.

measure a classical trajectory of the oscillator – quantum
fluctuations are only inferred from the noise budget, but
not directly visible. Therefore, the resulting conditional
quantum state critically relies on the noise model of the
measurement device. If such noise model is imprecise, it
will yield severe discrepancies between the actual quan-
tum state and the conditional one. Therefore, it calls
for a second measurement stage which has to follow up
the preparation stage. In this paper, we will address the
above issue by considering a subsequent state-verification
procedure, in which we make a tomography of the con-
ditional quantum state obtained during the preparation
stage. On the one hand, this verification stage can serve
as a check of the specific noise model to verify the pre-
pared quantum state. On the other hand, if we insert an
evolution stage with the oscillator evolving freely before
the verification, the quantum dynamics of the oscillator
can also be probed, which allows us to study different de-
coherence effects and also check whether a macroscopic
mechanical oscillator does evolve in the same way as a
quantum harmonic oscillator or not.
Since the conditional quantum state undergoes a ran-

dom walk in the phase space as shown schematically in
Fig. 2, classical information of the conditional mean, ob-
tained by the preparer from the measurement data, needs
to be passed onto the verifier who will then proceed with
a tomography process. Suppose the state preparation
stage ends at t = 0 and the preparer obtain a conditional
quantum whose Wigner function is W (x(0), p(0)). The
task of the verifier is trying to reconstruct this Wigner
function by synthesizing marginal distributions of differ-
ent mechanical quadratures X̂ζ(0) from ensemble mea-
surements at t > 0, and

X̂ζ(0) ≡ x̂(0) cos ζ +
p̂(0)

mωm
sin ζ, (4)

where x̂(0) and p̂(0) denote oscillator position and mo-
mentum at t = 0 and ωm is the oscillation frequency.
This process is similar to the optical quantum tomog-
raphy where different optical quadratures are measured
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FIG. 3: (Color online) A schematic plot of the uncertainty
ellipses of reconstructed states with the same prepared Gaus-
sian quantum state but different levels of verification accu-
racy, which shows the necessity of a sub-Heisenberg accu-
racy. The center of the plot is given by the conditional mean
(xcond, pcond). The shaded regimes correspond to the verifica-
tion accuracy. The Heisenberg limit is shown by a unit circle.
The dashed and solid ellipses represent the prepared state and
the reconstructed states respectively.

with homodyne detections [41]. However, there is one sig-
nificant difference — mechanical quadratures are not di-
rectly accessible with linear position measurements which
measure

x̂q(t) = x̂(0) cosωmt+
p̂(0)

mωm
sinωmt, (5)

rather than X̂ζ . To probe mechanical quadratures, we
propose the use a time-dependent homodyne detection
with the local-oscillator phase varying in time. Given a
measurement duration of Tint, we can construct an inte-
gral estimator, which reads

X̂ =

∫ Tint

0

dt g(t) x̂(t) ∝ x̂(0) cos ζ′ +
p̂(0)

mωm
sin ζ′ (6)

with cos ζ′ ≡
∫ Tint

0
dt g(t) cosωmt and sin ζ′ ≡

∫ Tint

0
dt g(t) sinωmt. Therefore, a mechanical quadrature

X̂ζ′ is probed [cf. Eq. (4)]. Here g(t) is some filtering
function, and it is determined by the time-dependent ho-
modyne phase and also the way how data at different
time are combined.
The ability to measure mechanical quadratures does

not guarantee success of a verification process. In or-
der to recover the prepared quantum state, it requires a
verification accuracy below the Heisenberg limit. Phys-
ically, the output of the verification process is a sum of
the mechanical-quadrature signal and some uncorrelated
Gaussian noise. Mathematically, it is equivalent to ap-
plying a Gaussian filter onto the original Wigner function
W (x, p) of the prepared state [43], and thus the recon-
structed Wigner function is

Wrecon(x, p) =

∫ ∞

−∞

dx′dp′ ψ(x− x′, p− p′)W (x′, p′) (7)

where the Gaussian filter ψ(x, p) is given by

ψ(x, p) ≡ 1

2π
√
detVadd

exp

[

−1

2
~ξVadd−1~ξT

]

(8)

FIG. 4: (Color online) Values of reconstructed Wigner func-
tions on the p = 0 plane, i.e., Wrecon(x, p = 0), for a single-
quantum state, obtained at different levels of verification ac-
curacy. Solid curve shows the ideal case with no verifica-
tion error. Dashed and dotted curves correspond to the cases
with a verification error of 1/4 and 1/2 of the Heisenberg
limit, respectively. The negative regime (shaded) or the non-
classicality vanishes as the verification error increases. This
again manifests the importance of a sub-Heisenberg verifica-
tion accuracy.

with ~ξ = [x, p] and Vadd denoting the covariance matrix
for the added verification noise. If the prepared quan-
tum state is Gaussian, using the property of Gaussian
integration, the reconstructed Wigner function reads

Wrecon(x, p) =
1

2π
√
detVrecon

exp

[

−1

2
~ξVrecon−1~ξT

]

,

(9)
and the covariance matrix Vrecon is

Vrecon = Vcond +Vadd. (10)

In Fig. 3, we show schematically the effects of different
levels of verification accuracy given the same prepared
conditional quantum state. A sub-Heisenberg accuracy,
with an error area smaller than the Heisenberg limit, is
essential for us to obtain a less distorted understanding
of the original prepared quantum state. In addition, if
the prepared quantum state of the mechanical oscillator
is non-Gaussian [44–48], a sub-Heisenberg accuracy is a
necessary condition for unveiling the non-classicality of
the quantum state as shown schematically in Fig. 4 and
proved rigorously in the Appendix A.
Verifications of quantum states below the Heisenberg

limit also naturally allow us to test whether entanglement
between two macroscopic test masses in GW detectors
can indeed be established, as predicted in Ref. [34, 35],
and how long such entangled state can survive. Survival
of macroscopic entanglement can test one particular ver-
sion of gravity decoherence conjectured by Diósi [49] and
Penrose [50]. For an individual object, it is not entirely
clear the classical superposition of what pointer states
gravity decoherence will drive it into. For an entangled
state among multiple objects, even though Gaussian, it
would naturally have to decay into the one that is not
entangled, within the gravity decoherence timescale.
As we will show, in order to achieve a sub-Heisenberg

accuracy, we need to optimize the local-oscillator phase
of the time-dependent homodyne detection as well as
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the weight with which data collected at different time
will be combined. If there is no readout loss, this opti-
mization automatically will give a detection scheme that
evades measurement-induced back action, the same as
the variational-type measurement scheme proposed by
Vyatchanin and Matsko [42] for detecting gravitational-
wave signals with known arrival time. Since in a single
measurement setup, different quadratures do not com-
mute with each other, namely

[X̂ζ , X̂ζ′ ] =
i ~

mωm
sin(ζ − ζ′), (11)

one needs multiple setups and each makes ensemble mea-
surements of one particular quadrature X̂ζ with a sub-
Heisenberg accuracy – the synthesis of these measure-
ments yields a quantum tomography.
As a sequence to Ref. [35] and to motivate MQM ex-

periments with future GW detectors, we will also focus
on the same parameter regime where the characteristic
measurement frequency is much higher than the oscil-
lator frequency and the oscillator can be treated as a
free mass. In addition, we will consider situations where
the spectra of the classical noise can be modeled as be-
ing white. Non-Markovianity of noise sources – although
they certainly arise in actual GW detectors [35] and will
be crucial for the success of a real experiment — is a
rather technical issue. The non-Markovianity will not
change the results presented here significantly, as we will
show and address in a separate paper [51].
This paper is organized as follows: in Sec. II, we will

formulate the system model mathematically by writing
down the Heisenberg equations of motion; in Sec. III,
we will provide a timeline for a full MQM experiment
with preparation, evolution and verification stages, and
use simple order-of-magnitude estimates to show that
this experimental proposal is indeed plausible; in Sec. V,
we will evaluate the verification accuracy in the pres-
ence of Markovian noises (largely confirming the order-of-
magnitude estimates, but with precise numerical factors);
in Sec. VI, we will consider verifications of macroscopic
quantum entanglement between test masses in GW de-
tectors as a test of gravity decoherece; in Sec. VII, we will
summarize our main results. In the Appendix, we will
present mathematical details for solving integral equa-
tions that we encounter in obtaining the optimal verifi-
cation scheme.

