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Abstract. We present new results from accurate and fully general-relativistic simulations of
the coalescence of unmagnetized binary neutron stars with various mass ratios. The evolution
of the stars is followed through the inspiral phase, the merger and prompt collapse to a
black hole, up until the appearance of a thick accretion disk, which is studied as it enters
and remains in a regime of quasi-steady accretion. Althougha simple ideal-fluid equation
of state withΓ = 2 is used, this work presents a systematic study within a fullygeneral
relativistic framework of the properties of the resulting black-hole–torus system produced
by the merger of unequal-mass binaries. More specifically, we show that:(1) The mass of
the torus increases considerably with the mass asymmetry and equal-mass binaries do not
produce significant tori if they have a total baryonic massMtot & 3.7 M⊙; (2) Tori with
massesMtor ∼ 0.2M⊙ are measured for binaries withMtot ∼ 3.4 M⊙ and mass ratios
q ∼ 0.75 − 0.85; (3) The mass of the torus can be estimated by the simple expression
M̃tor(q,Mtot) = [c1(1 − q) + c2] (Mmax − Mtot), involving the maximum mass for the
binaries and coefficients constrained from the simulations, and suggesting that the tori can
have masses as large as̃Mtor ∼ 0.35M⊙ for Mtot ∼ 2.8 M⊙ andq ∼ 0.75 − 0.85;
(4) Using a novel technique to analyze the evolution of the tori we find no evidence for the
onset of non-axisymmetric instabilities and that very little, if any, of their mass is unbound;(5)
Finally, for all the binaries considered we compute the complete gravitational waveforms and
the recoils imparted to the black holes, discussing the prospects of detection of these sources
for a number of present and future detectors.

PACS numbers: 04.30.Db, 04.40.Dg, 04.70.Bw, 95.30.Lz, 97.60.Jd

1. Introduction

The numerical investigation of the coalescence and merger of binary neutron stars (NSs)
within the framework of general relativity is receiving increasing attention in recent years
(seee.g. [1, 2, 3, 4, 5, 6, 7, 8] and references therein). Drastic improvements in the simulation
front regarding mathematics (e.g.formulation of the equations), physics (e.g. incorporation
of equations of state (EOS) from nuclear physics) and numerical methods (e.g. use of
high-resolution methods and adaptive mesh refinement) along with increased computational
resources have allowed to extend the scope of the early simulations (e.g. [9]). Larger initial
separations have recently started being considered and some of the existing simulations have
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expanded the range spanned by the models well beyond black-hole (BH) formation [3, 8, 7].
This is allowing the computation of the entire gravitational waveform from the early inspiral
to the decaying tail of the late ringing of the formed BH. The construction of such waveform
templates is still one of the driving motivations to performbinary NS simulations, as such
events are among the most promising sources of detectable gravitational radiation for laser
interferometric detectors. The current estimate for the detection rate relative to the first-
generation interferometric detectors is∼ 1 event per∼ 40 − 300 years, increasing to an
encouraging∼ 10 − 100 events per year for the advanced detectors [10]. The second major
incentive behind this type of simulations is establishing whether the end-product of the merger
can act as the underlying mechanism operating at the centralengine of short-hard gamma-ray
bursts (SGRBs) [11, 12]. The consensus emerging from the existing simulations indicates the
formation, depending on the suitability of the initial parameters of the simulated model, of
a BH of stellar mass surrounded by a hot disk. Driven by neutrino processes and magnetic
fields such a compact system may be capable of launching a relativistic fireball with an energy
of ∼ 1048 erg on a timescale of0.1− 1 s [13].

This paper is dedicated in particular to investigating the late-time dynamics of the torus
formed after the merger of unequal mass NS binaries. As we describe below all but one
model of our initial sample have unequal mass ratio. Previous simulations have shown that
the key parameter controlling the amount of mass left in the disk for a given initial mass
in the system and EOS is the NS mass ratio [14, 1]. Broadly speaking the general trend
is simple: the larger the departure from equal-mass ratio, the more important tidal effects
become in the less massive star, resulting in its tidal disruption. Because this takes place
when the separation is still comparatively large, the angular momentum of the matter is still
large and it yields in larger-size and more massive disks. Early and low-resolution simulations
with an ideal-gas EOS [14] have been shown to yield a disk massof several percents of the
total mass of the system for a mass ratio of∼ 0.85. Improved simulations by [1] which
adopted a hybrid EOS to mimic realistic, stiff nuclear EOS, indicate that the mass of the disk
is ∼ 0.01 M⊙ or slightly larger when the merger does not result in prompt collapse to a BH
but in the formation of a hypermassive NS of large ellipticity instead (which later collapses
to a BH following angular momentum transport by gravitational radiation emission). Similar
disk masses as large as∼ 0.02 M⊙ are also reported in the latest simulations of [8] in which
the initial orbital separation of the two stars is larger than in previous works.

Observational data seems to indicate that the total gravitational masses of the known
galactic NS binary systems are in a narrow range∼ 2.65 − 2.85 M⊙ [15] and there is
also evidence indicating that the masses of the two NSs are nearly equal, with the baryonic
mass ratioq ≡ M1/M2 being between1 and∼ 0.7 (Hereafter we will refer toq simply
as the “mass ratio” but report in table 1 also the ratio in the ADM massesq

ADM
; q and

q
ADM

do not coincide because of the nonlinear relation between baryonic and gravitational
mass). Nevertheless, there is no theoretical reason to assume that unequal mass NS binaries
could not be produced as often in nature as the seemingly prevailing equal mass systems,
particularly for twin giant progenitors [16, 17]. There are, indeed, recent computations which
contradict the predominance of the very nearly equal massesmeasured for all known binary
NSs to date [18, 17]. On the one hand, binary population synthesis computations performed
by [18] show two peaks in the observability-weighted distribution of double NSs. One of
these peaks is aroundq ∼ 1 and appears when both masses are close to1.4 M⊙. The second
peak is around considerably smaller mass ratios and dependson the assumed maximum
mass of a NS (which is in turn dependent on the EOS considered): the higher this mass
(the stiffer the EOS) the more significant the second peak is [18, 19]. However, the crucial
parameter determining the shape of the distribution is the inclusion of hypercritical accretion
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on to compact objects during the brief but critical “common-envelope” evolution phase of the
close binary [19]. Similarly, recent computations by [17] also accounting for the effects of
hypercritical accretion during the red-giant evolution ofthe less massive component of the
binary lead to a pattern of NS binaries consisting of pulsarswhich are∼ 50% more massive
than their companion NSs.

An additional issue which motivates our study has to do with the investigation of
the long-term stability and dynamics of the formed accretion disks. It is well known
that thick accretion disks orbiting BHs may be subject to a number of instabilities, both
axisymmetric, such as the so-called “runaway instability”[20], or non-axisymmetric, such as
the “Papaloizou-Pringle instability” [21]. The first one, in particular, if present, could destroy
the torus on dynamical timescales, challenging the viability of the BH–torus SGRB model.
Early time-dependent, general relativistic hydrodynamical simulations in axisymmetry of the
runaway instability of non-self-gravitating tori around BHs were performed by [22, 23]. The
distribution of specific angular momentum in the disk,ℓ ≡ −uφ/ut, with uφ andut being
the corresponding components of the 4-velocityuµ, was the key parameter discriminating
stable from unstable models in those simulations. It was found thatℓ−constant models were
runaway unstable while power-law distributionsℓ = Krα were stable for very small values of
the angular momentum slopeα (much smaller than the Keplerian valueα = 0.5). Recent fully
relativistic simulations by [24] which take into account the self-gravity of the disk for the first
time indicate that self-gravity does not favour the appearance of the instability, irrespective of
the angular momentum distribution. Under the effect of a perturbation, marginally stable
models show the presence of axisymmetric oscillations for several dynamical timescales
without the manifestation of the runaway instability, as [25] had previously found for the case
of non-self-gravitating tori. Indeed, the introduction ofperturbations triggers QPOs lasting
tens of orbital periods, with amplitudes that are modified only slightly by the small loss of
matter across the cusp [25, 26]. The spectral distribution of the associated eigenfrequencies
shows the presence of a fundamentalp mode and of a series of overtones in a harmonic ratio
2:3, which have been proposed to explain the QPOs observed in theX-ray luminosity of
LMXBs containing a BH candidate with the QPOs of small tori near the BH [27, 28, 29]. In
addition, when sufficiently massive and compact, the oscillations of these tori are responsible
for an intense emission of gravitational waves [25, 30, 31, 26].

Overall, theab-initio simulations reported here indicate that large-scale tori with masses
Mtor ∼ 0.2M⊙ can be produced as the result of the inspiral and merger of binary NSs with
unequal-masses and that even larger masses can be predictedfor binaries with smaller total
masses. These tori are typically of large size, with quasi-Keplerian distribution of angular
momenta, showing quasi-stationary evolutions and the absence of dynamical instabilities. As
such, these results may provide additional information relevant to all of the above issues
for BH–torus systems formed in a fully consistent manner within the framework of general
relativity. Furthermore, the gravitational-wave emission computed here reveals that the
waveforms are sensitive to the mass ratio in the binary, bothduring the inspiral and after
the merger, and could be used to extract important information on the structure and EOS of
the progenitor stars. Such observations, however, will most likely have to rely on the advanced
detectors which will become operative in a few years.

