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Abstract. We present new results on instabilities in rapidly and differentially rotating
neutron stars. We model the stars in full general relativityand describe the stellar matter
adopting a cold realistic equation of state based on the unified SLy prescription [1]. We
provide evidence that rapidly and differentially rotatingstars that are below the expected
threshold for the dynamical bar-mode instability,βc ≡ T/|W | ≃ 0.25, do nevertheless
develop a shear instability on a dynamical timescale and fora wide range of values ofβ.
This class of instability, which has so far been found only for small values ofβ and with
very small growth rates, is therefore more generic than previously found and potentially more
effective in producing strong sources of gravitational waves. Overall, our findings support the
phenomenological predictions made by Watts, Andersson andJones [2] on the nature of the
low-T/|W | instability as the manifestation of a shear instability in aregion where the latter is
possible only for small values of theβ. Furthermore, our results provide additional insight on
shear instabilities and on the necessary conditions for their development.

PACS numbers: 04.40.Dg, 95.30.Lz, 95.30.Sf 97.60.Jd

1. Introduction

Non-axisymmetric deformations of rapidly rotating bodiesare rather generic phenomena
in Nature and can appear in a wide class of systems. Particularly interesting within an
astrophysical context are those deformations taking placein fluids that are self-gravitating
and the literature on this has a long history dating back to the work of [3] on incompressible
Newtonian uniformly rotating bodies. Since then, the studyof these instabilities has continued
over the years both in Newtonian gravity and in full general relativity.

Special attention has traditionally been paid to the study of m = 2 instabilities, which
are characterized by the exponential growth ofm = 2 deformations, wherem parametrizes
the azimuthal dependenceeimφ in a standard mode decomposition in spherical harmonics.
Most of the interest in this type of deformation in compact stars stems from the fact that it has
the shortest growth time and leads to the emission of a stronggravitational-wave signal.

The development of non-axisymmetric instabilities is commonly analyzed in terms of
the quantityβ ≡ T/|W | (i.e. the ratio between the kinetic rotational energyT and the
gravitational potential energyW ), that provides a dimensionless measure of the amount of
angular momentum that can be tapped to feed the development of the instabilities. This
parameter plays an important role in what is possibly the most celebrated of the non-
axisymmetric instabilities: the so-calleddynamical bar-mode instability. This is anm = 2
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instability which takes place when the parameterβ is larger than a critical one,βc. In the
case of a Newtonian incompressible self-gravitating polytrope, for instance, the dynamical
bar-mode instability developsβ ≥ βd = 0.2738 [3] and is only weakly dependent on
the considered polytropic index or whether the fluid is compressible. Post-Newtonian (PN)
studies [4] or fully general-relativistic ones [5] correctthis results only slightly, by reducing
the threshold to somewhat lower values of the instability parameter. As an example, for a
polytropic relativistic star with polytropic indexΓ = 2, the accurate calculations reported
in [6] reveal that the critical value isβc ∼ 0.245 and that a simple dependence on the stellar
compactness allows one to track this threshold from the Newtonian limit over to the fully
relativistic one [7].

The onset and development of the bar-mode instability has been traditionally studied by
means of nonlinear 3D simulations of Newtonian stars that are either unmagnetized [8, 9,
10, 11, 12] and, more recently, also magnetized [13]. In addition, PN and fully relativistic
simulations have been performed and highlighted, for instance, that the persistence of the
bar is strongly dependent on the degree of overcriticality and is generically of the order of
the dynamical timescale. Furthermore, generic nonlinear mode-coupling effects between the
m = 1 and them = 2 mode appear during the development of the instability and these
can severely limit the persistence of the bar deformation and eventually suppress the bar
deformation [6]. These results have been recently confirmedby the perturbative calculations
in [14].

Besides dynamical instabilities, which are purely hydrodynamical,secular instabilities
are also possible in rotating compact stars and these are instead triggered by dissipative
processes, such as viscosity or radiation emission. If, in particular, the dissipative mechanism
is the emission of gravitational radiation, then the secular instability is also known as
Chandrasekhar-Friedman-Schutz or CFS instability [15, 16]. Contrary to what their name
may suggest, secular instabilities do not necessarily develop on secular timescales (although
they normally do) and are characterized by having a much smaller threshold for the instability.
Once again, in the case of a Newtonian polytrope, the critical secular instability parameter is
as small asβc ∼ 0.14 and thus much more easy to attain in astrophysical circumstances.

Although widely observed in numerical simulations, the physical conditions leading to
a dynamical bar-mode instability are difficult to be encountered in standard astrophysical
scenarios. Such large values of the instability parameter,in fact, cannot be easily attained in
old and cold neutron stars, which have been brought into uniform rotation and thus to rather
small values ofβ. However, more recently these pessimistic prospects have been changed
when a newm = 2 instability has been discovered in differentially rotating Newtonian
stars [17] for values ofβ ≈ 0.01, therefore well below the expected values for a dynamical
bar-mode instability. The most salient aspect of this new instability is that it appears in stars
with a large degree of differential rotation and that it grows on a timescale which is longer
but comparable with the dynamical one. This instability hasbeen referred to as the “low-
T/|W | instability” and its dependence on the polytropic index andon the degree of differential
rotation has been studied in [18]. Since then, the instability has been observed or discussed
in a number of related studies [19, 20, 21, 22, 23, 24, 25], allof which have highlighted the
possible occurrence of this type of instability during the collapse of a massive stellar core.

Despite the abundant numerical evidence on the developmentof this instability, the
nature of these low-T/|W | instabilities is still matter of debate and, most importantly, a
sufficient criterion for its onset has not been derived yet. This instability has been studied in
great detail by Watts and collaborators [26, 2], who have made a number of phenomenological
predictions either using a toy shell-model first introducedin [27, 28], or for a stellar model in
Newtonian gravity. Overall, the work of Watts and collaborators (but see also [29]) recognizes
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the low-T/|W | instabilities as the manifestation of a more generic class of instabilities, the
shear instabilities [2] , that is unstable oscillations that do not exist in uniformly rotating
systems and are associated to the existence of a corotation band [30, 31]. Watts, Andersson
and Jones suggest, in particular, that a necessary condition for the development of the
instability is “corotation”, that is the presence of a pointat which the star rotates at the same
pattern speed of the unstable mode [2]. An alternative suggestion on the necessary conditions
has been made also by Ou and Tohline [20], who instead associate the development of the
instability to the presence of a minimum in the vortensity profile of the star. This minimum
can then drive unstable not only the corotatingm = 2-modes but also the odd modes such as
them = 1 andm = 3-modes [32]. In this interpretation, the growth time of the instability
is proportional to distance between the corotation radius,i.e. the radial position at which the
unstable mode corotates with the star, and the minimum of thevortensity.