II. MODEL AND EQUATIONS OF MOTION

In this section, we will present a mathematical descrip-
tion of the system model, as shown schematically in the
upper left panel of Fig. 5. The oscillator position is lin-
early coupled to coherent optical fields through radiation
pressure. Meanwhile, information of the oscillator posi-
tion flows into the outgoing optical fields continuously.
This models a measurement process in an optomechan-
ical system without a cavity or with a large-bandwidth

cavity. The corresponding Heisenberg equations, valid
for both preparation and verification stages, are formally
identical to classical equations of motion except for that
all quantities are Heisenberg operators. The oscillator
position x̂ and momentum p̂ satisfy the following equa-
tions:

˙̂x(t) = p̂(t)/m, (12)

˙̂p(t) = −2γmp̂(t)−mω2
mx̂(t) + α â1(t) + ξ̂F (t). (13)

Here α â1 corresponds to the quantum-radiation-pressure
noise or so-called back-action noise; α ≡ (~mΩ2

q)
1/2 =

(8 I0 ω0 ~/c
2)1/2 is the coupling constant between the

oscillator and optical fields with I0 denoting the op-
tical power and Ωq quantifying the characteristic fre-
quency of measurement strength. We have included the
fluctuation-dissipation mechanism of the mechanical os-
cillator by introducing the mechanical damping rate γm
and classical-force noise ξ̂F , i.e., the Brownian thermal
noise. In the Markovian limit, the correlation function

for ξ̂F is given by 1

〈ξ̂F (t) ξ̂F (t′)〉sym = Sth
F δ(t− t′)/2 (14)

where Sth
F = 4mγmkBT0 ≡ 2~mΩ2

F and we have defined
a characteristic frequency ΩF for the thermal noise.
The amplitude and phase quadratures of ingoing op-

tical fields â1,2 and of outgoing optical fields b̂1,2 satisfy
the following input-output relations:

b̂1(t) =
√
η n̂1(t) +

√

1− η â1(t), (15)

b̂2(t) =
√
η n̂2(t) +

√

1− η
[

â2(t) +
α

~
x̂(t) +

α

~
ξ̂x(t)

]

.

(16)

Here n̂1,2 originate from nonunity quantum efficiency of
the photodetector for η > 0. In the paraxial and narrow-
band approximation, â1,2 are related to the electrical-
field strength at the central frequency ω0 by [52–54]:

Ê(t) ≡
(

4π~ω0

S c

)1/2

{[ā+ â1(t)] cosω0t+ â2(t) sinω0t}
(17)

with ā denoting the classical amplitude and S standing
for the effective cross-section area of the laser beam. A
similar relation also holds for the outgoing fields b̂1,2.

In addition, they satisfy [â1(t), â2(t
′)] = [b̂1(t), b̂2(t

′)] =
i δ(t− t′). Their correlation functions read

〈âi(t) âj(t′)〉sym = δije
±2qδ(t− t′)/2, (i, j = 1, 2) (18)

1 Here 〈 〉sym stands for a symmetrized ensemble average. For a
system characterized by a density matrix ρ̂, it is defined as

〈ô1(t) ô2(t
′)〉sym ≡ Tr

{

[ô1(t)ô2(t
′) + ô2(t

′)ô1(t)]ρ̂
}

/2 .
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FIG. 5: A schematic plot of the system (upper left panel) and the corresponding spacetime diagram (right panel) showing
the timeline of the proposed MQM experiment (see Sec. IIIA for detailed explanations). In this schematic plot, the oscillator
position is denoted by x̂ which is coupled to the optical fields through radiation pressure. The ingoing and outgoing optical
fields are denoted by â1,2 and b̂1,2 with subscripts 1, 2 for the amplitude and phase quadratures, respectively. In the spacetime
diagram, the world line of the oscillator is shown by the middle vertical line. For clarity, ingoing and outgoing optical fields are
represented by the left and right regions on the different sides of the oscillator world line, even though in reality, optical fields
escape from the same side as where they enter. We show light rays during preparation and verification stages in red and blue.
In between, the yellow shaded region describes the evolution stage with light turned off for a duration of τE. The conditional
variance of the oscillator motion is represented by the shaded region alongside the central vertical line (not drawn to the same
scale as light propagation). At the beginning of preparation, the conditional variance is dominated by that of the initial state
(orange). After a transient, it is determined by incoming radiations and measurements. Right after state preparation, we show
the expected growth of the conditional variance due to thermal noise alone, and ignoring the effect of back-action noise which
is evaded during the verification process. The verification stage lasts for a duration of τV , and it is shorter than τF after which
the oscillator will be dominated by thermalization.

where q denotes the squeezing factor (q = 0 for a vacuum-
state input) with “+” for the amplitude quadrature and
“−” for the phase quadrature. Correspondingly, the cor-
relation function for the back-action noise α â1 is simply

〈α â1(t)α â1(t′)〉sym = SBA
F δ(t− t′)/2 (19)

with SBA
F ≡ e2q~mΩ2

q. In Eq. (16), ξ̂x is the sensing
noise. One example is the internal thermal noise, and it
is defined as the difference between the center of mass
motion and the surface motion of the oscillator which is
actually being measured. In the Markovian approxima-
tion, it has the following correlation function:

〈ξ̂x(t) ξ̂x(t′)〉sym = Sth
x δ(t− t′)/2 (20)

where Sth
x = ~/(mΩ2

x) and we introduce a characteristic
frequency Ωx for the sensing noise.
Note that the Ωq, ΩF , and Ωx that we have introduced

are also the frequencies at which the back-action noise,
thermal noise and sensing noise intersect the SQL [cf.
Eq. (1)], respectively. They are identical to what were
introduced in Ref. [35]. For conveniences of later discus-
sions, we introduce the following dimensionless ratios:

ζF = ΩF /Ωq, ζx = Ωq/Ωx. (21)

In addition, we define two characteristic timescales for
the measurement and thermal-noise strength as

τq ≡ 1/Ωq , τF ≡ 1/ΩF . (22)

III. OUTLINE OF THE EXPERIMENT WITH
ORDER-OF-MAGNITUDE ESTIMATE

In this section, we will describe in details the timeline
of a plausible MQM experiment (subsection IIIA) and
provide order-of-magnitude estimates of the conditional
variance of the prepared quantum state, the evolution of
the prepared quantum state, and the verification accu-
racy in the free-mass regime (subsections III B, III C and
IIID). This will provide qualitatively the requirements
on the noise level for the success of a MQM experiment.
We will give more rigorous treatments in the next section.

A. Timeline of proposed experiment

We have sketched a space-time diagram for the pro-
posed MQM experiment in the right panel of Fig. 5 —
with time going upward, therefore we start from the bot-
tom of the figure.
Lock Acquisition. At the beginning, the mechanical os-
cillator is in a highly mixed state, so are the optical
fields. Therefore, the first step is to “acquire lock” of the
measurement device, and reach a steady-state operation
mode, during which several τq will have elapsed. From
this time and on, initial-state information will have been
forgotten (propagating outward within the green strip),
and the state of the oscillator will be determined by the
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driving fields, including the classical-force noise and sens-
ing noise, as well as the quantum noise. This will be the
start of the state-preparation stage (region above the 45◦

green strip).

State Preparation. This stage is a steady-state opera-
tion of the measurement device. The quantum state of
the oscillator is collapsed continuously due to homodyne
readouts of the photocurrent. At any instant during state
preparation, based on the measured history of the pho-
tocurrent (mostly on data within several times τq to the
past of t), the conditional expectation (xcond, pcond) for
the oscillator position x̂ and momentum p̂ can be con-
structed. The second moments, describable by the co-
variance matrix between position and momentum, which
consists of V cond

xx , V cond
xp and V cond

pp , can be calculated
from the noise model of the measurement device — they,
together with xcond and pcond, fully determine the quan-
tum state, i.e., the Wigner function of the oscillator at
any instant [cf. Eq. (2)]. For a Gaussian steady state, the
construction of (xcond, pcond) and conditional covariance
matrix from the history of the photocurrent can be ac-
complished most easily using Wiener Filtering, as shown
in Ref. [35].

The preparation stage terminates at t = 0, when
(xcond, pcond) and covariance matrix will be determined
by data from several −τq up to 0 as shown by the red
strip.

State Evolution. If we want to investigate the quantum
dynamics of the oscillator and study various decoherence
effects, we can delay the verification process and allow the
oscillator to freely evolve with the interaction light turned
off (represented by the yellow strip). During this period,
the thermal noise will induce diffusions of the oscillator
position and momentum, thus increasing the conditional
variance as shown schematically by broadening of the
shaded region alongside the oscillator world line. If there
were any additional decoherence effect, the variance will
grow faster than the case with the thermal decoherence
alone. A follow-up verification allows us to check whether
additional decoherence mechanisms, such as the gravity
decoherence conjectured by Diósi [49] and Penrose [50],
exist or not.