The paper is organised as follows: Section 2 describes the mathematical and numerical
framework of our simulations. Section 3 discusses the dynamics of the coalescence and
merger of our model sample. Next, in Section 4 we focus on the analysis of the tori
formed after the merger and on their physical properties. The issue of the gravitational-
wave emission from unequal-mass NS mergers is discussed in Section 5 and the main
conclusions of our investigation are presented in Section 6. In addition Appendix A provides
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quantitative measures of the accuracy of our numerical methods. We use a spacelike signature
(−,+,+,+) and a system of units in whichc = G = M⊙ = 1 (or in cgs units whenever
more convenient). Greek indices are taken to run from0 to 3, Latin indices from1 to 3 and
we adopt the standard convention for the summation over repeated indices.

2. Mathematical and Numerical Setup

All the details on the mathematical and numerical setup usedfor producing the results
presented here are discussed in depth in [32, 3]. In what follows, we limit ourselves to a
brief overview.

2.1. Einstein and Hydrodynamics equations

The evolution of the spacetime is obtained using theCCATIE code, a three-dimensional finite-
differencing code providing a solution of a conformal traceless formulation of the Einstein
equations with a “1 + log” slicing condition and a “Gamma-driver” shift condition (the
interested reader is addressed to [32, 33] for a detailed discussion of the equations and gauges
used). The general-relativistic equations are instead solved using theWhisky code presented
in [34, 35, 33], which adopts a flux-conservative formulation of the equations as presented
in [36] and high-resolution shock-capturing schemes. TheWhisky code implements several
reconstruction methods, such as Total-Variation-Diminishing (TVD) methods, Essentially-
Non-Oscillatory (ENO) methods [37] and the Piecewise Parabolic Method (PPM) [38]. Also,
a variety of approximate Riemann solvers can be used, starting from the Harten-Lax-van Leer-
Einfeldt (HLLE) solver [39], over to the Roe solver [40] and the Marquina flux formula [41]
(see [34, 35] for a more detailed discussion). All the results reported hereafter have been
computed using the Marquina flux formula [42] and a PPM reconstruction. We stress again
(as already done in [3, 7]) that the use of high-order methodsand high-resolution isessential
to be able to draw robust conclusions on the inspiral and merger. Lower-order methods in
the reconstruction and low resolution may yield convergentand apparently reasonable results
which however contain a large truncation error. Specific examples of this type of problem are
presented in Appendix A of [3] and in Figure4 of [7]. Also, a measure of our overall accuracy
is presented in Appendix A below and shows that by employing such methods we are able to
conserve energy and angular momentum to∼ 1% over a timescale of∼ 140ms.

The system of hydrodynamics equations is closed by an EOS. Asdiscussed in detail
in [3], the choice of the EOS plays a fundamental role in the post-merger dynamics and
significantly influences the survival time, against gravitational collapse, of the hyper-massive
neutron star (HMNS) likely produced by the merger. It is therefore important that special
attention is paid to use EOSs that are physically motivated,as done in [43] within a
conformally flat description of the fields and a simplified treatment of the hydrodynamics.
Because we are here mostly concerned with drawing a first qualitative picture of the properties
of the torus in a space of parameters that is as vast as computationally affordable, we have
employed the commonly used “ideal-fluid” EOS, in which the pressurep is expressed as
p = ρ ǫ(Γ − 1), whereρ is the rest-mass density,ǫ is the specific internal energy andΓ is
the adiabatic exponent. Such an EOS, while simple, providesa reasonable approximation
and we expect that the use of realistic EOSs would not change the main results of this work.
Furthermore, it was shown in [44] that the inspiral of equal-mass binaries of NSs described
by realistic EOSs can be reproduced quite well by studying NSs with the same mass and radii
but constructed as polytropes withΓ = 2.
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As in [3], the gravitational-wave signal is extracted usingtwo methods. The first method
uses the Newman-Penrose formalism so that the gravitational-wave polarization amplitudes
h+ andh× are then related toΨ4 by simple time integrals [45]

ḧ+ − iḧ× = Ψ4 , (1)

where the double overdot stands for the second-order time derivative and the curvature scalar

Ψ4 ≡ −Cαβγδn
αm̄βnγm̄δ (2)

is defined as a particular component of the Weyl curvature tensor,Cαβγδ, projected onto a
given null frame{l,n,m, m̄} (see [32] for details). The second and independent method
is instead based on the measurements of the non-spherical gauge-invariant perturbations of a
Schwarzschild BH (see refs. [46, 47, 48] for some applications of this method to Cartesian-
coordinate grids). In particular, the gravitational-wavepolarization amplitudes are in this case
expressed in terms of gauge-invariant metric perturbations [49]

h+ − ih× =
1√
2r

∑

ℓ,m

(
Q+

ℓm − i

∫ t

−∞

Q×

ℓm(t′)dt′

)
−2Y

ℓm . (3)

where−2Y
ℓm are thes = −2 spin-weighted spherical harmonics andQ×

ℓm, Q+
ℓm the (gauge-

invariant) odd-parity (or axial) current multipoles and even-parity (or polar) mass multipoles
of the perturbed metric, respectively. In practice, these multipoles are computed on a set of
2-spheres of fixed coordinate radiusriso = 200 (i.e.∼ 300 km).

Although the two wave-extraction methods yield results with differences which are
smaller than1%, hereafter we will concentrate only on the one using the gauge-invariant
perturbations as it reduces the number of integration constants to be determined when
computing the gravitational-wave strain.

2.2. Adaptive Mesh Refinements and Grid setup

The grid hierarchy is handled by theCarpet mesh refinement driver [50]. It implements
vertex-centered mesh refinement, also known as the box-in-box method, and allows for
regridding during the calculation as well as multiple grid centers. With mesh refinement,
a small number of grids with varying resolution called refinement levels overlay each other,
nested in a way that the coarsest grid has the largest extent,and the finest grid the smallest
extent. While the refined grids in the interior allow for an increased resolution where it is
most desired, the outer boundary can at the same time be kept at a large distance.

The timestep on each grid is set by the Courant condition (expressed in terms of the speed
of light) and so by the spatial grid resolution for that level; the typical Courant coefficient
is set to be0.35. The time evolution is carried out using4th-order–accurate Runge-Kutta
integration algorithm. Boundary data for finer grids are calculated with spatial prolongation
operators employing3rd-order polynomials and with prolongation in time employing 2nd-
order polynomials. The latter allows a significant memory saving, requiring only three
timelevels to be stored, with little loss of accuracy due to the long dynamical timescale relative
to the typical grid timestep.

For the inspiral phase of the system of binary NSs, two grid centers{rc,i : i = 1, 2} are
defined, with one grid center located at the grid point where the rest-mass density reaches its
maximumρmax = max(ρ) and the other grid center located at theπ-symmetric point (i.e. the
grid point correspondent toρmax and rotated by180 degrees around thez-axis). The grid
hierarchy is composed of six refinement levels and a2 : 1 refinement factor for successive
levels. Once the conditionρmax = max(ρmax,i) ≥ 1.2 ρmax,initial is satisfied, which is
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known from experience to occur during the merger phase and well before collapse, the grid
hierarchy is reduced to a single grid center fixed at the origin of the grid. At the initial time,
the finest grids cover each star completely. Later, during the merger phase, matter outflows
cross the boundary to the second finest grid and subsequentlyto the other coarser refinement
levels. The grid resolution varies from∆1 = 0.15 (i.e.∼ 221m in cgs units) for the finest
level to∆6 = 4.8 (i.e.∼ 7.1 km) for the coarsest level, whose outer boundary is at240 in
our units (i.e.∼ 360 km). Initially, there are of the order of100 grid points across the linear
dimension of a star. The torus surrounding the BH after collapse is usually not contained
within the finest grid, but its high-density region is instead covered by the second finest grid
with resolution∆2 = 0.3.

The whole grid is set up to be symmetric with respect to the(x, y) plane for both unequal-
mass stars and equal-mass stars. The boundary conditions are chosen to be radiative for the
metric to prevent gravitational waves from scattering backinto the grid, and static for the
hydrodynamical variables. Note that the above setup is identical to that adopted in [3].

Table 1. Properties of the binary NS initial data. From left to right the columns show: the name
of the model (assembled from its rounded total baryonic masspreceded by the letterM and its
mass ratio preceded by the letterq), the total baryonic massMtot of the system, the total ADM
massM

ADM
of the system, the ratio of the baryonic masses of the two stars q = M2/M1,

the ratio of the ADM masses of the two stars, the total angularmomentumJ , the initial orbital
frequencyνorb, the initial maximum rest-mass densityρmax, the mean radius̄ri of each star,
and the axis ratiōAi of each star. The mean radius is defined asr̄i ≡ (r⊢+r⊣+r⊥+rpol)/4,
wherer⊢ andr⊣ are the radii of the star parallel to the line connecting the stars,r⊥ is the
radius in the equatorial plane perpendicular to that line, and rpol is the radius perpendicular
to the equatorial plane. The axis ratio is defined as the ratiobetween the mean radius parallel
to the line connecting the stars, and the mean radius in the plane perpendicular to that line,
namelyĀi ≡ (r⊥ + rpol)/(r⊢ + r⊣). All values exceptρmax are provided by the output of
theLORENE code, and the accuracy ofMtot andJ is the one at which theWhisky code is
able to reproduce them for the present setup.