The purpose of this work is to shed some light on the development of shear instabilities
and, in particular, to validate one prediction made, although not explicitly, by Watts,
Andersson and Jones. More specifically, we show that, for sufficient amounts of differential
rotation, shear instabilities develop forany value of the instability parameterβ and also below
the expected critical value for the dynamical bar-mode instability. We therefore provide
evidence that the low-T/|W | instability is not a new instability but rather the manifestation of
a shear instability in a region where the latter is possible only for small values ofβ.

Our analysis proceeds via the simulation in full general relativity of sequences of neutron
star models having constant rest-mass and constant degreesof differential rotation, but with
different amounts of rotation,i.e. with different values ofβ. The neutron-star matter is
described by a realistic equation of state (EOS) defined by the unified SLy prescription [1]
and we study the development of the non-axisymmetric instabilities from their linear growth
up to the fully nonlinear development and suppression. Interestingly, we find that depending
on the degree of differential rotation, the shear instability leads either to the growth of a
single modes (for the low-β models) or to the simultaneous presence of up to three unstable
modes (for the high-β models), which produce beatings in the growth of the overallm = 2
deformation. Special attention is also paid to the properties of the unstable modes and to
their position within the corotation band or the vortensityprofiles. In this way we are able
to confirm both the necessary conditions proposed so far for the onset of the instability. In
particular, we show that all the unstable modes are within the corotation band of the progenitor
axisymmetric model (cf. [2]) and that all of the unstable models have vortensity profiles with
a local minimum (cf. [20]).

The structure of the paper is as follows: in section 2 we describe the numerical setting
of our simulations, the EOS we used and the initial models we generated. In section 3 we
describe the quantities and tools we used to monitor the evolution of the instability. In
section 4 we report the results of the simulations and section 5 is dedicated to conclusions
and discussion. We use a spacelike signature(−,+,+,+) and a system of units in which
c = G = M⊙ = 1 (or in cgs units whenever more convenient). Greek indices are taken
to run from0 to 3, Latin indices from1 to 3 and we adopt the standard convention for the
summation over repeated indices.

2. Numerical Setup and Initial Models

In what follows we provide a brief overview of the numerical setup used in the simulations,
of the realistic EOS adopted and on the procedure followed for the construction of the initial
axisymmetric models.
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2.1. Numerical Setup

We solve numerically the full set of Einstein equations

Gµν = 8πTµν , (1)

where Gµν and Tµν are the Einstein tensor and the stress-energy tensor, respectively.
The equations are solved within the “3+1” decomposition of spacetime, in which the4-
dimensional metricgµν is decomposed into the spatial metricγij , the lapse functionα and the
shift vector componentsβi. The field equations, which then also provide an evolution for the
extrinsic curvature tensorKij , are then coupled to those of general relativistic hydrodynamics

∇µT
µν = 0 ; ∇µ(ρu

µ) = 0 , (2)

where, in the case of a perfect-fluid, the stress-energy tensor is given by

T µν = ρ

(

1 + ǫ+
p

ρ

)

uµuν + pgµν . (3)

Aboveuµ is the fluid4-velocity, p is the fluid pressure,ǫ the specific internal energy and
ρ the rest-mass density, so thate = ρ(1 + ǫ) is the energy density in the rest frame of the
fluid. The set of hydrodynamics equation is then closed by a prescription for the properties
of the matter in the form of a relation between the pressure and other quantities in the fluid,
e.g. p = P (ρ, ǫ), and for which we have chosen a cold and realistic EOS which will be
discussed in the following section.

The evolution of the spacetime was performed using theCCATIE code, a three-
dimensional finite-differencing code providing a solutionof a conformal traceless formulation
of the Einstein equations (see [33] for the explicit expressions of the equations solved in
the code and also [34] for a more recent and improved implementation). The relativistic
hydrodynamics equations, on the other hand, were solved using theWhisky code, which
adopts a flux-conservative formulation of the equations as presented in [35] and high-
resolution shock-capturing schemes or HRSC (see [36, 37, 38] for the explicit expressions
of the equations solved in the code and also [39] for a more recent extension of the code
to MHD). The Whisky code implements several reconstruction methods, such as Total-
Variation-Diminishing (TVD) methods, Essentially-Non-Oscillatory (ENO) methods [40] and
the Piecewise Parabolic Method (PPM) [41]. Also, a variety of approximate Riemann solvers
can be used, starting from the Harten-Lax-van Leer-Einfeldt (HLLE) solver [42], over to
the Roe solver [43] and the Marquina flux formula [44] (see [36, 37] for a more detailed
discussion). All the results reported hereafter have been computed using the Marquina flux
formula and a PPM reconstruction.

Both the Einstein and the hydrodynamics equations are solved using the vertex-centered
adaptive mesh-refinement (AMR) approach provided by theCarpet driver [45]. Our rather
basic form of AMR consists of box-in-box structures centered on the origin of the coordinate
system and with the finest grid covering the whole star at all times. The simulations reported
here make use of4 levels of refinement, with the finest having a resolution of221m and the
coarsest one a resolution of1.77 km. The outer boundary was set relatively close to the star
and at a distance of≃ 159.5 km, i.e. at about≃ 10 times the size of the star. A reflection
symmetry across the(x, y) (equatorial symmetry) plane was used to reduce the computational
costs, but not a rotational one around thez-axis (π-symmetry) as it would have artificially
prevented the growth of odd-m modes (see discussion in [6]).
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2.2. Realistic Equation of State

As mentioned above, the system of hydrodynamics equations needs to be closed by an EOS
relating the pressure with the other primitive variables,e.g. the rest-mass density. Previous
studies of the bar-mode instability, both in Newtonian gravity and in general relativity, have
been focused on the use of ideal fluids and analytic EOSs, either in the form a of a “polytropic”
(and isentropic) EOSp = p(ρ), or of an “ideal-fluid” and (non-isentropic) EOSp = p(ρ, ǫ)
(cf. discussion in [6, 7]). While these two descriptions are expected to provide results that
are qualitatively correct, a more accurate modelling of these instabilities in compact stars
necessarily requires a more physically-motivated description of the neutron-star matter.