State Verification. After the evolution stage, the verifi-
cation stage starts (represented by blue strip). We in-
tentionally use different colors to label the preparation
light and verification light — symbolizing the fact that
in principle, a different observer (verifier) could perform
the verification process, and verify the quantum state
by him/herself. The only knowledge from the preparer
would be the conditional expectation xcond and pcond

if all noise sources are Markovian. The verifier uses
a time-dependent homodyne detection and collects the
data from measuring the photocurrents. The verification
process lasts for a timescale of τV between the charac-
teristic measurement timescale τq and the thermal deco-
herence timescale τF , after which diffusions of x̂ and p̂
in the phase space become much larger than the Heisen-
berg limit. Based upon the measurement data, the veri-

fier can construct an integral estimator for one particular
mechanical quadrature [cf. Eq. 6].
The above three stages have to be repeated for many

times before enough data are collected to build up statis-
tics. After finishing the experiment, the verifier will ob-
tain a reconstructed quantum state of the mechanical
oscillator, and then can proceed to compare with the pre-
parer and interpret the results.

B. Order-of-magnitude estimate of the conditional
variance

In this and the following two subsections, we will
provide order-of-magnitude estimates for a three-staged
MQM experiment including preparation, evolution and
verification stages. This gives us physical insights into
different timescales involved in a MQM experiment and
also the qualitative requirements for an experimental re-
alization. We will justify those estimates based upon
more careful treatments in the next several sections.
Based upon the measurement data from several −τq to

0, one can construct a conditional quantum state for the
mechanical oscillator. Suppose that the phase quadra-
ture of the outgoing fields is being measured and the
photodetection is ideal with η = 0. Given a measure-
ment timescale of τ (measuring from −τ to 0), variances
for the oscillator position and momentum at t = 0 in the
free-mass regime with ωm → 0 are approximately equal
to [cf. Eqs. (12), (13), (15) and (16)]

δx2(0)∼Stot
x /τ + τ3Stot

F /m2 ∼ N
3
4
x N

1
4

F δx
2
q , (23)

δp2(0)∼m2Stot
x /τ3 + τStot

F ∼ N
1
4
x N

3
4

F δp
2
q. (24)

Here Stot
F ≡ SBA

F + Sth
F [cf. Eqs. (14) and (19) ] and

Stot
x ≡ Ssh

x +Sth
x with Ssh

x denoting the shot noise due to
â2 [cf. Eqs. (16) and (20)]; we have defined

Nx ≡ 1 + 2 ζ2x , NF ≡ 1 + 2 ζ2F , (25)

while

δx2q ≡ ~/(2mΩq) , δp2q ≡ ~mΩq/2. (26)

The optimal measurement timescale is given by τ ∼ τq.
Purity of the prepared conditional quantum state at t = 0
is approximately equal to [cf. Eq. (3)]

U(0) ∼ 2

~
δx(0) δp(0) ∼ NxNF . (27)

If classical noises are low, namely, Nx ∼ NF ∼ 1, the con-
ditional quantum state will be pure with U(0) ∼ 1. For
future GW detectors such as AdvLIGO, both ζx and ζF
will be around 0.1, and such a low classical-noise budget
clearly allows us to prepare nearly pure quantum states
of the macroscopic test masses.
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FIG. 6: (Color online) Rotation and diffusion of a highly
position-squeezed conditional quantum state prepared by a
strong measurement with Ωq ≫ ωm. The initial-momentum
uncertainty will contribute an uncertainty in the position
comparable to the initial position uncertainty when the evo-
lution duration τE ∼ τq.

C. Order-of-magnitude estimate of state evolution

During the evolution stage, the uncertainty ellipse of
the conditional quantum state will rotate at the mechani-
cal frequency in the phase space, and meanwhile there is a
growth in the uncertainty due to thermal decoherence as
shown schematically in Fig. 6. Given a strong measure-
ment, the variance of the resulting conditional quantum
state in position δx2(0) will be approximately equal to
δx2q as shown explicitly in Eq. (23) with Nx, NF ∼ 1.
It is much smaller than the zero-point uncertainty of
an ωm oscillator, which is given by ~/(2mωm). There-
fore, the conditional quantum state of the oscillator is
highly squeezed in position. The position uncertainty
contributed by the initial-momentum will be comparable
to that of the initial-position uncertainty after a evolu-
tion duration of τq. This can be directly seen from an
order-of-magnitude estimate. In the free-mass regime,

x̂(t) ∼ x̂(0) +
p̂(0)

m
t. (28)

For an evolution duration of τE , the corresponding vari-
ance in position is

δx2(τE) ∼ δx2(0) +
δp2(0)

m2
τ2E ∼ δx2(0)[1 + (ΩqτE)

2].

(29)
The contribution from the initial-momentum uncertainty
(the second term) will become important when ΩqτE ∼ 1
or equivalently τE ∼ τq.
Apart from a rotation, the uncertainty ellipse will also

grow due to thermal decoherence. Variances in the posi-
tion and momentum contributed by thermal decoherence
are approximately given by [cf. Eqs. (12) and (13)]

δx2th(τE) ∼ τ3ES
th
F /m

2 = ζ2F (ΩqτE)
3δx2q , (30)

δp2th(τE) ∼ τE S
th
F = ζ2F (ΩqτE)δp

2
q. (31)

The growth in the uncertainty ellipse will simply be

U th(τE) ∼
2

~
δxth(τE)δpth(τE) ∼ ζ2F (ΩqτE)

2 = (τE/τF )
2.

(32)
When τE > τF , U

th(τE) > 1 and the conditional quan-
tum state will be dominated by thermalization.
If there were any additional decoherence effect, the

growth in the uncertainty will be much larger than what
has been estimated here. A subsequent verification stage
can serve as a check.

D. Order-of-magnitude estimate of the verification
accuracy

To verify the prepared conditional quantum state, the
oscillator position needs to be measured for a finite du-
ration to obtain information about x̂(0) and p̂(0) [cf. Eq.
(5) and (6)] or about x̂(τE) and p̂(τE) if the evolution
stage is inserted. In order for an entire state character-
ization to be possible, one might then expect that an
oscillation period must pass, and during this period, the
thermal noise should cause an insignificant diffusion of
the oscillator momentum compared with its zero-point
uncertainty, which requires [40]

kBT0
~ωm

< Qm (33)

with Qm ≡ ωm/(2γm) denoting the mechanical qual-
ity factor. This requirement is unnecessary if the ini-
tial quantum state is prepared by a strong measurement.
As we have mentioned in the previous subsection, the
resulting condition quantum state is highly squeezed in
position and the initial-momentum uncertainty will make
a significant contribution to the uncertainty in position
after τ > τq. This means, depending on the particular
strategy, one can extract x̂ and p̂ below the levels of δxq
and δpq, respectively, as long as one is able to measure os-
cillator position with an accuracy better than δxq, within
a timescale of several τq. This is certainly possible if the
measurement-induced back action is evaded.
To evade the measurement-induced back action, one

notices the fact that the amplitude quadrature b̂1 con-
tains â1 which is responsible for the back action, and

meanwhile the phase quadrature b̂2 contains the infor-
mation of oscillator position, part of which is contributed
by the back action [cf. Eq. (12)-(16)]. Therefore, if we

measure particular combinations of b̂1 and b̂2 at different
times, by summing up those measurements, we will be
able to cancel the back action and obtain a back-action-
evading (BAE) estimator for a given mechanical quadra-
ture. Such cancelation mechanism is only limited by the
readout loss (η 6= 0), which introduces uncorrelated vac-
uum fluctuations.
We can make an order-of-magnitude estimate to show

that a sub-Heisenberg accuracy can be indeed achieved.
With the BAE technique, the force noise that limits the
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verification accuracy will only contain the thermal-noise
part. Similar to Eqs. (23) and (24) but with Stot

F replaced
by Sth

F , the variances in position and momentum during
the verification stage are simply

δx2V ∼ Stot
x /τ + τ3Sth

F /m
2 ∼ N3/4

x ζ
1/2
F δx2q , (34)

δp2V ∼m2Stot
x /τ3 + τSth

F ∼ N1/4
x ζ

3/2
F δp2q . (35)

Here the optimal verification timescale would be τV ∼
ζ
−1/2
F τq and τq < τV < τF . A summarizing figure of
merit for the verification accuracy is approximately given
by

Uadd|BAE ∼ 2

~
δxV δpV ∼ N1/2

x ζF . (36)

A sub-Heisenberg accuracy can be achieved when ζF < 1.
Note that this error can be arbitrarily small by lowering
ζF indefinitely, i.e., a very strong measurement. If phase-
squeezed light is injected during the verification stage, we
would have

Uadd|BAE ∼ (e−2q +2ζ2x)
1/2ζF =

√

Ω2
F

Ω2
qe

2q
+

2Ω2
F

Ω2
x

. (37)

Increasing the squeezing factor always improves our ver-
ification sensitivity, with a limit of

Uadd
lim |BAE ∼ ΩF /Ωx = ζx ζF , (38)

which can be much lower than unity in the case of future
GW detectors or any low-noise measurement device.
Had we not evaded the back-action noise, we would

have
√
NF in the place of ζF , which means δxV δpV would

be Heisenberg-limited — unless different squeezing fac-
tors are assumed. For low squeezing (i.e., e±2q larger
than both ζx and ζF ), we need phase squeezing for x̂
observation, amplitude squeezing for p̂ observation, with

Uadd|withoutBAE ∼ e−q , (39)

which is a significant factor (1/ζF ) worse than the BAE
scheme. Even though there exists an optimal squeezing
factor that this scheme can apply and yields

Uadd
opt |withoutBAE ∼ ζx , (40)

yet it is still worse than the limiting situation of the BAE
scheme [cf. Eq. (38)] by a factor of 1/ζF (≫ 1).