Model Mtot M
ADM

q, q
ADM

J/1049 νorb ρmax/10
14 r̄2, r̄1 Ā2, Ā1

(M⊙) (M⊙) (g cm2/s) (Hz) (g/cm3) (km)

M3.6q1.00 3.56 3.23 1.00, 1.00 8.92 303.32 7.58 12.0, 12.0 0.95, 0.95
M3.7q0.94 3.68 3.33 0.94, 0.94 9.37 306.56 9.75 12.0, 11.0 0.95, 0.96
M3.4q0.91 3.40 3.11 0.91, 0.92 8.33 299.06 7.58 13.1, 12.1 0.93, 0.95
M3.4q0.80 3.37 3.08 0.80, 0.81 8.36 303.62 9.21 13.8, 11.3 0.90, 0.97
M3.5q0.75 3.46 3.14 0.75, 0.77 8.40 300.84 12.7 13.0, 10.1 0.89, 0.98
M3.4q0.70 3.37 3.07 0.70, 0.72 7.98 298.47 12.8 14.6, 10.0 0.85, 0.98

2.3. Initial data

We use quasi-equilibrium initial data generated with the multi-domain spectral-method code
LORENE developed at the Observatoire de Paris-Meudon [51]. For more information on the
code and its methods, the reader is referred to theLORENE web pages [52]. In particular,
because the binaries are not expected to be corotating, we use irrotational configurations,
defined as having vanishing vorticity, and obtained under the additional assumption of a
conformally flat spacetime metric [51].

Some of the models investigated in this paper are publicly available on servers of
the Meudon group [52]. Others have been created by us specifically for the unequal-
mass simulations presented here. The models of the lowest mass ratios have been kindly
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provided by Dorota Gondek-Rosińska). The EOS assumed for the initial data is in all cases
the polytropic EOSp ≡ K ρΓ with an adiabatic indexΓ = 2 and a polytropic coefficient
K = 0.0332 ρnuc c

2/nΓ
nuc = 123.6 (in units wherec = G = M⊙ = 1), whereρnuc andnnuc

refer to the nuclear rest-mass and number densities, respectively. For this particular EOS,
the allowed maximum baryonic mass for an individual stable NS is∼ 2.00 M⊙. The initial
coordinate separation of the stellar centers in all cases isd = 45 km.

The models used as initial data include both equal-mass models and most importantly
unequal-mass models. As mentioned in the Introduction, we here concentrate on the dynamics
of the massive tori resulting from the merger, whose formation is strengthened the smaller the
mass ratio becomes. While such unequal-mass binaries have not yet been observationally
detected [15] there is no theoretical reason ruling out their possible existence [18, 17]. A
full list of all considered models together with a selectionof physical quantities defining
them,e.g.baryon and ADM mass, orbital frequency and initial angular momentum, etc., is
given in table 1. To distinguish simply the different binaries we adopt the following naming
convention: any initial data binary is indicated asM%q#, with % being replaced by the rounded
total baryonic massMtot of the binary neutron-star system and# by the mass ratioq. As an
example,M3.4q0.80 is the binary with total baryonic massMtot ≃ 3.4 M⊙ and mass ratio
q = 0.80.

3. Dynamics of the coalescence and merger

3.1. General dynamics

In a previous work [3], we have investigated the dynamics of the coalescence and merger
of equal-mass binary NSs for models with total baryonic massMtot = 2.912 M⊙ and
Mtot = 3.250 M⊙. It was found that for any of the two EOSs considered, binaries with
(initial) total baryonic mass below a certain limit do not collapse promptly to a BH but rather
yield an oscillating HMNS which undergoes delayed collapseto a BH. Independently of
the mass ratio, all of the binaries under consideration herehave masses higher than those
considered in [3] and all collapse promptly never leading toa HMNS even if the EOS used
here is a non-isentropic one (see discussion in [3] on the different qualitative behaviour
between an isentropic and a non-isentropic EOS). This absence of a HMNS, however, is very
much the result of the chosen initial data rather than a feature of unequal-mass mergers and
has been here exploited simply to reduce the computational costs and boost the collapse to a
BH.

Figure 1 shows a selection of representative isodensity contours on the equatorial plane
for the equal-mass binaryM3.6q1.00. At the initial time, the stars are in their quasi-
equilibrium configuration at a coordinate separation of 45 km. The binary progressively
speeds up while inspiralling. After slightly more than two orbits have been completed (namely
after about 5-6 ms), the stars merge, and about 2-3 ms later, an apparent horizon (which we
search with the code of [53]) is found. The ideal-fluid EOS employed in the simulations
allows for shock-heating and an increase of the specific internal energyǫ, as shown in [3];
this, in turn, causes some matter to be ejected from the rotating central object and to propagate
into the surrounding atmosphere. The evolution of modelM3.6q1.00 shows that matter is
ejected in small amounts during the inspiral phase and in larger amounts during the merger
phase, when the shocks are much stronger. Therefore, while small spiral arms can certainly be
observed in the outer regions during the merger phase (see the last two snapshots of figure 1),
they do not have sufficient angular momentum to reach distances as large as in the unequal-
mass models (see discussion below). Instead, the spiral arms wind around the rapidly rotating
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Figure 1. Isodensity contours for theM3.6q1.00model on the(x, y) plane. The times when
the frames have been taken are shown on top of the plots while the color-code for the rest-mass
density is indicated to the right of each plot. Additionally, isodensity contours are shown for
the values ofρ = 1010, 1011, 1012, 1012.5, 1013, 1013.5, 1014, 1014.5, 1015 g/cm3 . The
third frame (at time t = 5.760 ms) shows the onset of the merger, the last two frames (at times
t = 8.210ms, t = 8.276ms) show the behaviour of the system during the collapse to a BH.

central object formed by the two NS cores. Quantitative results regarding the BH spin and the
mass and angular momentum of the remaining disk will be discussed in subsequent sections.

To contrast the evolution of an unequal-mass binary, figure 2shows the same selection
of isodensity contours on the equatorial plane as represented in figure 1, only now for
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Figure 2. Isodensity contours for theM3.4q0.70model on the(x, y) plane. The times when
the frames have been taken are shown on top of the plots while the color-code for the rest-mass
density is indicated to the right of each plot. Additionally, isodensity contours are shown for
the values ofρ = 1010, 1011, 1012, 1012.5, 1013, 1013.5, 1014, 1014.5, 1015 g/cm3 . The
third frame (at time t = 4.104 ms) shows the onset of the merger, the last two frames (at times
t = 6.620ms, t = 7.414ms) show the behaviour of the system during the collapse to a
BH. Note that the computational domain is much larger than what is shown and extends to
∼ 360 km

the M3.4q0.70 model, which has the smallest mass ratio considered in this work. The
asymmetry of the binary system is already apparent at the initial time. The heavier star is
much more compact than its extended less massive companion,which is deformed already
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at the initial distance by tidal forces. In addition, the center of mass does not coincide with
the point halfway between the centers of the stars, but it is shifted toward the more massive
star. During the inspiral phase, the heavier and more compact star is only slightly affected
by its companion, whereas the latter is decompressed rapidly while being accreted onto the
heavier star. This is visible in the three intermediate panels of figure 2. The tidal disruption
of the lower-mass NS when it still retains a large fraction ofits angular momentum results in
an extended tidal tail which, unlike what happens in the equal-mass case, transfers angular
momentum outwards in a much more efficient way. This leads to the formation of large spiral
arms extending well beyond the domain shown in figure 2 and ultimately to a more rapid
ejection of matter. Gravitationally bound matter travelling along the spiral arms away from the
central object will form a more massive accretion torus around the central BH than that formed
in the case of an equal-mass, symmetric binary system. It should be noted that, although the
rest-mass density of the matter in these spiral arms is much smaller than the central one, it has
nevertheless densitiesρ & 1010 g/cm−3 and thus well in a general-relativistic regime.

3.2. Properties of the black hole

As mentioned above, because of the large initial mass of the system and irrespective of the
mass ratio, the merged object rapidly collapses to a BH. Its mass and angular momentum have
been computed making use of the dynamical-horizon formalism [54, 55], which provides a
simple and accurate measure of the BH properties also when this is subject to the inflow
of mass and angular momentum [35]. In the case of the equal-mass binary, because the
disk resulting from the merger has comparatively small mass, the BH settles rapidly to
an approximately stationary configuration, and the mass andspin of the BH measured at
formation,i.e.M = 2.56 M⊙ anda ≡ J/M2 = 0.745, respectively, do not vary significantly
throughout the subsequent evolution of the system. On the other hand, when considering
unequal-mass binaries, the mass and the spin of the BH show, on the timescale of the
simulations, a variation in time of∼ 5% and∼ 2%, respectively, because of the continued
and intense accretion of both mass and angular momentum. Table 2 shows the corresponding
parameters for all models at the final time of the evolution, which is not the same for the
different binaries considered.

We note that finding and tracking the apparent horizon in the case of binaries with small
mass ratio is far from being simple since the asymmetry in themerger dynamics leads to
a noticeable motion of the “center-of-mass” of the system. Hence, the location of the trial
surface for the apparent horizon cannot be simply associated to a pre-existing black hole (as
in the case of BH binaries [32]) or to a pre-determined coordinate location (as in the case of
the collapse of a rotating star [35]). The end-result of thiscomplication is that the apparent
horizon could not be tracked successfully in all the models under consideration. This was the
case of modelsM3.4q0.80 andM3.4q0.70, for which it was not possible to measure the
mass and spin of the corresponding BH. Furthermore, in the case of the binaryM3.5q0.75
the measurements were not made with the dynamical-horizon formalism but rather by using
the ratio of the polar to equatorial circumference of the apparent horizon as discussed in detail
in [35]. Cross-checking the two measures (i.e. apparent-horizon distortion and dynamical-
horizon formalism) in the cases where both are possible shows that they are equally reliable
(see also the extended discussion in [35]). Overall, the data available suggests the existence
of a local maximum ofa for q ∼ 0.9, but more data is clearly necessary to confirm this.