It is in this spirit that we have here considered a realistic EOS, namely the unified SLy
EOS [1], which models high-density and cold (i.e. zero temperature) matter via a Skyrme
effective potential for the nucleon-nucleon interactions. The SLy EOS, which describes via
a single effective Hamiltonian the neutron star’s interior, is supplemented with the HP94
EOS [46] to describe the crustal matter and with the BPS EOS [47] for lower density regions.
This prescription results in a one-parameter EOS in the formp = p(e(ρ)) = p(ρ), where the
SLy EOS is used forρ > 4.979× 1010, the HP94 EOS is used for108 . ρ 6 4.979× 1010

and the BPS EOS forρ . 108 (see also figure 1 of [48]). In addition, at even lower densities
the EOS becomes temperature dependent (and thus no longer a simple barotropic EOS), but
because these these regions are well below the threshold forthe artificial atmosphere, we do
not consider an additional prescription forρ . 108 g cm−3.

We recall, in fact, that our HRSC methods require the use of a tenuous atmosphere which
fills the regions of the computational domain not occupied bythe compact star. The threshold
value for the rest-mass density of the atmosphere is chosen to be several orders of magnitude
smaller than the maximum value and in our simulation a fluid element is considered to be
part of the atmosphere if its rest-mass densityρ satisfiesρ/max(ρ) ≤ ×10−8. When this
happens the fluid element is treated as a non-dynamical cold fluid described by a polytropic
EOS,p(ρ) = KρΓ, with Γ = 2 and its velocity is set to zero (see [49] for a more detailed
discussion on the use of the atmosphere in theWhisky code).

The practical implementation of the realistic EOS can take place in a number of different
ways. The simplest is to use standard interpolation techniques,e.g. based on Lagrangian
polynomials, on the values of the published tables. While straightforward, the interpolations
in this approach do not guarantee in general that the thermodynamics relations are fulfilled
(see [50] for a thermodynamical preserving interpolation). In addition, the derivatives of
the fields,e.g. of the pressure to evaluate the sound speed, are typically not available in the
tables. Furthermore, the use of high-order interpolation and/or finite differences can lead to
undesirable spurious oscillations.

A second approach that removes all of these problems, uses analytic fits that have been
proposed for the pressure. As an example, ref. [48] suggested to fit the specific internal energy
of the unified SLy EOS table with the expression‡

ǫ =
p1ρ

p2 + p3ρ
p4

(1 + p5ρ)2
f0{−p6(log(ρ) + p7)}+

ρ

8× 10−6 + 2.1ρ0.585
f0{p6(log(ρ) + p7)} ,(4)

wheref0{x} = 1/(ex + 1), ρ and ǫ are in cgs units, and the coefficientspi are pi =
{0.320, 2.17, 0.173, 3.01, 0.540, 0.847, 3.581} (see Table2 of [48]). Equation (4) is
obtained from Eq. (15) of [48] after usingρ = mBn, wheren is the baryon number density
andmB = 1.66×10−24 g is the mass of the nucleons. As discussed in [51], it is then possible

‡ Note that a different notation is used in [48] for some primitive variables.
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to compute the pressure from the value ofǫ using the first principle of thermodynamics at
T = 0

p = ρ2
dǫ

dρ
, (5)

and thus to have an evaluation of the pressure which is thermodynamically consistent.
The differences between the fit and the table are typically less then2%. Unfortunately,
although apparently very convenient, the evaluation of thefitting formulas containing several
exponential and logarithmic functions, turns out to be computationally rather expensive even
if done in a optimized way.

As a third approach, which combines the efficiency of a table search with the
thermodynamical consistency of an analytic fit, consists ofperforming a simple linear
interpolation among the tabulated values constructed fromthe analytic fit. Besides being
highly efficient, a linear interpolation also eliminates the spurious oscillations that arise, for
instance, in the derivative of the pressure if high-order interpolation formulas are used. In this
case, the interpolation error can be reduced simply by populating the analytically constructed
tables with a large number of entries,e.g. ∼ 600 in place of the∼ 150 which are typically
available in published tables. This third approach is the one actually implemented inWhisky
and provides a speed up of about20% with respect to the evaluation of the pressure via the
analytic fits and with comparable accuracy.

2.3. Initial Data

The initial data for our simulations are prepared as stationary and axisymmetric equilibrium
solutions for rapidly rotating relativistic stars [52]. Adopting spherical quasi-isotropic
coordinates, the line element of the corresponding spacetime is

ds2 = −eµ+νdt2 + eµ−νr2 sin2 θ(dφ − ωdt)2 + e2ξ(dr2 + r2dθ2) , (6)

whereµ, ν, ω andξ are functions ofr andθ. Moreover we assume the usual relativistic
j-constant law of differential rotation and that amounts to assume an angular-velocity
distribution of the form

Ωc − Ω =
1

Â2r2e

[

(Ω− ω)r2 sin2 θe−2ν

1− (Ω− ω)2r2 sin2 θe−2ν

]

, (7)

wherere is the coordinate equatorial stellar radius and the coefficientÂ provides a measure of
the degree of differential rotation. Expression (7) represents the general-relativistic equivalent
of the simpler Newtonianj-constant law [27]

Ωc − Ω =
Ωcr

2 sin2 θ

(Â2r2e + r2 sin2 θ)
. (8)

Clearly,Â → ∞ corresponds to a star in uniform rotation, whileÂ → 0 corresponds to a star
with increasing degree of differential rotation. As a reference,Â = 1 yields a star with an
angular-velocity profile which varies of a factor∼ 3 between the center and the surface of the
star (cf. left panel of figure 2).