IV. THE CONDITIONAL QUANTUM STATE
AND ITS EVOLUTION

The previous order-of-magnitude estimates provide us
a qualitative picture of a MQM experiment, especially
in the free-mass regime where future GW detectors are
operating. As long as ζF and ζx are smaller than unity,
namely, the classical noise goes below the SQL around

the most sensitive frequency band (Ω ∼ Ωq) of the mea-
surement device, not only can we prepare a nearly pure
quantum state, but also can we make a sub-Heisenberg
tomography of the prepared state. In this and following
sections, we will provide more rigorous treatments di-
rectly by analyzing the detailed dynamics of the system.

A. The conditional quantum state obtained from
Wiener filtering

The rigorous mathematical treatment of state prepa-
ration has been given in Ref. [35]. The main idea is
to treat the conditional quantum state preparation as a
classical filtering problem, which is justified by the fact

that the outgoing optical quadratures b̂1,2 at different
times commute with each other, the same as a classi-
cal random process. For such a Gaussian linear system,
the Wiener filter, satisfying the minimum mean-square
error criterion, allows us to obtain an optimal estimate
for the quantum state of the oscillator, i.e., the condi-
tional quantum state. Based upon the measurement data
y(t) (t < 0), conditional means for oscillator position and
momentum at t = 0 can be constructed as [cf. Eq. (14)
of Ref. [35]]

xcond(0) ≡ 〈x̂(0)〉cond =

∫ 0

−∞

dtKx(−t)y(t), (41)

pcond(0) ≡ 〈p̂(0)〉cond =

∫ 0

−∞

dtKp(−t)y(t). (42)

HereKx andKp are causalWiener filters. The covariance
matrix is given by [cf. Eq. (15) of Ref. [35]]

Vcond
oioj (0) = 〈ôi(0)ôj(0)〉condsym − 〈ôi(0)〉cond〈ôj(0)〉cond,

(43)
where i, j = 1, 2 and ô1, ô2 denote x̂, p̂, respectively. In
the free-mass regime, we showed that [cf. Eq. (52)–(54)
in Ref. [35]]:

Vcond(0) =

[

N
1
4

FN
3
4
x

√
2δx2q N

1
2

FN
1
2
x ~/2

N
1
2

FN
1
2
x ~/2 N

3
4

FN
1
4
x

√
2δp2q

]

. (44)

With conditional means and variances, the Wigner func-
tion or equivalently the conditional quantum state is
uniquely defined [cf. Eq. (2)]. Correspondingly, purity
of the conditional quantum state is quantified by

U(0) =
2

~

√

detVcond(0) = NxNF . (45)

This simply justifies the order-of-magnitude result pre-
sented in Eq. (27).

B. Evolution of the conditional quantum state

In the following discussions, we will analyze how such
a conditional quantum state evolves during the evolu-
tion stage. On the one hand, this confirms the quali-
tative results presented in the subsection III C. On the
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other hand, it provides a quantitative understanding of
the timescale for the later verification stage.

The equations of motion for the oscillator during the
evolution stage are given by Eqs. (12) and (13) except
that there is no radiation pressure, for the light is turned
off 2. For simplicity and also a consideration of the case
in a realistic experiment, we will assume an oscillator
with a high quality factor, i.e., ωm ≫ γm. Within a
timescale much shorter than 1/γm, the oscillator can be
well-approximated as a free oscillator. Correspondingly,
the analytical solution to oscillator position reads

x̂(t) = x̂q(t) +

∫ ∞

0

dt′Gx(t− t′)ξ̂F (t
′) . (46)

Here the free quantum oscillation x̂q(t) of the oscillator is
given by Eq. (5). We have defined the Green’s function
as

Gx(t) = Θ(t)
sin(ωm t)

mωm
, (47)

with Θ(t) denoting the Heaviside function.

Given an evolution duration of τE , from Eq. (14) and
Eq. (46) the corresponding covariance matrix evolves as

V(τE) = RT
Φ Vcond(0) RΦ

+
Sth
F

8m2ω3
m

[

2Φ− sin 2Φ 2mωm sin2 Φ
2mωm sin2 Φ m2ω2

m (2Φ + sin 2Φ)

]

,

(48)

where Φ ≡ ωm τE and the rotation matrix RΦ is given
by

RΦ =

[

cosΦ −mωm sinΦ
(mωm)−1sinΦ cosΦ

]

. (49)

The first term in Eq. (48) represents a rotation of the
covariance matrix Vcond(0) due to the free quantum os-
cillation of the oscillator; the second term is contributed
by thermal decoherence which causes an increase in the
uncertainty.

In the free-mass regime and the case of ωmτE ≪ 1,
elements of the covariance matrix can be expanded as

2 Were the light turned on, the back action can still be evaded as
long as one measures the amplitude quadrature â1 during this
period and take them into account during data processing. Since
no information of the oscillator position (contained in the phase
quadrature of outgoing light) is collected, this is equivalent to
the case with light turned off.

series of Φ. Up to the leading order in Φ, we obtain

Vxx(τE) = V cond
xx +

4δx2q
~

V cond
xp ΩqτE +

δx2q
δp2q

V cond
pp (ΩqτE)

2

+ 2δx2qζ
2
F

(ΩqτE)
3

3
, (50)

Vxp(τE) = V cond
xp +

~

2δp2q
V cond
pp ΩqτE +

~

2
ζ2F (ΩqτE)

2 ,

(51)

Vpp(τE) = V cond
pp + 2δp2qζ

2
FΩqτE (52)

with V cond
xx,xp,pp denoting the elements of Vcond(0). Up to

the leading order in ΩqτE , the uncertainty product of the
resulting quantum state is

U(τE) =
2

~

√

detV(τE) ≈ U(0) +
V cond
xx

δx2q
(τE/τF )

2 (53)

with τF defined in Eq. (22). The second term is con-
tributed by the thermal decoherence and can be viewed
as U th(τE). Those formulas recover the results in Eqs.
(29) – (32) but with precise numerical factors. As we can
conclude from Eq. (53), in order for a sub-Heisenberg
tomography to be possible, the later verification stage
should finish within a timescale of τF after which the
contribution from the thermal noise gives U th(τF ) ∼ 1.

V. STATE VERIFICATION IN THE PRESENCE
OF MARKOVIAN NOISES

In this section, we will treat the followup state verifi-
cation stage with Markovian noises in details. This can
justify the order-of-magnitude estimate we have done in
the subsection III D. In addition, we will show explicitly
how to construct the optimal verification scheme that
gives a sub-Heisenberg accuracy.

A. A time-dependent homodyne detection and
back-action-evading (BAE)

In this subsection, we will analyze the time-dependent
homodyne detection which enables us to probe mechan-
ical quadratures. We will further show how the BAE
scheme can be constructed. The BAE scheme is optimal
only when there is no readout loss (η = 0). We will con-
sider more general situations and derive the correspond-
ing optimal verification scheme in the next subsection.
The equations of motion for the oscillator during the

verification stage (t > τE) are given by Eqs. (12) and
(13). The corresponding solution to oscillator position
is different from Eq. (46) due to the presence of the
back-action noise which starts to act on the oscillator at
t = τE . Specifically, it reads

x̂(t) = x̂q(t) +

∫ ∞

τE

dt′Gx(t− t′)[α â1(t
′) + ξ̂F (t

′)] . (54)
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FIG. 7: (Color online) A schematic plot of time-dependent
homodyne detection. The phase modulation of the local os-
cillator light varies in time.

Here the free quantum oscillation xq(t) is the signal that
we seek to probe during the verification stage. For op-
tical quadratures, the equations of motion are given by
Eqs. (15) and (16). From those equations, we notice that

among the outgoing fields: b̂1 is pure noise, while b̂2 con-
tains both signal x̂q(t) and noise. In order to highlight

this, we rewrite b̂1,2 as

b̂1(t) =
√

1− η n̂1(t) +
√
η â1(t) ≡ δb̂1(t) , (55)

b̂2(t) = δb̂2(t) +
√

1− η (α/~) x̂q(t) (56)

with [cf. Eq. (54)]

δb̂2(t) ≡
√
η n̂2(t) +

√

1− η
{

â2(t) +
α

~
ξ̂x(t)

+
α

h

∫ ∞

τE

dt′Gx(t− t′) [α â1(t
′) + ξ̂F (t

′)]
}

.