Interestingly, when inspecting carefully the apparent horizon in the low-q model
M3.5q0.75 it is possible to appreciate that its appearance precedes the time when the
two stellar cores merge and is in contrast with what happens with models with high-q. By



Accurate evolutions of unequal-mass neutron-star binaries 11

comparison, we believe the same happens also for the binaryM3.4q0.70, although in this
case we were not able to detect an apparent horizon. Of coursethese considerations have little
physical importance as the interior of the apparent horizonis causally disconnected with what
is astrophysically observable; nevertheless this result provides another interesting example of
the rich phenomenology relative to the appearance and dynamics of trapped surfaces (see, for
instance, the discussion in section4 of [56]).

Table 2. Columns2 − 5 report the properties of the final BH,i.e. mass, angular momentum,
spin parameter, and kick velocity, while columns6−7 report the measured torus massesMtor

and those inferred from relation (6),̃Mtor. Also shown in columns 8 and 9, respectively, are
the numerical errorǫtor ≡ |1− (Mtor)HR

/(Mtor)MR
| as computed by comparing different

resolutions (medium,i.e. ∆1 = 0.19, and high,i.e. ∆1 = 0.15) for each model and the
relative errorǫfit ≡ |M̃tor −Mtor|/Mtor of the phenomenological expression for the mass
of the torus with respect to the numerical data. Clearly, thebinaries with high mass ratio are
not well described by relation (6) even though their numerical error is not very large.

Model M J a ≡ J/M2 vkick Mtor |M̃tor| ǫtor ǫfit
(km/s) (M⊙) (M⊙)

M3.6q1.00 2.56 4.90 0.745 0.28 0.0010 0.021 28% > 100%
M3.7q0.94 2.64 5.18 0.743 121.95 0.0100 0.048 12% > 100%
M3.4q0.91 2.99 7.29 0.815 59.33 0.0994 0.103 0.8% 89.6%
M3.4q0.80 − − − 56.22 0.2088 0.193 1.5% 7.4%

M3.5q0.75 3.00† 7.13† 0.792† 18.05 0.0802 0.173 2.5% 8.1%
M3.4q0.70 − − − 15.82 0.2116 0.202 2.4% 4.6%

† We could not compute the dynamical horizon for this model, sothe reported values are calculated
from the apparent horizon, with the method employed in Sections VA and VB1 of ref. [35].

Finally, also reported in table 2 is the recoil velocity imparted to the BH at the end of
the inspiral and computed using the gravitational-wave emission as discussed in [57, 32] for
binary BHs. We recall, in fact, that together with energy andangular momentum, gravitational
radiation also carries away linear momentum. If the binary system has a degree of asymmetry
(either in the mass or in the spin) then the trajectories of the two bodies will be (slightly)
different (e.g.with the smaller body moving more rapidly and, hence, being more efficient
in beaming its emission) and the momentum loss in any direction will not be balanced by an
equal loss in the diametrically opposite direction. This effect is well-known in binary BHs,
where the recoils from quasi-circular inspirals can be as larger as∼ 4000 km (see [58] for
a recent review), but has never been reported before for binary NSs. The recoil velocities
reported in table 2 are clearly much smaller than those measured for binary BHs. However,
they could still yield astrophysically interesting results being comparable or larger than the
escape velocity from the core of a globular cluster that isvesc ∼ 50 km [59]. Furthermore,
and possibly surprisingly, the values reported here for irrotational binaries which have very
little initial spin, are not much smaller than those computed for non-spinning binary BHs (see,
e.g. [60] for a recent update) and have a local maximum forq ∼ 0.9.
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Figure 3. Isodensity contours for the binariesM3.6q1.00 (left panel) andM3.4q0.70
(right panel) showing the morphology of the tori at the onsetof the QSA on the(x, y)
plane (upper row) and on the(x, z) plane (lower row). Note that the disks in the two
panels have very different lengthscales, with the one forM3.4q0.70 being about3 times
larger than that forM3.6q1.00. The colormap used here is different from the one in
figures 1 and 2. Additionally, isodensity contours are shownfor the values ofρ =
1010, 1011, 1012, 1013 g/cm3 .

4. Torus Formation and Properties

4.1. General Dynamics

In figures 3 and 4 we show color-coded contours of the rest-mass density for models
M3.6q1.00 (left panels) andM3.4q0.70 (right panels), either in the(x, y) plane (upper
rows) and in the(x, z) plane (lower rows). The snapshots in figure 3, in particular,correspond
to the timet ∼ 10ms when the systems enter the regime of quasi-stationary accretion (QSA,
see below for definition), shortly after the formation of theBH, while those in figure 4 refer
to the final time of the evolution,t ∼ 21ms. These figures allow for a closer view of the
morphological features of the disks, in particular, their spatial dimensions and thickness, and
are a natural continuation of the dynamics already shown in figures 1 and 2, although they use
a different colormap that has been tuned to yield a better contrast in the density profiles.

The large morphological differences between these two extreme models are clearly
visible in these figures. The equal-mass model produces a highly symmetric, geometrically
thin disk, similar to the ones already observed for other equal-mass initial data in [3]. The
unequal-mass model, on the other hand, is characterized by the presence of a large spiral
arm when the model enters the regime of QSA, which has not yet been accumulated onto
the central disk surrounding the formed BH. The asymmetry inthe distribution of matter
at this stage is also apparent from the color map of the rest-mass density. Only at the end
of the simulation the disk of the unequal-mass binary acquires a more axisymmetric shape.
The diameter of the disks and their heights perpendicular tothe horizontal plane differ in a
significant way between the two models. More specifically, atthe end of the evolution, and
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Figure 4. The same as figure 3 but showing the tori at the end of the simulation.

using theρ = 1010 g/cm
3 isodensity contour as the reference value below which material is

not considered part of the disk, our simulations yield disk diameters of∼ 50 km for model
M3.6q1.00 and∼ 150 km for modelM3.4q0.70. The corresponding vertical scale for
both models is∼ 5 km and∼ 35 km, respectively.‡ Taking into account all the models of
our sample, we find that both scales increase as the mass ratiodecreases. Even more worth
noticing is the fact that, in the cases considered, while thetori differ in size by about a factor
∼ 3, they differ by a factor∼ 200 in mass, while having comparable mean rest-mass densities
(see further discussion in sections 4.2 and 4.8).

4.2. Rest-mass Evolution

In order to establish how the asymmetry in the mass of the two NSs in the binary leads to tori
with different masses we show in figure 5 the evolution of the total rest mass, defined as

Mtot =

∫

V

ρW
√
γ d3x =

∫

V

D
√
γ d3x , (4)

normalized to its initial value and for the different models. In this equationW ≡ αut is
the Lorentz factor,α being the lapse function, andγ is the determinant of the spatial metric.
All the curves in figure 5 have been shifted in time to coincideat tcoll, which represents the
(collapse) time at which a rapid decrease of the total mass takes place following the formation
of a BH. Note that, in practice, the collapse time is different for all models, ranging from
around 6 ms for modelM3.4q0.70 to around 11 ms for modelM3.4q0.80.

‡ Of course it should be noted that the spatial dimensions reported here depend on the cut-off chosen for the rest-
mass density. Using smaller cut-offs thanρ = 1010 g/cm3 would lead to considerably larger estimates for the sizes
of the tori.
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Figure 5. Evolution of the total rest massesMtot normalized to their initial values for all the
models considered. The order of magnitude of the mass fraction in the accretion torus can
be read off the logarithmic mass scale on the vertical axis. The curves referring to different
models have been shifted in time to coincide attcoll, which represents the time when the very
rapid decrease of the total rest mass takes place. Note that this time is not physically relevant
(the apparent horizon is usually found earlier thantcoll) and simply corresponds to when the
very large amount of rest-mass accumulated in a very few cells is numerically dissipated.

Figure 5 shows that all models conserve the baryonic mass almost perfectly (i.e. with
losses of. 10−6) up until the formation of the apparent horizon, after whichmost of the rest
mass disappears in the singularity. One obvious result which can be deduced from figure 5
is that the mass of the resulting accretion disk becomes larger the smaller the value ofq.
However, this trend is not entirely monotone in the figure as it is also influenced by the initial
total baryonic mass of the binary. The particular values of the tori masses computed for
all models are reported in table 2. While the equal-mass model produces a disk of barely
10−3M⊙, modelsM3.4q0.80 andM3.4q0.70 produce significantly more massive tori
with masses of about0.2M⊙. A more detailed discussion of the mass in the tori will be made
in section 4.8.

As the apparent horizon is formed, a substantial part of the rest-mass is still outside it,
although it will accrete rapidly onto the BH. This makes the mere definition of what is the
torus and its mass rather arbitrary and we decide therefore to define the torus massMtor

as the total baryonic rest mass outside the apparent horizonwhen the disk enters a regime
of quasi-steady accretion (QSA), a regime which is found in all models investigated. More
specifically, we compute the accretion rate as

Ṁtot =
d

dt

∫

V

ρW
√
γ d3x . (5)

and define the onset of the QSA as the point in time when the condition Ṁtot/Mtot <
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Figure 6. Evolution of the total baryonic massMtot (upper rows) and of the accretion rate
Ṁtot (lower rows) in the regime of QSA for the representative models M3.6q1.00 (left
panel) andM3.4q0.70 (right panel). Indicated with a vertical dashed line is the onset of
the QSA. Note that bothMtot and Ṁtot differ by almost two orders of magnitude when
comparing equal and unequal-mass binaries.

10−6(Gc−3 M⊙)
−2 is satisfied for the first time. In other words, we define the onset of

the QSA as the time when the accretion has stabilized and the matter is moving on essentially
circular orbits. This definition is again somewhat arbitrary, but has the advantage of allowing
for a systematic comparison of the differences in the properties of the accretion tori produced
by the several models considered in this work.