In practice, we have computed a very large number of initial models using the SLy
prescription for the EOS for which we have computedbaryonic massMb, the gravitational
massM , the angular momentumJ , the rotational kinetic energyT and the gravitational



On the Shear Instability in Relativistic Neutron Stars 7

Figure 1. Left panel: position in the(β,M/Re) plane of the initial models computed with
Â = 1, with the filled circles representing those we have evolved numerically (A similar
behaviour is shown also by the models witĥA = 2. Indicated with solid thin lines are
isocontours of constant baryon mass models while indicatedwith a thick dashed line is the
threshold to the dynamical bar-mode instability as computed for a Γ = 2 polytrope [7].
Right panel: the same initial models as in the left panel but shown in (ρc, rp/re) planes
with isocontours of constantβ (upper part) or constantM/Re (lower part). See Table 1 for a
summary of the properties of the initial models.

binding energyW defined as

Mb ≡
∫

d3x
√
γW

L
ρ , M ≡

∫

d3x
(

−2T 0
0 + T µ

µ

)

α
√
γ , (9)

Eint ≡
∫

d3x
√
γW

L
ρǫ , J ≡

∫

d3xT 0
φα

√
γ , (10)

T ≡ 1

2

∫

d3xΩT 0
φα

√
γ , W ≡ T + Eint +Mb −M , (11)

where
√
γ is the square root of the determinant of three-dimensional metricγij andW

L
= αu0

is the fluid Lorentz factor. We stress that the definitions (9)–(11) of quantities such asJ , T ,W
andβ are meaningful only in the case of stationary axisymmetric configurations and should
therefore be treated with care once the rotational symmetryis lost.

Out of this large set, we have then selected for the numericalevolution a number of
models so as to build sequences of constant baryonic mass with Mb = 2.5M⊙, degree of
differential rotationÂ = 1, 2 and values of the instability parameterβ ranging between
0.140 and0.250. We note that within this sequence the maximum possible value for β is
aroundβmax ≃ 0.2533 and thus just above the expected threshold for dynamical bar-mode
instabilities (cf. long-dashed line in the left panel of figure 1). Overall, whencomparing
with equilibrium models generated with a polytropic EOS with K = 100 andΓ = 2 (see
table 1 of [6]) the realistic EOS models reach higher compactness (models in [6] typically
haveM/Re ∼ 0.1) but lower values ofβ (i.e. βmax ∼ 0.25 for the models considered here,
while βmax ∼ 0.28 for the polytropic models considered in [6]).

The whole space of parameters is shown in figure 1, whose left panel reports the position
in the(β,M/Re) plane of the initial models computed witĥA = 1, and where the filled circles
represent those we have evolved numerically. Indicated with solid thin lines are isocontours
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Table 1. Main properties of the simulated stellar models. Starting from the left: the name of
the model, the differential rotation parameterÂthe instability parameterβ, the compactness
M/Re, the central rest-mass densityρc, the maximum of the densityρmax (Note that for
models withÂ = 2, ρmax = ρc.), the ratio between the polar and the equatorial coordinate
radii rp/re, the proper equatorial radiusRe, the gravitational massM , the total angular
momentumJ divided by the square of the gravitational mass.

Model Â β M/Re ρc/10
15 ρmax/10

15 rp/re Re M J/M2

(g/cm3) (g/cm3) (Km) (M⊙)
M.1.140 1 0.140 0.245 0.989 1.011 0.562 13.20 2.19 0.681
M.1.150 1 0.150 0.240 0.941 0.968 0.536 13.48 2.20 0.708
M.1.160 1 0.160 0.237 0.893 0.926 0.511 13.81 2.21 0.735
M.1.180 1 0.180 0.226 0.802 0.847 0.461 14.49 2.22 0.789
M.1.200 1 0.200 0.217 0.712 0.773 0.413 15.27 2.24 0.844
M.1.210 1 0.210 0.212 0.668 0.737 0.389 15.70 2.25 0.873
M.1.220 1 0.220 0.207 0.618 0.703 0.365 16.16 2.26 0.902
M.1.230 1 0.230 0.200 0.576 0.669 0.340 16.67 2.26 0.933
M.1.241 1 0.241 0.194 0.522 0.633 0.312 17.29 2.27 0.968
M.1.244 1 0.244 0.193 0.506 0.624 0.305 17.47 2.28 0.978
M.1.247 1 0.247 0.190 0.490 0.614 0.297 17.66 2.28 0.988
M.1.250 1 0.250 0.188 0.474 0.604 0.289 17.85 2.28 0.999
M.2.125 2 0.125 0.241 1.143 1.143 0.642 13.22 2.17 0.668
M.2.150 2 0.150 0.227 1.039 1.039 0.578 14.15 2.17 0.739
M.2.175 2 0.175 0.210 0.947 0.947 0.512 15.33 2.18 0.801
M.2.200 2 0.200 0.184 0.865 0.865 0.435 17.34 2.15 0.878

of constant baryon mass models while indicated with a thick dashed line is the threshold
to the dynamical bar-mode instability as computed for aΓ = 2 polytrope [7]. The right
panel reports the same initial models considered in the leftone but shown in(ρc, rp/re)
planes with isocontours of constantβ (upper part) or constantM/Re (lower part). The main
properties of the simulated models are also reported in table 1, where we also introduce our
naming convention. Any initial model is indicated asM.%.#, with % being replaced by the
value of the differential-rotation parameter̂A and# by the instability parameterβ. As an
example,M.1.200 is the star withÂ = 1 andβ = 0.200.

Finally, shown in figure 2 are the angular-velocity profiles (left panel) and the rest-mass
density profiles (right panel) of some representative models, namelyM.1.150, M.1.200
andM.1.250. Indicated with different symbols, which match the ones in the left panel
of figure 5, are the normalized radial positions of the corotation radii, with the one for
modelM.1.150 being shown filled to help distinguish it from the others. Although we
postpone to sections 4.1 and 4.2 the discussion of the implications of these corotation radii,
two aspects of the initial data are worth emphasizing. The first one is that the amount of
differential rotation for a given value of̂A effectively decreases when increasing the instability
parameterβ (cf. left panel of figure 2), thus resulting in a smaller corotation band for models
with largeβ. The second one is that all the initial models evolved are axisymmetric but have
a “toroidal-topology”, namely have the maximum densityρmax that is not at the center of the
star, and thusρc < ρmax. This toroidal deformation increases with the rotation andthus with
β.
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Figure 2. Left panel: Initial angular-velocity profiles for three representative models with
small, medium and high values ofβ andÂ = 1 (A similar behaviour is shown also by the
models withÂ = 2). Indicated with different symbols, which match the ones inthe left panel
of figure 5 and 6, are the normalized radial positions of the corotation radii, with the one for
modelM.1.150 being shown filled to help distinguish it. Right panel: the same as in the left
panel but for the initial rest-mass density.

