English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effective connectivity of cortical and subcortical regions during unification of sentence structure

MPS-Authors
/persons/resource/persons197494

Snijders,  Tineke M.
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
MPI for Psycholinguistics, Max Planck Society;
Rudolf Magnus Institute of Neuroscience, Department of Child and Adolescent Psychiatry, University Medical Centre Utrecht, the Netherlands;
Departments of Experimental and Developmental Psychology, Utrecht University, the Netherlands;

/persons/resource/persons147

Petersson,  Karl Magnus
Neurobiology of Language Group, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Radboud University Nijmegen;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Group, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Radboud University Nijmegen;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Snijders, T. M., Petersson, K. M., & Hagoort, P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. NeuroImage, 52, 1633-1644. doi:10.1016/j.neuroimage.2010.05.035.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-B712-6
Abstract
In a recent fMRI study we showed that left posterior middle temporal gyrus (LpMTG) subserves the retrieval of a word's lexical-syntactic properties from the mental lexicon (long-term memory), while left posterior inferior frontal gyrus (LpIFG) is involved in unifying (on-line integration of) this information into a sentence structure (Snijders et al., 2009). In addition, the right IFG, right MTG, and the right striatum were involved in the unification process. Here we report results from a psychophysical interactions (PPI) analysis in which we investigated the effective connectivity between LpIFG and LpMTG during unification, and how the right hemisphere areas and the striatum are functionally connected to the unification network. LpIFG and LpMTG both showed enhanced connectivity during the unification process with a region slightly superior to our previously reported LpMTG. Right IFG better predicted right temporal activity when unification processes were more strongly engaged, just as LpIFG better predicted left temporal activity. Furthermore, the striatum showed enhanced coupling to LpIFG and LpMTG during unification. We conclude that bilateral inferior frontal and posterior temporal regions are functionally connected during sentence-level unification. Cortico-subcortical connectivity patterns suggest cooperation between inferior frontal and striatal regions in performing unification operations on lexical-syntactic representations retrieved from LpMTG.