Figure 6 shows the evolution of the total rest massMtot (upper rows) and the mass
accretion rateṀtot (lower rows) in the regime of QSA for the two extreme models ofour
sample,M3.6q1.0 (left panel) andM3.4q0.70 (right panel). Also indicated with a vertical
dashed line is the onset of the QSA and it should be noted that bothMtot andṀtot differ by
almost two orders of magnitude when comparing equal and unequal-mass binaries. An aspect
of the evolution of the accretion rate which is quite evidentin figure 6 is the sharp difference
between equal- and unequal-mass binaries. The equal-mass case, in fact, shows an accretion
rate (and indeed the whole evolution of the torus) that is subject to quasi-periodic oscillations
as the torus moves in and out at about the radial epicyclic frequency. The mass flux of the
unequal-mass model, on the other hand, is rather constant intime and this reflects a very
different distribution of angular momentum in the tori. Both of these aspects will be further
discussed in the following sections.

4.3. Density evolution

Once the BH is formed, an effective gravitational potentialwell builds up in which the
torus undergoes radial oscillations. In the case of an equal-mass binary, the well is
essentially axisymmetric and the dynamics of oscillating relativistic tori in equilibrium and
in axisymmetry has been analyzed extensively in a series of papers [61, 28, 30, 26] in the
test-fluid approximation (where the self-gravity of the disk is neglected), with and without
magnetic fields, and for the cases of Schwarzschild and Kerr BHs. These papers have shown
that, upon the introduction of perturbations in the tori, a long-term oscillatory behavior is
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Figure 7. Evolution of the maximum of the rest-mass densityρmax, normalized to its initial
value for the representative modelsM3.6q1.00 (left panel) andM3.4q0.70 (right panel).
The rapid drops take place well after an apparent horizon hasbeen formed and are caused by
the numerical methods which are no longer able to resolve thevery large gradients in the very
central grid cells. The two insets provide a magnified view ofthe evolution of the density in the
torus and help to contrast the periodic accretion produced in the case of equal-mass binaries
and the QSA for the unequal-mass binaries.

found, lasting for tens of orbital periods. These oscillations correspond to axisymmetric
p-mode oscillations whose lowest-order eigenfrequencies appear in the harmonic sequence
2:3. This harmonic sequence is present with a variance of∼ 10% for tori with a
constant distribution of specific angular momentum and of∼ 20% for tori with a power-
law distribution of specific angular momentum. More recently, those studies have been
extended by [62], where systems formed by a BH (in the puncture framework) surrounded by
(marginally stable) self-gravitating disks have been evolved in axisymmetry. Even in this case,
the ratio of the fundamental oscillatory mode and the first overtone also shows approximately
the2:3 harmonic relation found in earlier works [28, 30, 26].

The dynamics of the BH–torus system produced by the merger ofmodelM3.6q1.00 is
considerably more complicated than that considered in the test-fluid studies, for which initial
configurations in stable equilibrium could be found. However, despite the fact these systems
are formedab-initio as the end-products of highly dynamical events, it is remarkable that so
much of the phenomenology studied and reported in [61, 28, 30, 26] continues to apply also
here. Unfortunately, although the simulation extends to∼ 26ms, the timeseries is much too
short to provide a firm evidence of the presence of the2:3 harmonic relation, although the
spectral analysis of the data indicates that excess power ispresent at such frequencies.

To provide additional evidence that the harmonic behaviouris not just in the accretion
rate, figure 7 shows the evolution of the maximum of the rest-mass densityρmax, normalized
to the corresponding initial value, for the two extreme models of our sample,M3.6q1.00
andM3.4q0.70. The equal-mass modelM3.6q1.00 (represented in the left panel of figure
7) shows the most regular and pronounced oscillatory behavior, as was already evident in the
time evolution of the total baryonic rest mass and accretionrate in figure 6. The two insets
in this figure magnify these features in the QSA regime and, inthe case ofM3.6q1.00 they
highlight the presence of both maxima and minima corresponding to configurations when the
torus reaches the point of closest approach to the BH (periapsis or pericenter) and of farthest
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excursion (apoapsis or apocenter), respectively. A similar trend can be hinted also for the
M3.4q0.70 model on the right panel of Fig 7, although the quality of the oscillations is
smaller in this case, most likely because in this case the enhanced tidal disruption during the
merger phase leads to a more complex dynamics. Interestingly, such oscillations seem to
become more regular during the final stages of the evolution,i.e. for t & 17ms, as the torus
reaches a more axisymmetric configuration.

A novel technique to analyze the evolution of the tori and to gain some insight on their
dynamics is that offered by spacetime diagrams for observers comoving with the black hole.
This is shown in figure 8, which reports the evolution of the color-coded rest-mass density
embedded in a spacetime diagram with the(x−x

AH
) coordinate on the horizontal axis, where

x
AH

is the position of the apparent horizon, and the coordinate timet on the vertical axis. The
color-code is indicated to the right of each plot and isodensity contours are shown for the
values ofρ = 1010, 1011, 1012, 1013 g/cm3. Note that while these values are the same for all
the panels, the spatial dimensions vary considerably. For each model, the dotted horizontal
line marks the onset of the regime of QSA.

By comparing the spacetime diagrams for all models it is evident that only the equal-mass
modelM3.6q1.00 shows a global oscillatory movement with respect to the location of the
BH horizon. The movement is indeed global as all the isodensity contours plotted oscillate
simultaneously and the maximum and minimum radial extensions reached by the disk (as
signalled by the location of the1010 g/cm3 contour) are∼ 25 km and∼ 15 km, respectively.
It is these oscillations that produce the periodic increasein the maximum rest-mass density
reported in figure 7 and it is easy to appreciate that in this case the average density in the disk
is less than about1012 g/cm3.

Scrolling through the different panels in figure 8 it is possible to appreciate that the
dynamics of the torus is strongly influenced by the mass ratio. More specifically, models
M3.4q0.80, M3.5q0.75, M3.4q0.70, show very rapid expansions corresponding to the
ejection of the large spiral waves discussed in the previoussections. As we will comment
later on, most of this matter is still bound but it nevertheless reaches distances which are
several hundreds ofkm away from the BH, leading to tori that have spatial dimensions as
large as∼ 80 km. Furthermore, noticeably higher average rest-mass densities are reached in
the three low-q models. As a result, while tidal disruption sweeps away a large fraction of the
external layers of the less massive star in the binary, the corresponding tori are still able to
retain the inner and denser regions; this is particularly the case for modelsM3.4q0.80 and
M3.4q0.70, where the tori reach maximum densities as high as∼ 1014 g/cm

3.

4.4. Dynamical Instabilities

As mentioned in the Introduction, current models of GRBs assume that the central engine
is a system consisting of a BH and a thick disk, either formed at the late stages of the
coalescence of two NSs or after the gravitational collapse of a massive star. The energy supply
comes from the energy released by the accretion of disk material on to the BH and from the
rotational energy of the BH itself, which can be extracted, for instance, via the Blandford-
Znajek mechanism [63]. This vast amount of energy (a few1053–1054 erg depending on
the mass of the disk and on the BH rotation and mass) is sufficient to power a GRB if the
energy released can be converted intoγ-rays with an efficiency of about a few percent. This
scenario requires a stable enough system to survive for a fewseconds. In particular, the
internal shock model [64] implies that the duration of the energy release by the source has
a duration comparable with the observed duration of the GRB.Any instability which might
disrupt the system on shorter timescales, such as as the so-called runaway instability [65],
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Figure 8. Evolution of the rest-mass densityρ along the positivex axis in a frame comoving
with the BH. The panels show the color-coded rest-mass density embedded in a spacetime
diagram with the(x − x

AH
) coordinate on the horizontal axis, beingx

AH
the position

of the apparent horizon, and the coordinate timet on the vertical axis. The color-code is
indicated to the right of each plot. Additionally, isodensity contours are shown for the values
of ρ = 1010, 1011, 1012, 1013 g/cm3. For modelsM3.4q0.80 andM3.4q0.70, where
the horizon could not be tracked,x

AH
represents a guess for the border of the horizon. For

each model, the dotted horizontal line marks the onset of theregime of QSA.
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could pose a severe problem for the accepted GRB models. The runaway instability was first
pointed out in ref [20] and operates as follows: if the torus is initially filling its Roche lobe,
transfer of mass onto the BH is possible through the cusp located at theL1 Lagrange point. As
a result of accretion, the mass of the BH increases, thus leading to a change in the gravitational
field of the system and ultimately to a change in the position of cusp. This can move either
inwards (towards the BH) or outwards (away from the BH) and when this happens it leads to
a increase in the mass transfer and hence to the runaway accretion of the torus on a timescale
of a few milliseconds.

The runaway instability has been investigated under different assumptions and
approximations (see [22, 24] and references therein). Early simplified studies based on
stationary models showed that, on the one hand, the self-gravity of the disk favours the
instability, and, on the other hand, there are also parameters which may help to stabilize the
disk, such as the rotation of the BH and the radial distribution of specific angular momentum.
The first time-dependent, general relativistic hydrodynamical axisymmetric simulations of the
runaway instability of tori around BHs were performed by [22, 66, 25, 23], who treated the
dynamics of the gravitational field in an approximative way and neglected the self-gravity of
the torus. Overall [22, 25, 23] found that tori with constantdistribution of specific angular
momentum were unstable while non-constant (power-law) angular momentum disks were
stable. More recently, in [24] the first simulations in full general relativity of marginally-
stable self-gravitating tori in axisymmetry were performed with the purpose of evaluating the
influence of the torus self-gravity on the runaway instability. The results of [24] indicate that
the tori are indeed stable irrespective of the angular momentum distribution. It is therefore
interesting that the results presented in figure 8, which arenot restricted to axisymmetry
but are however constrained to much shorter timescales, reach the same conclusion: self-
gravitating tori around BHs, as those produced by the mergerof binary NSs, are stable at least
on the dynamical timescales investigated here. Additionalconsiderations on the stability of
the tori are presented in the following section.