3. Methodology of the analysis

A number of different quantities are calculated during the evolution to monitor the dynamics
of the instability. Among them is the quadrupole moment of the matter distribution

Ijk =

∫

d3x
√
γW

L
ρ xjxk . (12)

which we compute in terms of the conserved density
√
γW

L
ρ rather than of the rest-mass

densityρ or of theT00 component of the stress energy momentum tensor. Of course, the
use of

√
γW

L
ρ in place ofρ or of T00 is arbitrary and all the three expressions would have

the same Newtonian limit, though with different amplitudesfor the gravitational waveforms
produced (see for example [53]). However, we here adopt the form (12) because

√
γW

L
ρ

is a quantity whose conservation is guaranteed by the form chosen for the hydrodynamics
equations.

The quadrupole moment (12) can be conveniently used to quantify both the growth
time of them = 2 instability τ2 and the oscillation frequency once the instability is fully
developedσi

2. (Hereafter we will indicate respectively withτi andσi
(n) the growth time and

frequencies of them = n unstable modes and we note that, as will be discussed later on,
during the simulation a number of different modes appear, thus justifying the use of the upper
index “i”). In practice, we perform a nonlinear least-square fit of the xy component of the
computed quadrupoleIjk(t) and we generally use as fitting function a sum ofN (usually
three) exponentially modulated cosines

Ijk(t) =
N
∑

i=1

Ijk0(i) e
t/τ(i) cos(2π σi

(n) t+ φ(i)) , (13)

whereIjk0 ≡ Ijk(t = 0). Because we commonly have only about10 cycles in the time
interval considered for the fits, extreme care needs to be applied when computing the growth
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time, especially when the oscillation frequencies and the growth times are close to each other.
In these cases, in fact, variations of the initial phase of the modesφ(i) can result in large
variation of the growth times. In view of this, we will not report them.

Using three components of the quadrupole moment in the(x, y) plane we can define the
distortion parametersη+(t) andη×(t), as well as the axisymmetric modeη0(t) as

η+(t) ≡
Ixx(t)− Iyy(t)

Ixx(0) + Iyy(0)
, η×(t) ≡

2Ixy(t)

Ixx(0) + Iyy(0)
, η0(t) ≡

Ixx(t) + Iyy(t)

Ixx(0) + Iyy(0)
, (14)

so that the modulusη(t) and the instantaneous orientation of the bar are given by

η(t) =
√

η+(t)2 + η×(t)2 , φbar(t) = tan−1

(

2Ixy(t)

Ixx(t)− Iyy(t)

)

. (15)

Finally, as a useful tool to describe the nonlinear properties of the development and
saturation of the instability, the rest-mass density is decomposed into its Fourier modesPm(t)
as

Pm(t) ≡
∫

d3x ρ eimφ , where φ = tan−1(x/y). (16)

The phaseφm ≡ arg(Pm) essentially provides the instantaneous orientation of them-th mode
when the corresponding mode has a nonzero power. Note that despite their denomination, the
Fourier modes (16) do not represent proper eigenmodes of oscillation of the star. While, in
fact, the latter are well defined only within a perturbative regime, the former simply represent
a tool to quantify, within the fully nonlinear regime, what are the main components of the
rest-mass distribution. As a final comment we note that whileall quantities (12)–(16) are
expressed in terms of the coordinate timet and are not invariant measurements, the lengthscale
of variation of the lapse function at any given time is alwayslarger than twice the stellar radius
at that time, ensuring that events on the same timeslice are also close in proper time.

4. Results

In what follows we first describe the dynamics of the shear instability as deduced from the
numerical simulations and then contrast our results with the phenomenological predictions on
the necessary conditions for its development.

4.1. Dynamics of the instability

As mentioned when discussing the initial data, we have evolved numerically two sequences
of constant baryonic mass, withMb = 2.5M⊙. The first sequence has a high degree of
differential rotation withÂ = 1 and instability parameter ranging fromβ = 0.140 to
β = 0.250; the second sequence, on the other hand, has a smaller degreeof differential
rotation, withÂ = 2 and rotation betweenβ = 0.125 andβ = 0.200. For both sequences the
highest value ofβ considered is also very close to the highest attainable withour initial data
code (see figure 1). To keep the computational costs to an affordable level we have evolved
of all these models for∼ 15ms and although this time window is in general insufficient
to capture the suppression of the instability, is adequate to measure the frequencies of the
unstable modes and provide a first estimate of the growth times.

After analyzing the results following the method outlined in the previous section and
focusing on the properties of the distortion parametersη+, η× andη0, we find thatall of the
models show anm = 2 instability. The maximum distortions obtained during the simulation
time areη ∼ 0.1 (i.e. distortions of 10% with respect to the axisymmetric progenitor), with
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Figure 3. Summary of the dynamics of some representative models,i.e. M.1.150,
M.1.160, M.1.200, M.1.220, M.1.241 and M.1.250, with increasing values of
β. For each panel the upper part reports the evolution of the bar-distortion parameterη+,
while the lower part shows the evolution of the power in the different modes of the Fourier
decomposition of the rest-mass densityPm. See text for details. Indicated with dotted vertical
lines are the windows within which the analytic fit with the trial function 13 is made. Note that
we here report only some models and withÂ = 1 as they are representative also of those with
Â = 2.



On the Shear Instability in Relativistic Neutron Stars 12

Figure 4. Power spectral density (filtered using Hanning windowing) in arbitrary units of
the evolution ofη+ for the models described in figure 3 (black continuous line) and of the
axisymmetric modeη0 (red dashed line). Indicated with dotted vertical lines (black, blue and
magenta) are the peak frequencies reported in the left panelof figure 5 within the corotation
band and which are used in figure 6 to mark the position of the corotation radii. Finally, shown
with a shaded rectangular area is the corotation band for allmodels.

the maximum values being reached for the models of theÂ = 1 sequence. The models of the
Â = 2 sequence, in fact, have in general much smaller distortions, with η ∼ 0.01 over the
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timescale over which they have been evolved. We believe thisis simply the consequence of
the fact that the models in this sequence have smaller growthrates (see also the discussion in
the next section).