(57)

In this way, we can directly see that â1 which causes the
back action is contained in both the amplitude quadra-

ture b̂1 and the phase quadrature b̂2. Therefore, by
measuring an appropriate combination of the two out-
put quadratures, we will be able to remove effects of the
back-action noise that is imposed onto the oscillator dur-
ing the verification process at t > τE . Searching for such
an optimal combination is the main issue to be addressed
in this section.
As mentioned in the introduction part, to probe me-

chanical quadratures and their distributions, a time-
dependent homodyne detection needs to be applied [cf.
Eq. (6)]. Specifically, the outgoing optical field

B̂out(t) = b̂1(t) cosω0t+ b̂2(t) sinω0t (58)

at t > τE is mixed with a strong local-oscillator light
L(t) whose phase angle φos is time-dependent as shown
schematically in Fig. 7, namely,

L(t) = L0 cos[ω0 t− φos(t)] (59)

with L0 a time-independent constant. Through a low-
pass filtering (with a bandwidth much smaller than ω0)
of the beating signal, the resulting photocurrent is

î(t) ∝ 2B̂out(t)L(t)

= L0 b̂1(t) cosφos(t) + L0 b̂2(t) sinφos(t) , (60)

where the overline means averaging over many optical-
oscillation periods. Note that Heisenberg operators for
the photocurrent at different time commute with each
other, i.e.,

[̂i(t), î(t′)] = 0 , (61)

and are therefore simultaneously measurable, as obviously
expected. Based on the measurement results of î(t) from
τE to Tint, we can construct the following weighted quan-
tity Ŷ with a weight function W (t):

Ŷ =

∫ Tint

0

Θ(t−τE)W (t)̂i(t)dt ≡ (g1|b̂1)+(g2|b̂2) . (62)

Here the Heaviside function Θ(t− τE) manifests the fact
that the verification stage starts at t = τE and we have
introduced the scalar product of two vectors |A) and |B)
in the L2[0, Tint] space as the following:

(A|B) ≡
∫ Tint

0

A(t)B(t)dt . (63)

Besides, we have defined filtering functions g1 and g2 as

g1(t) ≡ Θ(t− τE)W (t) cosφos(t), (64)

g2(t) ≡ Θ(t− τE)W (t) sinφos(t). (65)

Since all the data can in principle be digitalized and
stored in hardwares, the weight function W (t) can be
realized digitally during data processing. In addition, an
overall re-scaling of g1,2(t) → C0 g1,2(t) with C0 a time-
independent constant does not affect the verification per-
formance, and that there are multiple ways of achieving
a particular set of g1,2(t), by adjusting the phase φos(t)
of the local oscillator and the weight function W (t).
In light of Eqs. (55) – (57), we decompose the weighted

quantity Ŷ [cf. Eq. (62)] as a signal Ŷs and a noise part

δŶ , namely,

Ŷ = Ŷs + δŶ . (66)

They are given by

Ŷs =
√

1− η (α/~) (g2|x̂q),
δŶ = (g1|δb̂1) + (g2|δb̂2). (67)

Since an overall normalization of g1,2 will not affect the
signal-to-noise ratio as mentioned, we can impose, math-
ematically, that

(g2|f1) = cos ζ , (g2|f2) = sin ζ (68)

with

f1(t) ≡ cosωmt, f2(t) ≡ (Ωq/ωm) sinωmt (69)

in the coordinate representation. The signal part can
then be rewritten as

Ŷs =
√

1− η (α/~)δxq [x̂0 cos ζ + p̂0 sin ζ] , (70)
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where we have introduced normalized oscillator position
and momentum as x̂0 ≡ x̂(τE)/δxq and p̂0 ≡ p̂(τE)/δpq.

In such a way, a mechanical quadrature of X̂ζ will be
probed [cf. Eq. (4)]. For the noise part, more explicitly,
we have [cf. Eqs. (55)–(57)]

δŶ = (g1|
√
η n̂1 +

√

1− η â1) + (g2|
√
η n̂2 +

√

1− η â2)

+
√

1− η (α2/h)(g2|Gx|â1)
+
√

1− η (α/~)[(g2|Gx|ξ̂F ) + (g2|ξ̂x)] , (71)

where the integration with Gx(t−t′) has been augmented
into applying a linear operator Gx in the L2[0, Tint]
space. In the above equation, terms on the first line
is the shot noise, and the term on the second line is the
back-action noise, while terms on the third line are the
classical-force and sensing noises.
The optimal g1(t) and g2(t) that give a sub-Heisenberg

accuracy for each quadrature will be rigorously derived
for general situations in the next section. If â1 and â2
are uncorrelated and there is no readout loss with η = 0,
an optimal choice for g1 would be obvious to cancel the
entire contribution from the back-action noise term (pro-
portional to â1). This is equivalent to impose, mathemat-
ically, that

(g1|â1) + (α2/h)(g2|Gx|â1) = 0 (72)

or

|g1) + (α2/h)Gadj
x |g2) = 0 , (73)

where Gadj
x is the adjoint of Gx. Physically, this cor-

responds to bringing in a piece of shot noise (g1|â1) to
cancel the back-action noise (α2/h)(g2|Gx|â1) — there-
fore achieving a only shot-noise-limited measurement. In
the coordinate representation, Eq. (73) can be written
out more explicitly as

g1(t) + (α2/~)

∫ Tint

t

dt′Gx(t
′ − t)g2(t

′) = 0, (74)

which agrees exactly with the variational-type BAE mea-
surement scheme first investigated by Vyatchanin et al.

[42]. It is suitable for detecting signals with known arrival
time. For stationary signals, one would prefer frequency-
domain variational techniques proposed by Kimble et
al. [52], which evades the back-action noise for all possible
signals as long as they are Gaussian and stationary.
As realized by Kimble et al. [52] in their frequency-

domain treatment, when the readout loss is significant
(large η) and when the back-action noise is strong (large
α), the variational approach becomes less effective, be-
cause in such a case, the magnitude of g1 required to
bring enough â1 to cancel the back-action noise would
also introduce significant noise n̂1 [cf. Eq. (71)]. This
reasoning apparently leads to a trade-off between the
need to evade back action and the need to minimize loss-
induced shot noise — such an optimization will be made
in the next section.

B. Optimal verification scheme and covariance
matrix for the added noise: formal derivation

Imposing the BAE condition [cf. Eq. (74)] does not
specify the shape of g2, nor does Eq. (68), and we have
further freedom in choosing g2 that minimizes the noise
in measuring a particular quadrature of X̂ζ . In addition,
in the presence of readout loss with η 6= 0, totally evad-
ing back action is not the obvious optimum as mentioned.
Therefore we need to optimize g1 and g2 simultaneously.
In this section, we first carry out this procedure formally,
and apply to the Markovian-noise budget in the next sub-
section.
The total x̂q-referred noise in the weighted estimator

Ŷ can be written as [cf. Eqs. (70) and (71)]

σ2[g1,2] =
~
2

(1 − η)α2δx2q
〈δŶ δŶ 〉sym

=
2

(1 − η)Ωq

2
∑

i,j=1

(gi|Cij |gj), (75)

where correlation functions Cij among the noises are the
following:

Cij(t, t
′) ≡ 〈δb̂i(t)δb̂j(t′)〉sym , (i, j = 1, 2) . (76)

The optimal g1,2(t) that minimize σ2 can be obtained
through the standard constraint variational method. For
this, we define an effective functional as

Jeff = (1− η)(Ωq/4)σ
2[g1,2]− µ1(f1|g2)− µ2(f2|g2)

=
1

2

∑

i,j

(gi|Cij |gj)− (µ1f1 + µ2f2|g2), (77)

where µ1 and µ2 are Lagrange multipliers due to the
normalization constraints in Eq. (68). Requiring the
functional derivative of Jeff with respect to g1 and g2
equal to zero, we obtain

C11|g1) +C12|g2) = 0 , (78)

C21|g1) +C22|g2) = |µ1f1 + µ2f2) . (79)

Here Cij should be viewed as operators in the L2[0, Tint]
space. This leads to formal solutions to g1,2, namely,

|g1) = −C−1
11 C12|g2) , (80)

|g2) = M|µ1f1 + µ2f2) , (81)

where we have defined

M ≡
[

C22 −C21C
−1
11 C12

]−1
. (82)

Re-imposing Eqs. (68), those unknown Lagrange multi-
pliers µ1,2 can be solved, which are related to ζ by

[

(f1|M|f1) (f1|M|f2)
(f2|M|f1) (f2|M|f2)

] [

µ1

µ2

]

=

[

cos ζ
sin ζ

]

. (83)
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Correspondingly, the minimum σ2
min has the following

quadratic form:

σ2
min = [cos ζ sin ζ]Vadd

norm

[

cos ζ
sin ζ

]

. (84)

Here normalized Vadd
norm is a 2× 2 covariance matrix, and

it is given by

Vadd
norm =

2

(1− η)Ωq

[

(f1|M|f1) (f1|M|f2)
(f2|M|f1) (f2|M|f2)

]−1

. (85)

It relates to the initial definition of the covariance matrix
for the added verification noise [cf. Eq. (8)] simply by

Vadd = Diag[δxq , δpq]V
add
normDiag[δxq, δpq]. (86)

Due to the linearity in Eqs. (79) and (83), the opti-
mal g1,2 for a given quadrature ζ can also be rewritten
formally as

gζ1,2 = gX1,2 cos ζ + gP1,2 sin ζ , (87)

with gX1,2 ≡ gζ1,2(0) and gP1,2 ≡ gζ1,2(π/2). Such
ζ-dependence of g1,2 manifests the fact that a sub-
Heisenberg tomography requires different filtering func-
tions, or equivalently different measurement setups, for
different quadratures.