4.5. Specific Angular-Momentum Evolution

Besides the rest-mass density, another quantity whose evolution is useful to understand the
dynamics of the tori is the the specific angular momentum. This quantity plays an important
role in defining the dynamics of point particles around blackholes and in defining the
equilibrium of non-self gravitating tori around black holes [67]. As mentioned above, we
define the specific angular momentum asℓ ≡ −uφ/ut and note that a similar but distinct
definition of the specific angular momentum was used in [1], namely j = huφ. The two
definitions have the same Newtonian limit ofjNewt = ℓNewt = Ωr2, Ω being the angular
velocity. However, it is important to stress that only the definition used here yields the correct
zero radial epicyclic frequency for tori with constant specific angular momentum [see eqs. (43)
and (45) of [28]].

Figure 9 shows therefore the evolution of the specific angular momentum, where the
different panels show the color-coded specific angular momentum for an observer comoving
with the BH. The color-code is indicated to the right of each plot and in addition the same
isodensity contours reported in figure 8 are shown here to aidto follow the dynamics of
the matter. The most striking feature to note when scrollingthrough the different panels in
figure 9 is that the radial distribution changes radically but systematically when going from
the equal-mass binaryM3.6q1.00 over to the most extreme unequal-mass binary considered
M3.4q0.70. In particular, while the specific angular momentum is decreasing outwards in
modelsM3.6q1.00, M3.7q0.94 andM3.4q0.91, is Keplerian and increasing outwards
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Figure 9. The same spacetime diagrams as in figure 8 but for the evolution of the specific
angular momentumℓ = −uφ/ut. Note that the isocontours in this case refer to the rest-mass
density and are the same as in figure 8.

as ∼ x1/2 for the remaining models (see also the discussion in the following section).
Furthermore, the spacetime plots show that the matter located in the outer regions of the disks
acquires the largest values of the specific angular momentum. This is particularly visible in
the early evolution of modelM3.4q0.80, in which a large spiral arm develops extending
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Figure 10. Profiles along thex-axis of the specific angular momentum of the tori produced
by the binariesM3.6q1.00 (blue lines extending to. 20 km) andM3.4q0.70 (red lines
extending up to& 70 km). The profiles are computed in a frame comoving with the BH and
for densitiesρ > 1010 g/cm3. Different line types refer either to the onset of the QSA
(i.e. t ∼ 10ms, thin solid lines) or to the end of the simulation (i.e. t ∼ 22ms, thick
dashed lines). Note the marked difference with the unequal-mass specific angular momentum
increasing outwards.

beyond the computational boundary, and also in the late evolution of modelM3.4q0.70
when the corresponding disk reaches the largest radial extension (cf. right panel of figures 3
and 4). Broadly speaking, our simulations show that, in agreement with the results of [1], the
smaller the value ofq, the more the angular momentum is transported outwards by a torque
from the non-axisymmetric object that forms after the merger.

To better highlight the different behaviour ofℓ for different mass ratios we show in
figure 10 the profiles along thex-axis for the tori produced by the binariesM3.6q1.00 (blue
lines extending to. 20 km) andM3.4q0.70 (red lines extending up to& 70 km). The
profiles are computed in a frame comoving with the BH and for densitiesρ > 1010 g/cm

3.
Different line types refer either to the onset of the QSA (i.e. t ∼ 10ms, thin solid lines) or
to the end of the simulation (i.e. t ∼ 22ms, thick dashed lines). Quite clearly, the specific
angular momentum decreases outward at all times for the equal-mass binary, while it increases
outward for the unequal-mass one (although it was initiallydecreasing at the innermost
parts). At this point it is worth remarking that the Rayleigh’s criterion against axisymmetric
perturbations of rotating fluids requires thatdℓ/dx ≥ 0 for a dynamical stability [68]. While
this criterion is clearly satisfied by modelM3.4q0.70, it is equally-clearly violated by
M3.6q1.00, which is nevertheless stable. We believe this difference is due to the fact
that Rayleigh’s criterion assumes that the motion is stationary and purely azimuthal. While
this is essentially the case for the unequal-mass binary which does not show clear evidence
of epicyclic oscillations, it does not hold true for the unequal-mass binary which shows
instead large radial epicyclic oscillations. The nonlinear stability ofM3.6q1.00, but also of
M3.7q0.94 andM3.4q0.91, seems therefore to indicate that Rayleigh’s criterion canand
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should be extended to account for fluids which are subject to large radial excursions.
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Figure 11. The same spacetime diagrams as in figure 9 but for the evolution of the angular
velocity Ω. Note that the isocontours in this case refer to the rest-mass density and are the
same as in figure 8.
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Figure 12. The same as in figure 10 but for the angular velocity. Shown as reference with
a dotted line is the Keplerian angular velocityΩKep, which matches very well the outer
parts of the torus from the unequal-mass binary. Shown instead with a long-dashed line is
an exponentially decaying profile which instead reproduceswell the profile for the equal-mass
binary.

4.6. Angular-velocity Evolution

In analogy with figures 8 and 9, figure 11 shows the spacetime diagram for the evolution of
the angular velocityΩ ≡ uφ/ut for all models of our sample. It is straightforward to notice
that for all models the angular velocity decreases with the radial distance from the apparent
horizon. While this is qualitatively in agreement with the results of [1], it is worth noting that
the radial fall-off is very different as the mass ratio is varied among the different binaries. This
is shown in figure 12 which reports the profiles ofΩ along thex-axis for the tori produced
by the binariesM3.6q1.00 (blue lines extending to. 20 km) andM3.4q0.70 (red lines
extending up to& 70 km). As before, the profiles are computed in a frame comoving with
the BH and for densitiesρ > 1010 g/cm

3 and different line types refer either to the onset
of the QSA (i.e. t ∼ 10ms, thin solid lines) or to the end of the simulation (i.e. t ∼ 22ms,
thick dashed lines). It is then clear that while the equal-mass binary has an exponentially
decaying profile (cf. long-dashed line),i.e.Ω ∝ exp[−k(x− x

AH
)] ∼ exp[−0.07(x− x

AH
)],

which does not change significantly with time, the unequal-mass binary reaches at the end of
the simulation a profile which is, especially in the outer parts, essentially Keplerian,i.e. with
ΩKep ∼ x−3/2 (cf.dotted line). This feature, which is also shared by the otherlow-q binaries,
explains the scaling of the specific angular momentum asℓ ∼ x1/2 and provides firm evidence
that the tori produced in this case will be dynamically stable.

4.7. Matter Ejection

As a final but nevertheless important aspect of the formationand evolution of the tori, we
consider whether or not a part of the rest-mass of the system is ejected during the merger
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Figure 13. The same spacetime diagrams as in figure 9 but for the evolution of local fluid
energyut. Note that the isocontours in this case refer to the rest-mass density and are the
same as in figure 8.

and the subsequent evolution. To determine whether a fluid particle is bound or unbound we
use the covariant time component of the 4-velocityut and recall that, in an axisymmetric and
stationary spacetime, the value ofut for a particle moving along a geodesic is conserved. If the
particle is unbound, it moves outwards and−ut = W > 1 at infinity, whereα ≡ 1, βi ≡ 0.
The local conditionut > −1 thus provides a necessary although not sufficient, condition for
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a fluid element to be bound; stated differently, if a particlereaches infinity it is because it
hasut < −1. Furthermore, this condition is exact only in an axisymmetric and stationary
spacetime, and our spacetimes attain these properties onlyin the final stages of the evolution.
Nevertheless, this is a useful condition for a first estimateof the amount of matter ejected
and a in-depth discussion on the assumptions implicit in this criterion and on how it applies
if one accounts for external forces are presented in [69]. (Note that the alternative criterion
for bound flows, namelyhut > −1, would yield similar results since in the relevant regions
h ∼ 1.)

Figure 13 shows the evolution ofut embedded in a spacetime diagram much like the
ones presented before for the rest-mass density, the specific angular momentum and the
angular velocity. For all models under consideration, the criterionut > −1 is well fulfilled,
namely all the matter in the tori is bounded, except for modelM3.4q0.80 which clearly
shows in the early stages of its evolution, that a certain amount of unbound matter is ejected
before reaching the regime of QSA. Only for the outermost, very low-density regions of the
tori (which are not shown in the spacetime diagrams of figure 13) values ofut ≤ −1 are
encountered in the other models and are probably the manifestation of an outflowing wind
caused by the very large temperatures of those regions. As a final remark we note that
although the total amount of matter ejected in this way is rather small and only of the order
of ∼ 10−4 M⊙, it can nevertheless act as the site for the production of theneutron-rich heavy
elements that are formed by rapid neutron capture (i.e. the r-process) (see [70] and references
therein). Performing such calculations and thus determining to what extent binary NS mergers
contribute to the whole observed r-process material in the Galaxy requires a fully developed
reaction network and is outside the scope of this study, but will be the focus of our future
research.

4.8. A phenomenological expression for the mass in the torus

As mentioned above, determining the amount of rest-mass in the torus may be one of the most
important aspects of this research for the impact it has on the modelling of the emission in
SGRBs. Table 2 also reports the mass of the torus and since thelatter slightly decreases in
time, we have arbitrarily chosen the time oft ∼ 17 ms as a reference (it is about the latest
time for which we have data from all the simulations). Because of the importance of the
information and because of the scarcity of the numerical data available, it would be valuable
to derive a phenomenological expression for the mass in the torus which can be constructed
on basic expectations and that can be constrained by using the numerical data.