To show the general behaviour of the simulation we focus on the description of the
result of the simulation for thêA = 1 sequence as this is representative also of the one
with Â = 2. In particular, in the upper part of each panel in figure 3 we show the
time evolution of the distortion parameterη+ computed with Eq. (14) for six representative
models:M.1.150, M.1.160, M.1.200, M.1.220, M.1.241 andM.1.250. Similarly,
in the lower parts of each panel we show the corresponding evolution of the Fourier-modes
computed from Eq. (16) form = 1, 2, 3, 4.

Note that for models with lower values ofβ the bar-mode deformation is very similar to
the one already discussed in [6, 7], growing exponentially and with only one unstable mode
appearing (cf. first row of figure 3). However, as the rotation is increased, the development
of the instability is more complex and at least two unstable modes appear which develop
in different parts of the star. These two modes have very similar but distinct frequencies
and growth times, leading to a series of beatings in the evolutions of η+, whose irregular
evolution makes the calculation of the growth times challenging (cf. second row). As the
rotation is increased towards the maximal values ofβ, up to three distinct modes appear and
the evolution of the instability is correspondingly more complex (cf. third row). A similar
behaviour is shown also by the evolution of the Fourier modes. The two models with lowerβ,
in fact, show a clear growth of them = 2 mode and of them = 1, with the latter becoming
first comparable and then larger when the instability is suppressed. In modelsM.1.250,
M.1.241, on the other hand, them = 2 andm = 3 modes have comparable amplitude
for a long period and then them = 2 becomes the dominant one (this is more clear in
modelM.1.241). Finally, for larger values ofβ, them = 1 mode never attains values
comparable with either them = 2 or them = 3, which instead control the evolution.

Figure 4 reports the power spectral density (PSD) ofη+ andη0 for the same6 models
(solid black lines) and allows to appreciate how the spectrum changes as the instability
parameter is increased. More specifically, it is very apparent that at lowβ the spectra have
only one peak, whose maximum is marked by the vertical blue dotted lines and that is present
at all the values of beta considered; this is the mode we referto asσ2

2 (cf. table 2 and
figure 5). Asβ increases, the amplitude of this peak decreases and it becomes the weakest
for very large rotation rates. Starting from modelM.1.200 (although a hint of a peak is
present already inM.1.160), a second peak appears at higher frequency and is marked with
magenta vertical dot-dashed lines; this is the mode we referto asσ3

2 and although it never
becomes the largest one, its amplitude increases withβ. Finally, a third peak appears at low
frequency in the spectra starting from modelM.1.220 (even though a hint is present also for
modelM.1.210) and is marked with black vertical long-dashed lines. This mode, which we
refer to asσ1

2 , becomes the dominant one at highβ. Note also that in each panel of figure 4
we report with a dashed blue box the corotation band that willbe further discussed in the
following section.

As a final remark we note the peaks in the spectrum ofIxx + Iyy (red dashed lines in
figure 4) are related to axisymmetricm = 0 modes and most likely tof -modes oscillation
excited by the development of the instability. Indeed, their frequenciesσ

f
match reasonably

well the phenomenological fit for thef -mode frequencies of nonrotating neutron stars
with realistic EOSs computed in [54]. Because our sequencesdo not contain nonrotating
configurations (the rest mass is larger than the maximum one), this association is just
qualitative and a more detailed investigation of the frequency spectra of the equilibrium
models is necessary to confirm this suggestion.
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Table 2. Results of the analysis of quadrupole evolutions. The frequenciesσ
f

andσi
2 are

obtained from the position of the peaks in the PSD while the frequencies̃σi
2 are obtained

from the nonlinear fitting of Eq. (13). Reported in the last two columns are the edges of the
corotation band as expressed in terms of angular frequency at the surfaceΩe/π ≡ Ω(r =
Re)/π and on the axisΩc/π. Note that depending on the rate of rotation and the degree of
differential rotation some frequencies may not be present.

Model σf σ1
2

σ2
2

σ3
2

σ̃1
2

σ̃2
2

σ̃3
2

Ωe/π Ωc/π

(kHz) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz) (kHz)

M.1.140 1.678 − 3.601 − − 3.521 − 1.807 6.701
M.1.150 1.671 − 3.521 − − 3.515 − 1.814 6.649
M.1.160 1.524 − 3.465 4.815 − 3.428 4.826 1.816 6.577
M.1.180 1.515 − 3.318 4.502 3.200 3.335 4.522 1.805 6.376
M.1.200 1.466 2.983 3.215 4.272 2.719 3.267 4.249 1.774 6.102
M.1.210 1.432 2.796 3.220 4.152 2.846 3.174 4.180 1.751 5.940
M.1.220 1.396 2.668 2.962 4.012 2.559 2.956 4.022 1.723 5.760
M.1.230 1.366 2.488 2.920 3.871 2.449 2.900 3.843 1.689 5.563
M.1.241 1.293 2.353 2.828 3.664 2.342 2.810 3.676 1.645 5.324
M.1.244 1.297 2.328 2.788 3.632 2.301 2.773 3.603 1.632 5.256
M.1.247 1.274 2.267 2.750 3.564 2.250 2.765 3.522 1.618 5.183
M.1.250 1.270 2.235 2.777 3.461 2.224 2.768 3.475 1.603 5.110

M.2.125 1.736 2.969 3.384 − 2.964 3.395 − 2.217 3.929
M.2.150 1.682 3.033 3.322 − 3.050 3.313 − 2.232 3.868
M.2.175 1.610 2.901 3.146 − 2.886 3.030 − 2.222 3.766
M.2.200 1.531 2.589 2.910 − 2.512 2.742 − 2.125 3.484

4.2. Necessary conditions for the instability

To support the interpretation of these instabilities as shear instabilities we have considered
whether the necessary conditions suggested by [2] and by [20] are met. We recall that Watts
and collaborators pointed out that an unstable configuration should have the unstable mode
with a frequency within the corotation band. In the case of the Newtonian expression (8), the
corotation band is simpler to compute and for a mode with frequencyσ and azimuthal number
m, this is simply given by

ΩcÂ
2

Â2 + 1
<

σ

m
< Ωc . (17)

We have therefore checked whether any of the unstablem = 2 (bar-modes) with computed
frequencyσi

(2) has pattern speed velocity,σi
2/m = σi

2/2, within the corotation band.
A careful and rather involved analysis has indeed confirmed the prediction of Watts and
collaborators: namely,all the unstable modes are within the corotation band of the progenitor
axisymmetric model. These results for the models withÂ = 1 are listed in table 2, where
we report the edges of the general-relativistic corotationband in terms of angular frequency
at the surfaceΩe/π ≡ Ω(r = Re)/π and on the axisΩc/π, as well as the frequencies of the
unstablem = 2 modes obtained from the position of the peaks in the PSD (i.e. σi

2) or from
the nonlinear fitting of Eq. (13) (i.e. σ̃i

2). Note that depending on the rate of rotation and the
degree of differential rotation some frequencies may not bepresent in the corotation band.