C. Optimal verification scheme with Markovian
noise

Given Makovian noises, the corresponding correlation

functions for the output noise δb̂i can be written out ex-
plicitly as [cf. Eqs. (14), (19), (20), and (76)]

C11(t, t
′) =

η + (1− η)e2q

2
δ(t− t′), (88)

C12(t, t
′) = C21(t

′, t) = (1 − η)
e2qα2

2~
Gx(t

′ − t), (89)

C22(t, t
′) =

Λ2

4
δ(t− t′) + (1− η)

α4

~2

(

e2q

2
+ ζ2F

)

∫ ∞

0

dt1Gx(t− t1)Gx(t
′ − t1), (90)

with Λ ≡
√

2[η + (1− η)(e−2q + 2ζ2x)]. Plugging these
Cij into Eq. (80) and (81), we can obtain the equations
for the optimal filtering functions g1 and g2. Specifically,
for g1, we have [cf. Eq. (80)]

g1(t) +
(1 − η)e2q

η + (1− η)e2q
α2

~

∫ Tint

t

dt′Gx(t
′ − t)g2(t

′) = 0.

(91)
For g2, by writing out M explicitly, it gives [cf. Eq. (81)]

Λ2

4
g2(t) + ζ′ 2F

α4

~2

∫∫ Tint

0

dt′dt1Gx(t− t1)Gx(t
′ − t1)g2(t

′)

= µ1f1(t) + µ2f2(t) , (92)

FIG. 8: (Color online) Optimal filtering functions g1 (solid
curve) and g2 (dashed curve) in the presence of Markovian
noises. We have assumed Ωq/2π = 100 Hz, ζx = ζF = 0.2,
η = 0.01 and vacuum input (q = 0). For clarity, the origin of
the time axis has been shifted from τE to 0.

where we have introduce ζ′F , which is given by

ζ′F ≡
[

η(1− η)e2q

2[η + (1− η)e2q]
+ (1 − η)ζ2F

]1/2

≈
[η

2
+ ζ2F

]1/2

(93)
and it is equal to ζF for no readout loss. Although here g1
is still defined from g2, the optimal verification strategy
does not totally evade the back action, as is manifested in
the term proportional to η inside the bracket of Eq. (93).
In the limit of no readout loss with η = 0, it is identical to
the BAE condition in Eq. (74) . Typically, we have 1%
readout loss η = 0.01, squeezing e2q = 10 and ζF = 0.2,
this readout loss will only shift ζF by 6%, which is neg-
ligible. However, if the thermal noise further decreases
and/or the measurement strength increases, the effect of
readout loss will become significant, entering in a similar
way as the frequency-domain variational measurement
proposed by Kimble et al. [52].
The above integral equations for optimal g1 and g2

can be solved analytically as elaborated in the Appendix
C, which in turn gives M and the corresponding Vadd

[cf. Eqs. (82) and (85)]. In the free-mass regime with
Ωq ≫ ωm, closed forms for optimal g1 and g2 can be

obtained, which, in terms of gX,P
1,2 [cf. Eq. (87)], are

given by

gX1 = g1|ζ=0 = (Ωq/χ) e
−Ωqχ t sinΩqχ t; (94)

gP1 = g1|ζ=π
2
= −

√
2Ωq e

−Ωqχ t sin
(

Ωqχ t+
π

4

)

, (95)

and

gX2 = g2|ζ=0 = 2Ωqχ e
−Ωqχ t cosΩqχ t; (96)

gP2 = g2|ζ=π
2
= 2

√
2Ωqχ

2 e−Ωqχ t sin
(

Ωqχt−
π

4

)

, (97)

with χ ≡ [ζ′ 2F /Λ]
1/2. The corresponding verification

timescale is set by τV = (χΩq)
−1 and τq < τV < τF . To

illustrate the behavior of the optimal filtering functions,

we show gX,P
1,2 in Fig. 8. As we can see, the verification

process finishes after several τq, i.e., in a timescale of τV .
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FIG. 9: (Color online) The uncertainty ellipse for the added
verification noise in the presence of Markovian noises. We
assume ζx = ζF = 0.2, vacuum input (Dashed curve), ζx =
ζF = 0.2 and 10 dB squeezing (Dotted curve). For contrast,
we also show the Heisenberg limit in a unit circle and the
ideal conditional quantum state in solid ellipse.

The corresponding covariance matrix Vadd for the
added verification noise is given by

Vadd =
1

1− η

[

Λ
3
2 ζ

′ 1
2

F δx2q −Λζ′F~/2

−Λζ′F~/2 2Λ
1
2 ζ

′ 3
2

F δp2q

]

. (98)

A more summarizing measure of the verification accuracy
is the uncertainty product of the added noise ellipse with
respect to the Heisenberg limit, namely,

Uadd =
2

~

√
detVadd =

Λ ζ′F
1− η

. (99)

In the ideal case with η = 0, this simply recovers
the order-of-magnitude estimate given in the subsection
IIID. In Fig. 9, we show the uncertainty ellipse for the
added noise in the case of ζx = ζF = 0.2, readout loss
η = 1% and with (Green dotted curve) or without (red
long-dashed curve) 10dB input squeezing. In compari-
son, we also plot the Heisenberg limit (unit circle) and the
conditional state obtained through an ideally noiseless
state preparation (blue solid ellipse). As figure shows,
the least challenging scenario already begins to charac-
terize the conditional quantum state down to the Heisen-
berg Uncertainty. In this two cases, we have Λ = 1.48
and 0.62 respectively, leading to

Uadd = 0.30 (vacuum) , 0.12 (10 dB squeezing). (100)

VI. VERIFICATION OF MACROSCOPIC
QUANTUM ENTANGLEMENT

In this section, we will apply our protocol to verify
macroscopic entanglement between test masses in future
GW detectors, which was proposed in Refs. [34, 35]. In
the experiment as shown schematically in Fig. 10, mea-
surements at the bright and dark port of the interferome-
ter continuously collapse the quantum state of the corre-
sponding common and differential modes of the test-mass

FIG. 10: (Color online) A schematic plot of advanced interfer-
ometric GW detectors for macroscopic entanglement between
test masses as a test for gravity decoherence. For simplic-
ity, we have not shown the setup at the bright port, which is
identical to the dark port.

motion. This creates two highly squeezed Gaussian state
in both modes. Since the common and differential modes
are linear combinations of the center of mass motion of
test masses in the two arms, namely x̂c = x̂E + x̂N and
x̂d = x̂E − x̂N, this will naturally generate quantum en-
tanglement between the two test masses, which is similar
to creating entanglement by mixing two optical squeezed
states at the beam splitter [56, 57].

A. Entanglement survival time

To quantify the entanglement strength, we follow Refs.
[34, 35] by evaluating the entanglement monotone — log-
arithmic negativity defined in Refs. [58, 59]. It can
be derived from the covariance matrix for Gaussian-
continuous-variable system considered here. The bipar-
tite covariances among (x̂E, p̂E, x̂N, p̂N) form the follow-
ing covariance matrix:

V =

[

VEE VEN

VNE VNN

]

, (101)

where

VEE = VNN =

[

(V c
xx + V d

xx)/4 (V c
xp + V d

xp)/2
(V c

xp + V d
xp)/2 (V c

pp + V d
pp)

]

,

(102)

VNE = VEN =

[

(V c
xx − V d

xx)/4 (V c
xp − V d

xp)/2
(V c

xp − V d
xp)/2 (V c

pp − V d
pp)

]

.

(103)
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FIG. 11: (Color online) Logarithmic negative EN as a func-
tion of the evolution duration τE , which indicates how long
the entanglement survives. The solid curve corresponds to
the case where ΩF /2π = 20Hz and the dashed curve for
ΩF /2π = 10Hz. To maximize the entanglement, the com-
mon mode is 10 dB phase squeezed at t > τE and t < 0 while
the differential mode is 10 dB amplitude squeezed at t < 0
and switching to 10 dB phase squeezed at t > τE.