Following this spirit, we first search for a phenomenological expression for the torus
mass which will depend only on the mass ratio and on the total mass of the binary,i.e.M̃tor =

M̃tor(q,Mtot). Next, we exclude the trivial case in which the total mass is larger than the
maximum mass of the binary systemMmax (based on the maximum allowed mass for isolated
stars with the given EOS); in practice we impose thatM̃tor(q,Mtot ≥ Mmax) = 0 for any
value ofq. Finally we impose the expectation that the mass of the torusshould depend, at
least at lowest order, on the mass ratio (this was already noted by [1]) and yield the torus with
smallest possible mass for an equal-mass binary. Collecting all of this constraints, ouransatz
is

M̃tor(q,Mtot) = c1(1− q)(Mmax −Mtot) + c2(Mmax −Mtot)

= [c3(1 + q)M∗ −Mtot] [c1(1− q) + c2] , (6)

where in the second expression we have written the maximum mass of the binary in terms of
the maximum massM∗ of an isolated nonrotating star,i.e.Mmax = c3(1 + q)M∗.
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Note that as introduced in expression (6), the coefficientsc2 andc3 have a direct physical
interpretation:c2 is proportional to the mass of the torus for equal-mass binaries, whilec3
parameterises the excess of maximum mass that can be supported in the binary because of
the stabilizing effect produced by the nonzero spin of the stars and of the tidal potential
(i.e. c3 is expected to be slightly larger than1). The three coefficients,c1, c2 and c3 can
then be computed by comparing expression (6) with the numerical data reported in table 2
as well as the one computed in [3] for equal-mass binaries. The fitting procedure then yields
c1 = 1.115±1.090, c2 = 0.039±0.023, c3 = 1.139±0.149, with a reducedχ2 ≃ 2×10−3.
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Figure 14. Different symbols show the torus massMtor measured either in the simulations
reported here (red crosses) or in those reported in [3] (green squares). Also shown in
the parameter space(q,Mtot) considered here is the phenomenological modelling̃Mtor

suggested by expression (6). Note that to highlight the functional behaviour of the
phenomenological expression, thex− and y−axes are shown as decreasing when moving
to the right and to the left, respectively.

Figure 14 shows the torus massMtor either as measured in the simulations reported here
(red crosses) or in those presented in [3] (green squares) and against the phenomenological
modellingM̃tor suggested by expression (6) in the region whereMtot ≤ Mmax. Note that to
highlight the functional behaviour of the phenomenological expression, thex− andy−axes
are shown as decreasing when moving to the right and to the left, respectively. Overall, the
figure shows rather generically that: 1) the mass of the torusincreases with the asymmetry in
the mass ratio; 2) that such an increase is not monotonic and that for sufficiently small mass
ratios the tidal disruption leads to tori that have a smallermass for binaries with the same total
mass; 3) that tori with masses. 0.21M⊙ have been measured and even more massive ones,
i.e.with masses up to∼ 0.35M⊙, are possible for mass ratiosq ∼ 0.75− 0.85.

We note that somewhat similar considerations about the massof the torus were made also
in [1], where a different phenomenological expression for the mass of the torus was proposed.
When applied to the data computed here, the expression suggested in [1] does not reproduce
well the data and yields rather large errors. There are a number of reasons which could justify
these differences and that are related to the different initial data chosen (ref. [1] has only
two initial total masses which are smaller than those considered here), to the different EOSs
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employed (ref. [1] uses cold but realistic EOSs in contrast to the ideal-fluid chosen here) and
to the different numerical techniques adopted (ref. [1] uses a uniform grid with rather coarse
resolution in place of the mesh-refined grid employed here).All these differences make the
comparison between the two calculations rather difficult, although they also motivate a closer
comparison using at least the same initial data and the same EOSs, and which will be the
subject of our future work. However, common conclusions of both calculations are: that the
mass of the torus can be as large as∼ 0.1M⊙ and larger; that it increases with the mass
asymmetry in the binary; that is largest for systems with smaller total mass. We believe
these features are robust and will be also present when different initial data and EOSs are
considered.

A final note of caution must be mentioned: Although figure 14 indicates a very good
match between the data and expression (6), it also shows thatthe latter is inaccurate for
q ≃ 1, where the tori masses are much smaller and the prediction leads to small but negative
values; luckily, the regime where (6) is less accurate is also the least interesting one from an
astrophysical point of view. Most importantly, however, itis clear that the attempt to produce
a phenomenological description for the mass of the torus after having investigated only a
small portion of the space of the parameters (especially with respect to the total mass of the
binary) and after using as support only8 simulations is a very demanding task and potentially
a flawed one. However, because we believe that expression (6)is a reasonable description of
the expected results, we foresee that it will reveal its robustness as additional simulations are
performed and the coefficients will be further improved. This will indeed be the subject of
our future work.

5. Gravitational-Wave Emission

Figure 15 shows the waveforms in the two polarizations of thegravitational-wave amplitude
(h+)22 (upper panels) and(h×)22 (lower panels) for all the models considered and as
computed from the gauge-invariant perturbations of a Schwarzschild spacetime. As predicted
by the post-Newtonian approximation [71], the inspiral phase is characterized by harmonic
oscillations at roughly twice the orbital frequency but that show an increase both in amplitude
and frequency as the merger approaches. We note the initial part of the inspiral of the binary
M3.4q0.80 shows a comparatively larger contamination from the initial spurious burst of
radiation. This is simply due to the fact that such a binary has been constructed with a
comparatively larger initial violation of the constraints(i.e. the violation of theL2 norm of the
Hamiltonian constraint is∼ 3 × 10−6 and about50% larger than the violation measured in
other binaries). We believe that this larger initial error is also the one responsible for a longer
time spent by this binary before the merger.

As already discussed before, because of the very high total mass of the systems no
transient HMNS forms, whose dynamics would have been dramatically imprinted on the
waveforms (cf. the detailed comparison of the HMNS dynamics for different EOSs presented
in [3]). As a result, the post-merger waveform is essentially the one corresponding to the
collapse of the HMNS to a BH. Indeed, as noted above, in the low-q casesM3.5q0.75 and
M3.4q0.70, for which a common apparent horizon is found almost simultaneously with the
merger, the part of the waveform produced by the newly formedBH starts essentially together
with the end of the one coming from the inspiral.

The ringdown part of the waveform starts increasingly earlyfor binaries with smaller
mass ratios and its signature in the waveform is also less evident. More specifically, while
the ringdown of the BH created after the merger can be clearlyidentified in the waveform
of the equal-mass modelM3.6q1.00, it becomes much less clear as one scrolls down in
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Figure 15. Gravitational waveforms in the two polarizationsh+ (upper panels) andh× (lower
panels) as computed from the lowestℓ = m = 2 multipole for all the binaries considered. For
those models where it was found, the vertical dashed lines mark the time of the first detection
of the apparent horizon. Note that as the mass ratioq decreases, the ringdown part of the
signal starts earlier but it is also less evident because of the increasingly large accretion after
the formation of the apparent horizon. Finally, shown as an aid to comparison, the panel of
the binaryM3.4q070 also reports with dotted lines the waveforms for the equal-mass binary
M3.6q1.00.

the different panels of figure 15 and it seems almost absent inmodelM3.4q0.70. Indeed
it is necessary to examineM3.4q0.70 on a logarithmic scale in order to appreciate the
presence of an exponential ringdown. We believe that this behaviour is mostly likely due to the
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Figure 16. Scaled power spectral densitiesh̃+(f)f1/2 , for all the binaries considered when
placed at a distance of100Mpc. Shown also are the noise curves of the Virgo detector (dotted
magenta), of the advanced LIGO detector (dashed blue) and ofthe planned Einstein Telescope
(dashed red).

copious mass accretion after the formation of the apparent horizon that becomes increasingly
large as the mass ratio decreases. We recall, in fact, that the mass accretion rate following
the BH formation is highly sensitive on the mass ratio and inversely proportional to it (see
figure 5 where this is very apparent). Under these conditionsof very intense mass accretion,
the BH is continuously “hit” by generically nonspherical flows of matter which prevent its
natural ringdown, essentially “chocking” it. A detailed analysis on the role played by mass
accretion on the properties of the ringdown has already beeninvestigated in [72], where
however the BH ringdown was always observed because of the intrinsically perturbative
nature of the approach. The rather different accretion regime reached in these simulations
suggests therefore that the dynamics observed in figure 15 reflects a nonlinear response of
the BH that was not accessible in the work of [72]. Additionalwork is needed to clarify the
relation between hypercritical accretion and BH ringdown and will be the subject of future
investigations.

A more systematic analysis of the waveforms as a function of the mass ratio is beyond
the scope of this paper and will be considered elsewhere using more realistic or parameterized
EOSs. Here, however, as an aid to comparison, the panel relative to the binaryM3.4q070 in
figure 15 also reports with dotted lines the waveforms for theequal-mass binaryM3.6q1.00
and highlights that besides the different amplitude evolution, the mass asymmetry also results
into a different phase evolution which is likely to provide important information on the EOS.