The data in table 2 is also shown in the left panel of figure 5, where we plot the position of
the non-axisymmetric frequenciesσi

2 within the corotation band as a function ofβ; indicated
with a filled symbol, to distinguish it from the others, is theσ1 frequency for modelM.1.150
(cf. figure 2 and 6). The right panel of the same figure shows the corresponding information
and on the same scale but for the models withÂ = 2 (the inset shows instead a magnified
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view). Clearly, for both sequences all the unstable modes are within the band and, as the
stellar rotation rate increases, more unstable modes appear for the same value ofβ.

Figure 5. Left panel: Position of the non-axisymmetric frequenciesσi
2

for models withÂ = 1
and shown as a function ofβ; indicated with thick solid lines are the edges of the corotation
band,i.e. the frequency interval betweenΩc/π andΩe/π. Shown with a filled symbol, to help
distinguish it from the others, is theσ1

2 frequency for modelM.1.150 (cf. figure 2 and 6).
Right panel: the same as in the left one and with the same scalebut for models withÂ = 2;
the inset shows instead a magnified view. Clearly, in both panels all the unstable modes are
within the band and up to three unstable modes appear for theÂ = 1 sequence with increasing
β.

Watts, Andersson and Jones also give a qualitative description, summarized in their figure
2 of [2], of how the unstable and stable models should be distributed in the (̂A, β) plane. The
considerations they make are particularly simple: for highdegrees of differential rotation, that
is at low values ofÂ, the corotation band is rather wide and there will be both an upper value
and a lower value ofβ between which the shear instability can develop (these critical values
of β correspond to the entrance and exit of the unstable mode in the corotation band). This
situation corresponds therefore to the one commonly encountered in numerical simulations,
such as those in [18, 19, 20, 21, 22, 23, 24], and for which the shear instability takes place only
for very small values of the instability parameter and on timescales that are much longer than
the dynamical one. When moving to larger degrees of differential rotation, that is when going
to smaller values of̂A, the corotation band becomes larger and larger and the shearinstability
can develop essentially for all values ofβ, merging with the dynamical bar-mode instability
for β & 0.25. This is exactly what has been found here. Conversely, when moving to smaller
degrees of differential rotation, that is when going to higher values ofÂ, the corotation band
becomes thinner and the shear instability can develop only for a smaller range ofβ. As the
differential rotation is further decreased and the star tends to rotate uniformly, the corotation
band width vanishes, all the models are stable to the shear instability and subject only to the
dynamical bar-mode instability forβ & 0.25. This is indeed the case for the unstable models
evolved in [6], which were purely (bar-mode) dynamically unstable and none of which had
the unstable mode within the corresponding corotation band, but above it.

In essence, therefore, there should be an intermediate range ofÂ for which the instability
is absent at lowβ, appears at intermediate values and then disappears again at high β, thus
defining an interval of values ofβ for which the models are unstable. To validate also this
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prediction we simulated a sequence of models with smaller differential rotation andÂ = 2.
This seconds sequence has the same baryonic mass as that withÂ = 1, but withβ in a smaller
range, namely betweenβ = 0.125 andβ = 0.200 (Note thatβ = 0.200 is also very close
to the largest value for which we could build an equilibrium model.) Unfortunately, also all
of these models show anm = 2 shear instability, with the unstable frequencies falling within
the corotation band, as it was for thêA = 1 stars. Of course, lack of evidence is not evidence
of absence and the fact that we have not found stable models within our range of values ofβ
most likely means that these stable models have to be searched either for values ofβ < 0.125
(for this value ofÂ = 2), or by moving towards higher values of̂A, where the corotation band
is less large.

An obvious consequence of the phenomenological scenario described by [2] and
confirmed by the calculations reported here is that the idea of a low-T/|W | instability
is indeed misleading and it is instead more meaningful to think of a more generic shear
instability that, depending on the degree of rotation and ofdifferential rotation, may manifest
itself on timescales that are comparable with the dynamicalones (as in the cases reported
here) or on much longer ones (as in the cases reported in [17]).

Another phenomenological prediction made by Watts, Andersson and Jones in [2], is that
the growth times should be shorter in the center of the band and increase towards the edges (the
growth times should in fact diverge at the edges). As shown infigure 5, all of the simulated
models do have unstable modes well inside the corotation band and this probably explains
why we observe them develop on a timescale which is comparable with the dynamical one
and not on much longer timescales as in the original finding of[17]. We also find indications
that theÂ = 2 models, which generically have longer growth times, have unstable modes
which occupy regions of the corotation band that are overallmore central (cf. right panel of
figure 5) and thus in contrast with what expected from [2]. However, the difficulties mentioned
above in computing an accurate estimate of the growth times and the intrinsic difficulties in
determining what is the central part of the corotation band,prevent us from providing a more
quantitative validation of this prediction.

We now switch to consider our results in the light of the othernecessary condition for
the onset of the shear instability discussed in [20]. As mentioned in the Introduction, it has in
fact been shown that the presence of a minimum in the profile ofthe vortensity is a necessary
condition for a mode in corotation to be unstable [20]. The intuitive description is that the
vortensity well can act as a resonant cavity inside the star,amplifying the modes that happen
to lay near its minimum [32]. Indeed, the growth rate of the unstable mode is expected to
depend on the location of its corotation radius with respectto the vortensity profile, being
proportional to the depth of its corotation radius inside the vortensity well [20]. Note that the
existence of a local minimum in the vortensity can only be used as a necessary condition for
the occurrence of a shear instability and not as a sufficient one. All of the unstable models
considered in [6], in fact, do show a local minimum in the vortensity but are not in corotation.