The logarithmic negativity EN can then be written as

EN = max[0,− log2 2σ−/~], (104)

where σ− ≡
√

(Σ−
√
Σ2 − 4 detV)/2 and Σ ≡

detVNN + detVEE − 2 detVNE. In contrast to Refs.
[34, 35], now the covariance matrix V corresponds to the
total covariance matrix Vtot after the entire preparation-
evolution-verification process. For Gaussian quantum
states, we have [cf. Eqs. (10), (48) and (98)]

Vtot = V(τE) +Vadd. (105)

B. Entanglement Survival as a Test of Gravity
Decoherece

When τE increases, the thermal decoherence will in-
crease the uncertainty [cf. Eqs. (48) and (105)] and
eventually the entanglement vanishes, which indicates
how long the quantum entanglement can survive. Sur-
vival of such quantum entanglement can help us to un-
derstand whether there is any additional decoherence ef-
fect, such as Gravity decoherence suggested by Diósi and
Penrose [49, 50]. According to their models, quantum su-
perpositions vanish within a timescale of ~/EG. Here EG

can be (a) self-energy of the mass-distribution-difference,
namely

E
(a)
G =

∫

dxdyG[ρ(x)− ρ′(x)][ρ(y) − ρ′(y)]/r (106)

with ρ denoting the mass density distribution and r ≡
|x − y|; Alternatively, it can be (b) spread of mutual
gravitational energy among components of the quantum
superposition, namely

E
(b)
G =

∫

dxdyGρ(x)ρ′(y) δr/r3/2. (107)

with δr denoting the uncertainty in location. For the
prepared test-mass quantum states with width of δxq,
we have

τ
(a)
G ≈ Ωq/(Gρ) , τ

(b)
G ≈ ~

1/2L2Ω1/2
q /(Gm3/2) . (108)

where L is the distance between two test masses. Plug-
ging the typical values for LIGO mirrors with ρ =
2.2 g/cm3, the separation between two input test masses,
L ≈ 10m and m = 10 kg, we have

τaG = 4.3× 109 s, τbG = 1.2× 10−5 s. (109)

It is therefore quite implausible to test model (a); while

for model (b), Ωqτ
(b)
G is less 0.01 with Ωq/2π = 100 Hz.

In Fig. 11, we show the entanglement survival as a func-
tion of evolution duration. As we can see, the model
(b) of gravity decoherence can easily be tested, for the
entanglement can survive for several times of the mea-
surement timescale τq, which is much longer than the

predicted τ
(b)
G .

VII. CONCLUSIONS

We have investigated in great details of a followup ver-
ification stage after the state preparation and evolution.
We have showed the necessity of a sub-Heisenberg ver-
ification accuracy in probing the prepared conditional
quantum state, and how to achieve it with an optimal
time-domain homodyne detection. Including this essen-
tial building block — a sub-Heisenberg verification, we
are able to outline a complete procedure of a three-staged
experiment for testing macroscopic quantum mechanics.
In particular, we have been focusing on the relevant free-
mass regime and have applied the techniques to discuss
MQM experiments with future GW detectors. However,
the system dynamics that have been considered describe
general cases with a high-Q mechanical oscillator cou-
pled to coherent optical fields. To this respect, we note
that in our results for Markovian systems only depend on
the ratio between various noises and the SQL, and there-
fore carries over directly to systems with other scales. In
addition, the Markovian assumption applies more accu-
rately to smaller-scale systems which operate in higher
frequencies.

Acknowledgments

We thank Farid Khalili and all the members of the
AEI-Caltech-MIT MQM discussion group for very fruit-
ful discussions. We thank K. S. Thorne for initiating
this research project, and V.B. Braginsky for important
critical comments. Research of Y.C., S.D., H.M.-E. and
K.S. is supported by the Alexander von Humboldt Foun-
dations Sofja Kovalevskaja Programme, as well as NSF
grants PHY-0653653 and PHY-0601459 and the David



15

and Barbara Groce startup fund at Caltech. Research
of H.R. is supported by the Deutsche Forschungsgemein-
schaft through the SFB No. 407. H.M. has been sup-
ported by the Australian Research Council and the De-
partment of Education, Science and Training. H.M.
would like to thank D. G. Blair, L. Ju and C. Zhao for
their keen support of his visit to AEI and Caltech.

Appendix A: Necessity of a sub-Heisenberg accuracy
for revealing non-classicality

As we have mentioned in the introduction part, a sub-
Heisenberg accuracy is a necessary condition to probe the
non-classicality if the Wigner function of the prepared
quantum state has some negative regions, which do not
have any classical counterpart.
To prove the necessity, we use the relation between Q

function and Wigner function as pointed out by Khalili
[60]. Given density matrix ρ̂, the Q function in the co-
herent state basis |α) is equal to [31, 61, 62]

Q =
1

π
(α|ρ̂|α), (A1)

which is always positive defined. It is the Fourier trans-
form of the following characteristic function:

J(β, β∗) = Tr[eiβ
∗âeiβâ

†

ρ̂]. (A2)

Here â is the annihilation operator and is related to
the normalized oscillator position x̂/δxq and momentum
p̂/δpq [cf. Eq. (26)] by the standard relation

â = [(x̂/δxq) + i(p̂/δpq)]/2. (A3)

If we introduce the real and imaginary parts of β, namely,
β = βr + iβi, characteristic function J can be rewritten
as

J(βr, βi) = e−(β2
r+β2

i )/2Tr[eiβr(x̂/δxq)+iβi(p̂/δpq) ρ̂], (A4)

where we have used the fact that eÂeB̂ = eÂ+B̂e[Â, B̂]/2,
as [Â, B̂] commutes with Â and B̂. Inside the bracket of
Eq. (A4), it is the characteristic function for the Wigner
function W (x, p), and thus

J(βr, βi) =
1

(2π)2

∫

dx′dp′e−(β2
r+β2

i )/2

e−iβr(x
′/δxq)−iβi(p

′/δpq)W (x′, p′). (A5)

Integrating over βi and βi, the resulting Q function is
given by

Q(x, p) =
1

2π

∫

dx′dp′e
− 1

2

[

(x−x′)2

δx2
q

+ (p−p′)2

δp2q

]

W (x′, p′).

(A6)
This will be the same as Eq. (7), if we identify
Wrecon(x, p) with Q(x, p) and

Vadd =

[

δx2q 0
0 δp2q

]

, (A7)

which is a Heisenberg-limited error. Since squeezing and
a rotation of x̂ and p̂ axes will not change the positiv-
ity of the Q function, Eq. (A6) basically dictates that
the reconstructed Wigner function will always be pos-
itive if a Heisenberg-limited error is introduced during
the verification stage. Therefore, only if a sub-Heisenberg
accuracy is achieved will we be able to reveal the non-
classicality of the prepared quantum state.

Appendix B: Wiener-Hopf method for solving
integral equations

In this appendix, we will introduce the mathematical
method invented by N. Wiener and E. Hopf for solving
special type of integral equations. For more details, one
can refer to a comprehensive presentation of this method
and its applications by B. Noble [63]. Here we will fo-
cus on integral equations that can be brought into the
following form as encountered in obtaining the optimal
verification scheme:

∫ +∞

0

dt′C(t, t′)g(t′) = h(t) , t > 0 . (B1)

with

C(t, t′) = A(t− t′)+

∑

α

∫ min[t,t′]

0

dt′′B∗
α(t− t′′)Bα(t

′ − t′′) , (B2)

where α = 1, 2, . . . and Bα(t) = 0 if t < 0.
Assuming that solution to g(t) be a square-integrable

function in L2(−∞,∞), one can split it into causal and
anticausal parts as:

g(t) = g+(t) + g−(t) , (B3)

where g−(t) is causal part

g−(t) =

{

0, t > 0

g(t), t 6 0
(B4)

and g+(t) is the anticausal part of g(t)

g+(t) =

{

g(t), t > 0

0, t 6 0 .
(B5)

This definition enables us to expand the limits of inte-
gration in (B1) and (B2) to −∞ < (t, t′, t′′) <∞:

∫ +∞

−∞

dt′ C(t, t′)g+(t
′) = h(t) , t > 0 , (B6)

where

C(t, t′) = A(t− t′)+

∑

α

∫ +∞

−∞

dt′′[B∗
α,+(t− t′′)Bα,+(t

′ − t′′)](+,t′′) , (B7)
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index (+, t′′) stands for taking causal part of a multidi-
mensional function in the argument t′′.
Let us first exercise the method in a simple special case

when Bα(t) ≡ 0, ∀α, this gives a conventional Wiener-
Hopf integral equation

∫ +∞

0

dt′A(t− t′)g(t′) = h(t) , t > 0 , (B8)

which can be rewritten as

[
∫ +∞

−∞

dt′A(t− t′)g+(t
′)− h(t)

]

(+,t)

= 0 . (B9)

Applying Fourier transform in t and the convolution the-
orem, one gets:

∫ +∞

−∞

dΩ

2π

[

Ã(Ω)g̃+(Ω)− h̃(Ω)
]

+
e−iΩt = 0 . (B10)

The spectrum of causal (anticausal) function is simply

g̃+(−)(Ω) =

∫ ∞

−∞

dt g+(−)(t)e
iΩt . (B11)

However, this evident relation is not operational for us,
as it provides no intuition on how to directly get g̃±(Ω)
given g̃(Ω) in disposal. The surprisingly simple answer
gives complex analysis. Without loss of generality, we can
assume that g(t) asymptotically goes to zero at infinity
as: ∀t : |g(t)| < e−γ0|t| where γ0 is some arbitrary positive
number, that guarantees regularity of g̃(Ω) at−∞ < Ω <
∞. In terms of analytic continuation g̃(s) of g̃(Ω) to the
complex plane s = Ω + iγ, the above assumption means
that all the poles of g̃(s) are located outside its band of
analyticity −γ0 < Im(s) < γ0. Thus, the partition into
causal and anticausal parts for g̃(s) is now evident:

g̃(s) = g̃+(s) + g̃−(s) (B12)

where g̃+(s)(g̃−(s)) stands for function equal to g̃(s) for
γ > γ0(< −γ0) and analytic in the half plane above (be-
low) the line γ = γ0(−γ0) 3. According to properties
of analytic continuation, this decomposition is unique
and completely determined by values of g̃(Ω) on the
real axis. Moreover, as a Fourier transform of valid L2-
function, it has to approach zero when |s| → ∞. For
more general cases, this requirement could be relaxed to
demand that ∞ should be a regular point of g̃(s) so that
lim

|s|→∞
g̃(s) = const. This allows to include δ-function and

other integrable distributions into consideration, though
makes us to add the constant g(∞) to formula (B12) as

3 Functions g̃+(s) and g̃−(s) are, in essence, Laplace transforms of
g(t) for positive and negative time respectively with only substi-
tution of variable s → ip.

additional term. For example, for g(t) = e−α|t|, α > 0
one has the following fourier transform:

g̃(s) =
2α

α2 + s2
=

2α

(s+ iα)(s− iα)
(B13)

that has one pole s+ = −iα in the lower half complex
plane (LHP) and one s− = +iα in the upper half complex

plane (UHP). To split f̃(Ω) in accordance with (B12) one
can use well known formula:

g̃±(s) =
∑

{s±,k}

Res[g̃(s), s±,k]

(s− s±,k)σk
(B14)

where summation goes over all poles {s+,k} (with σk is
the order of pole s+,k) of g̃(s) that belong to the LHP
for g̃+(s) and over all poles {s−,k} of g̃(s) that belong to
the UHP for g̃−(s) otherwise, and Res[g̃(s), s] stands for
residue of g̃(s) at pole s. For our example function this
formula gives:

g̃+(s) =
i

s+ iα
, g̃−(s) = − i

s− iα
. (B15)

Using the residue theorem, one can easily show that:

g+(t) = e−αt, for t > 0 (B16)

g−(t) = eαt, for t < 0 . (B17)

Coming back to the equation (B10), assume that func-

tion Ã(Ω) can be factorized in the following way:

Ã(Ω) = ã−(Ω)ã+(Ω) (B18)

where ã+(−)(Ω) is a function analytic in the UHP (LHP)
with its inverse, ı.e., both its poles and zeroes are located
in the LHP (UHP). One gets the following equation:

[

ã−(Ω)ã+(Ω)g̃+(Ω)− h̃(Ω)
]

+
= 0 . (B19)

To solve this equation, one realizes the following fact: for
any function f̃ , [f̃(Ω)]+ = 0 means that f̃ has no poles in

the LHP. Multiplication of f̃ by any function g̃− which
also has no poles in the LHP will evidently not change
the equality, namely, [g̃−(Ω)f̃(Ω)]+ = 0. Multiplying Eq.
(B19) by 1/ã−(Ω), the solution reads

g̃+(Ω) =
1

ã+(Ω)

[ h̃(Ω)

ã−(Ω)

]

+
. (B20)

Performing inverse Fourier transform of g̃+(Ω), the time-
domain solution g+(t) can be obtained.
Now we are ready to solve Eq. (B6) with the general

kernel in Eq. (B7). Performing similar manipulations,
one obtain the following equation for g̃+(Ω) in the Fourier
domain:
[(

Ã+
∑

α

B̃αB̃
∗
α

)

g̃+ −
∑

α

B̃α(B̃
∗
αg̃+)− − h̃

]

+

= 0 ,

(B21)
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where we have omitted arguments Ω of all functions for
brevity. Since B̃α is a causal function, B̃∗

α is anticausal

and g̃+ is causal, (B̃∗
αg̃)− only depends on the value of g̃

on the poles of B̃∗
α. Performing similar factorization

ψ̃+ψ̃− = Ã+
∑

α

B̃αB̃
∗
α (B22)

with ψ̃+ (ψ̃−) and 1/ψ̃+ (1/ψ̃−) analytic in the UHP
(LHP), ψ+(−Ω) = ψ∗

+(Ω) = ψ−(Ω), we get the solution
in the form:

g̃+ =
1

ψ̃+

[

h̃

ψ̃−

]

+

+
1

ψ̃+

[

∑

α

B̃α(B̃
∗
αg̃+)−

ψ̃−

]

+

. (B23)

Even though g̃+ also enters the right hand side of the

above equation, yet (B̃∗
αg̃+)− can be written out explic-

itly as:

(B̃∗
αg̃+)− =

∑

{Ω−,k}

g̃+(Ω−,k)Res[B̃
∗(Ω), Ω−,k]

(Ω− Ω−,k)σk
. (B24)

Here {Ω−,k} are poles of B̃∗(Ω) that belong to UHP, and
therefore g̃+(Ω−,k) are just constants that can be ob-
tained by solving a set of linear algebra equations evalu-
ating Eq. (B23) at those poles {Ω−,k}.

Appendix C: Solving integral equations in Section V

Here we will use the technique introduced in the previ-
ous section to obtain analytical solutions to the integral
equations we encountered in the subsections VB and VC.
In the coordinate representation, the integral equations

for g1,2 are the following [cf. Eqs. (78) and (79)]:

∫ Tint

0

dt′
[

C11(t, t
′) C12(t, t

′)
C21(t, t

′) C22(t, t
′)

] [

g1(t
′)

g2(t
′)

]

=

[

0
h(t)

]

,

(C1)

where Cij (i, j = 1, 2) are given by Eq. (89) and we have
defined h(t) ≡ µ1f1(t)+µ2f2(t). Since the optimal g1,2(t)
will automatically cut off when t > τF , we can extend the
integration upper bound Tint to ∞. It brings those equa-
tions into the right shape considered in the Appendix B.

In the frequency domain, they can be written as

[S̃11g̃1]+ + [S̃12 g̃2]+ = 0, (C2)

[S̃21 g̃1]+ + [S̃22 g̃2]+ − Γ̃ = h̃, (C3)

Γ̃ = (1− η)(Ω4
q/2)(e

2q + 2ζ2F )[G̃x(G̃xg̃2)−]+. (C4)

Here S̃ij are the Fourier transformation of the correlation
functions Cij . Specifically, they are

S̃11 =
η + (1− η)e2q

2
, (C5)

S̃12 = −
(1 − η)e2qΩ2

q

2(Ω + ωm − iγm)(Ω− ωm − iγm)
, (C6)

S̃21 = S̃∗
12, (C7)

S̃22 =
Λ2

4
+

(1 − η)(e2q + 2ζ2F )Ω
4
q

2[(Ω + ωm)2 + γ2m][(Ω− ωm)2 + γ2m]
.

(C8)

Since S̃11 is only a number, the solution to g̃1 is simply

g̃1 = −S̃−1
11 [S̃12g̃2]+. (C9)

In the time-domain, this recovers the result in Eq. (91).
Through a spectral factorization

ψ̃+ψ̃− ≡ S̃22 − S̃−1
11 S̃12S̃21, (C10)

we obtain the solution for g̃2:

g̃2 =
1

ψ̃+

{

1

ψ̃−

[

h̃− S̃−1
11 S̃21(S̃12g̃2)− + Γ̃

]

}

+

. (C11)

Plugging Γ̃ into the above equation, g̃2 becomes

g̃2 =
1

ψ̃+

{

1

ψ̃−

[

h̃+ κ G̃x(G̃
∗
xg̃2)−

]

}

+

(C12)

with κ ≡ m2Ω4
qζ

′2
F . A simple inverse Fourier transfor-

mation gives g1(t) and g2(t). The unknown Lagrange
multipliers can be solved using Eq. (83). We can then
derive the covariance matrix Vadd for the added verifi-
cation noise with Eq. (85). In the free-mass regime, a
closed form for Vadd can be obtained as shown explicitly
in Eq. (98).
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