In addition, we show with black continuous lines in figure 16 the scaled power spectral
densities (PSD) ofh+, i.e. h̃+(f)f

1/2, for all the binaries considered when placed at a
distance of100Mpc (see [33] for a definition of̃h+(f)). Shown also here are the noise
curves of the Virgo detector (dotted magenta), of the advanced LIGO detector [73] (dashed
blue) and of the planned Einstein Telescope (ET) [74] (dashed red). Since the number of
cycles computed is very small, the peak emission is the one corresponding to the last stages
of the inspiral, around0.6 − 0.7 kHz for all models considered. The amplitude, however,
depends sensitively on the mass ratio, being maximal for thehigh-q binaries and above the
noise curve for Virgo in these cases. As the mass ratio is decreased, in fact, the peak values
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of the PSD decrease and the binaries at the distances considered become then undetectable by
an interferometer like Virgo (we recall that the binaryM3.4q0.80 has an extended inspiral
induced by the larger initial violation of the constraints;hence its PSD amplitude is spuriously
increased in figure 16). New-generation detectors such as advanced LIGO will instead be able
to reveal the inspiral signal in the frequency interval∼ 0.3− 2.0 kHz, while essentially all of
the late-inspiral and merger signal would be measured by theEinstein Telescope (see ref. [75]
for an introduction to science reach of third-generation detectors such as ET, and ref [76]
for a detailed discussion of the impact that gravitational waves from NSs may have on such
detectors). Table 3 summarizes this by reporting the signal-to-noise ratios (SNRs) for the
different detectors and clearly highlights that present detectors are unlikely to detect any of
the binaries considered here if at a distance of100Mpc and observed only during the final
part of the inspiral. On the other hand, advanced detectors will be able to reveal these sources
even at such large distances (the only ones that can provide an interesting event rate) and, in
the case of third-generation detectors such as ET, even measure them with significant SNRs.

Model SNR for Virgo SNR for adLIGO SNR for ET

M3.6q1.00 0.41 2.56 47.47
M3.7q0.94 0.41 2.59 48.33
M3.4q0.91 0.38 2.48 45.40
M3.4q0.80 0.46 3.29 55.68
M3.5q0.75 0.36 2.38 42.56
M3.4q0.70 0.34 2.29 40.48

Table 3. SNR as computed for the different binaries considered as computed when placed at a
distance of100Mpc for a presently operating detector such as Virgo, as well as for detectors
of second and third generation, such as advanced LIGO and ET.

6. Conclusions

Numerical-relativity simulations of non-vacuum spacetimes have now reached a sufficient
stability and accuracy to be able to describe in a complete manner all of the stages of the
inspiral, merger and post-merger of binary NSs. Determining the properties of the black-hole–
torus system produced by the merger represents a key aspect in the modelling of the central
engine of SGRBs. Of the many different properties characterizing the torus, the total rest-mass
clearly represents the most important one, since it is the torus’ binding energy which can be
tapped to extract the large energies necessary to power the SGRB emission. However, the
rest-mass density and angular momentum distributions in the torus also represent important
elements which determine its secular evolution and need to be computed equally accurately
for any satisfactory modelling of SGRB engine.

As a first step towards modellingab-initio the central engine of SGRBs, we have
here presented new results from accurate and fully general-relativistic simulations of the
coalescence of unmagnetized binary NSs with unequal massesas these are the ones expected
to yield the largest tori. The evolution of the stars has beenfollowed through the inspiral
phase, the merger and prompt collapse to a BH, up until the appearance of a thick accretion
disk, which was studied as it enters and remains in a regime ofquasi-steady accretion.
Although we have employed a simple ideal-fluid equation of state, we have performed a
systematic study of the properties of the black-hole–torusobtaining a number of results that
can be summarized as follows:
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• The mass of the torus increases considerably with the mass asymmetry and equal-mass
binaries do not produce significant tori if they have a total baryonic massMtot &

3.7 M⊙. Those produced have massesMtor ∼ 10−3 M⊙ and a radial extension of
∼ 30 km.

• Tori with masses as large as∼ 0.2M⊙ have been measured with binaries having
Mtot ∼ 3.4 M⊙ and mass ratiosq ∼ 0.75 − 0.85. The tori in these cases are much
more extended with typical sizes& 120 km.

• The mass of the torus can be described accurately by the simple expression
M̃tor(q,Mtot) = [c3(1 + q)M∗ −Mtot] [c1(1− q) + c2], involving the maximum mass
for the binaries and coefficients, both of which can be constrained from the simulations.

• Using the phenomenological expression we conclude that tori with masses as large as
M̃tor ∼ 0.35M⊙ can be produced for binaries with total massesMtot ∼ 2.8 M⊙ and
q ∼ 0.75− 0.85.

• Tori from equal-mass binaries exhibit aquasi-periodicform of accretion associated with
the radial epicyclic oscillations of the tori, while those from equal-mass binaries exhibit
a quasi-steadyform of accretion.

• When analyzing the evolution of the angular-momentum distribution in the tori, we find
no evidence for the onset of non-axisymmetric instabilities, that angular momentum is
transported outwards more efficiently for smaller values ofq thus yielding Keplerian
angular-velocity distributions, and that very little of the mass of the tori is unbound.

• Present gravitational-wave detectors are unlikely to detect any of the binaries considered
here if at a distance of100Mpc and observed only during the final part of the inspiral.

• Advanced detectors will be able to reveal these sources evenat large distances and
measure them with significant SNRs in the case of third-generation detectors such as
ET.

Overall, these results indicate that large-scale tori withlarge masses and quasi-stationary
evolutions can be produced as the result of the inspiral and merger of binary NSs with unequal-
masses. Hence, they may provide the energy reservoir neededto power short GRBs. Although
complete and accurate, our results are also far from being realistic. Much remains to be done
to improve them either by considering physically-motivated EOSs, or by including the effect
of magnetic fields, or by taking into account the modifications introduced by a self-consistent
treatment of the radiation transfer. All and each of these improvements will be the subject of
our future research.
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Appendix A. On our accuracy: conservation of mass and angular momentum

In a recent work [5] we have discussed in detail the convergence properties of our numerical
simulations and, in particular, the deterioration of the convergence rate at the merger and
during the survival of the merged object, when strong shocksare formed and turbulence
develops. In particular, in figure3 of that work we have shown a very stringent measure
of the overall conservation properties of our simulations by reporting the time evolution of the
energy and angular momentum which are partially radiated during the simulation. In order to
reduce the computational costs associated with the measurements made in [5], we had limited
ourselves to a single configuration and in particular one that, because of the rather high mass,
formed a BH soon after the merger. In particular, we had considered an equal-mass binary
with a total baryonic mass ofMb = 3.56M⊙ and a total ADM mass ofM

ADM
= 3.23M⊙ as

evolved from an initial (coordinate) separation of∼ 45 km. As a result, we were able to show
an overall conservation of both mass and angular momentum toa precision of∼ 1% over a
timescale of∼ 10ms.

Figure A1. Left panel: Evolution of the maximum rest-mass density normalized to its initial
value. Shown with different colours are the different partsof the evolution which are then also
magnified in the three insets (cf. the timescale to associate the insets to the different partsof
the evolution). Right panel: The same as in the left panel butin terms of theℓ = m = 2 mode
of theh+ polarization amplitude.

We here reconsider the same assessment of the conservation properties but for a far more
challenging case of a binary with a small total mass and for which the HMNS survives a
considerably larger time before collapsing to a BH. In particular, we examine the evolution
of an equal-mass binary with a total baryonic mass ofMb = 2.912M⊙ and a total ADM
mass ofM

ADM
= 2.694M⊙ as evolved from an initial (coordinate) separation of∼ 45 km;

this same binary was indicated as 1.46-45-IF in [3] and evolved there only up to25ms. As
representative information about the binary inspiral and merger we report in the left panel
of figure A1 the evolution of the maximum rest-mass density normalized to its initial value
(cf. figure15 in [3]). Shown with different colours are the different parts of the evolution and
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which are also magnified in the different insets (cf. the timescale to associate the insets to the
three parts of the evolution). They refer to the immediate formation of the HMNS (red line),
to the secular evolution of the HMNS as a contracting bar-deformed object (green line) and
to the exponential growth when the threshold to black-hole formation has been crossed (blue
line). The right panel of the same figure shows instead the same stages of the evolution but in
terms of theℓ = m = 2 amplitude of the+ polarization. Note that the timescale over which
the evolution is reported is∼ 140ms and thus a factor∼ 5 larger than the one discussed in [3]
(As for the evolutions in [5], here too we have used a rotational symmetry around thez-axis
to reduce computational costs).

Figure A2. Left panel: conservation of energy. The black continuous line is the ADM mass
computed as an integral over the whole grid, while the long-dashed blue line is the energy
carried from gravitational waves outside the grid and magnified by a factor of10; the red
short-dashed line is the sum of the two and it should be conserved. The numerical violation
is at most1.5% (cf. dot-dashed line). Right panel: the same as in the left panel but for the
conservation of the angular momentum. Also in this case the violation is at most1%.

In analogy with figure3 of [5], we show in the left panel of figure A2 the evolution of
the total mass as normalized to the initial value (cf. left panel of figure3 of [5]). Indicated
with different lines are the volume-integrated values of the ADM mass (solid black line), of
the energy lost to gravitational waves magnified of a factor10 (long-dashed blue line), and of
their sum (short-dashed red line). The last quantity shouldbe strictly constant and this is the
case to a precision of∼ 0.5% during the inspiral, but with a secular decrease that bringsthe
total error to be∼ 1.5% at the end of the simulation (as an aid to comparison the valueat1.015
is shown with a dot-dashed line). Similar considerations apply also to the conservation of the
angular momentum as shown in the right panel of figure A2 (cf. right panel of figure 3 of [5])
which uses the same conventions as the left panel (hereJvol is computed with the integral
(15) in [3]). In this case the radiative losses are much larger (almost15% of the available
angular momentum is lost to gravitational waves) but the overall conservation is still accurate
to ∼ 1%. Once again it is worth nothing that the timescale over whichwe can show accurate
conservation of mass and angular momentum is a factor∼ 14 larger than the one discussed
in [5] and provides us with great confidence over the numerical accuracy of our results. Of
course this does not provide us with any measure of whether such results are indeed realistic.
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