To validate whether this Newtonian condition holds also forthe general-relativistic
instabilities simulated here, we have computed for all the models the Newtonian vortensity,
which is defined as the ratio, along the radial cylindrical coordinate, between the radial
vorticity and the density

V =
2Ω+̟Ω, ¯̟

ρ
, (18)

where̟ is the radial cylindrical coordinate (a fully general-relativistic definition of the
vortensity is also possible but more complicated to computeand not significantly different
from the Newtonian one). When doing this we found that all theunstable models have
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Figure 6. Left panel: radial profiles of the vortensityV for three representative models with
small, medium and high values ofβ. The different symbols match the ones in figure 2 and in
the left panel of figure 5, with the one for modelM.1.150 reported as filled, and show the
actual position of the corotation radii. Note that none of these coincides with the minimum of
V ; for compactness we have reported only the models withÂ = 1. Right panel: normalized
corotation radii for the different frequenciesσi

2
presented in the left panel of figure 5 shown as

a function ofβ; the same convention of the previous figures is used for the different symbols.

vortensities with a local minimum in the star and this is shown in the left panel of figure
6, which reports the radial profiles of the vortensityV for three representative models with
small, medium and high values ofβ. The different symbols match the ones in the left panel
of figure 2 and 5, with the one for modelM.1.150 reported as filled, and show the actual
positions of the corotation radii. The right panel of the same figure, on the other hand, shows
the normalized corotation radii for the different frequenciesσi

2 presented in the left panel of
figure 5 as a function ofβ.

Note that none of these coincides systematically with the minimum ofV , nor with the
maximum of the rest-mass density. All of the corotation radii, however, do move towards
larger radial positions as the rotation rate is increased, exactly as does the minimum of the
vortensity and the rest-mass maximum. Although we cannot confirm that modes whose
corotation radius is closer to the minimum of the vortensityhave systematically shorter
growth times (our data is not sufficiently accurate for this), we can compare the models
with the higher degree of differential rotation̂A = 1 with those having a smaller degree
of differential rotationÂ = 2. In the first case the vortensity well is considerably deeper, with
∆V/V = 1 − Vmin/Vr=0 ∼ 0.6− 0.7, while for the latter the vortensity has shallower wells
with ∆V/V = 1 − Vmin/Vr=0 ∼ 0.02 − 0.25. Since the models witĥA = 2 have smaller
growth rates, our results indicate therefore that also the existence of a local minimum in the
vortensity can be taken as a necessary condition for the development of the shear instability
and that the depth of the vortensity well can be used to estimate the growth of the instability.

5. Conclusions

For many years the properties of rapidly rotating and self-gravitating fluids have been
characterized by a complete analytic perturbative theory which provided, for instance,
sufficient conditions for the development of instabilities(see, for instance, [3, 55] for a
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collection of results). As numerical simulations have become increasingly accurate and
stable on longer timescales, these predictions, both in Newtonian theory and in full general
relativity, have been verified, corrected and in some cases extended. Our ability of modelling
such configurations has now reached a maturity such that a number of new properties and
instabilities have been “discovered” numerically, but which do not have behind a fully
perturbative description. The main reason for this is that most of this phenomenology is
the result of physical scenarios which are much more complexthan the ones investigated
perturbatively in the past,e.g. non-isolated systems with high differential rotation and
exchanging mass and angular momentum, which are much more difficult to treat analytically.

A most notable example of these complex and yet ubiquitous instabilities is the so-
called “low-T/|W | instability”, which was initially found in [17] and then reproduced in a
number of other different scenarios [18, 19, 20, 21, 22, 23, 24, 25]. As the phenomenological
description of this instability provided by the simulations has become richer and richer, a
full understanding of the mechanisms that lead to its development has lagged behind and
it is presently unclear. We are therefore in a situation in which numerical simulations can
probe regimes and conditions which are not yet accessible toperturbative calculations, and
can guide the latter by confirming or refuting those scenarios that although possible do not
find a realization in practice.

This work has followed this spirit and has used fully general-relativistic calculations of
rapidly and differentially rotating neutron stars modeledwith a realistic EOS to shed some
light on the development of the low-T/|W | instability. In particular we have concentrated
our attention on validating an indirect prediction, made byWatts, Andersson and Jones [2],
who recognized the low-T/|W | instability as the manifestation of a more generic class of
instabilities associated to the existence of a corotation band [30, 31], theshear instabilities,
and should develop forany value of the instability parameterβ when sufficient amounts of
differential rotation are present. This is exactly what we have found in our simulations. More
specifically, we have performed simulations of sequences ofneutron-star models described by
a realistic SLy EOS [1] and having constant rest-mass and degrees of differential rotation, but
with different amounts of rotation. In all cases consideredwe have found the development of
a bar-mode instability growing on a dynamical timescale, even when the initial axisymmetric
models were well below the critical limit for the dynamical bar-mode instability. These
results, which match well the phenomenological scenario portrayed in [2], suggest therefore
that the idea of a low-T/|W | instability is indeed misleading and should be replaced by
the more general one of shear instability. Depending then onthe degree of rotation and
of differential rotation, the instability will develop on timescales that are comparable to the
dynamical one (as reported here) or on much longer ones (as reported in the first low-T/|W |
instability studies).

Special attention has also been paid to the properties of theunstable modes and to their
position within the corotation band or the vortensity profiles. In particular, we have shown that
all the unstable modes are within the corotation band of the progenitor axisymmetric model
(which is the necessary condition for the development of theinstability proposed by [2])
and that all of the unstable models have vortensity profiles with a local minimum (which is
the necessary condition suggested by [20]). Finally, by comparing the growth times among
models with different degree of differential rotation we have shown that there is a correlation,
although not a strong one, between the depth of the vortensity well and growth rate of the
instability, with the latter being larger for models with deeper wells.

In summary, the results presented here shed some light on several aspects of shear
instabilities, but they also reveal that more work is required, for instance, to distinguish
between the predictions based on the corotation band and theones based on the vortensity
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well, or to establish whether in effect they just represent two different ways of expressing
the same physical conditions. Clarifying these aspects will requires additional analytical and
numerical modelling, and this will be part of our future research.
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