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Understanding the “anti-kick” in the merger of binary black holes

Luciano Rezzolla,1, 2 Rodrigo P. Macedo,1,3 and José Luis Jaramillo1, 4
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The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one
of the most exciting results of numerical-relativity calculations. While many aspects of this process have been
investigated and explained, the“anti-kick” , namely the sudden deceleration after the merger, has not yet found
a simple explanation. We show that the anti-kick can be easily understood in terms of the radiation from
a deformed black hole where the intrinsicallyanisotropiccurvature distribution on the horizon determines the
direction and intensity of the recoil. Our analysis is focussed on the properties of Robinson-Trautman spacetimes
and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time,
this simpler setup provides all the qualitative but also quantitative features of inspiralling black hole binaries,
thus opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.
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Introduction.The merger of two black holes (BHs) is one of
the most important sources of gravitational waves (GW) and
this is generally accompanied by the recoil of the final BH as
a result of anisotropic GW emission. While this scenario has
been investigated for decades [1] and first estimates have been
made using approximated and semi-analytical methods such
as a particle approximation [2], post-Newtonian methods [3]
and the close-limit approximation (CLA) [4], it is only thanks
to the recent progress in numerical relativity that accurate val-
ues for the recoil velocity have been computed [5–12].

Besides being a genuine nonlinear effect of general relativ-
ity, the generation of a large recoil velocity during the merger
of two BHs has a direct impact in astrophysics. Depending on
its size and its variation with the mass ratio and spin, in fact, it
can play an important role in the growth of supermassive BHs
via mergers of galaxies and on the number of galaxies con-
taining BHs [13]. Numerical-relativity simulations of BHsin-
spiralling on quasi-circular orbits have already revealedmany
of the most important features of this process showing, for
instance, that asymmetries in the mass can lead to recoil ve-
locitiesvk . 175 km/h [5, 6], while asymmetries in the spins
can lead respectively tovk . 450 km/h or vk . 4000 km/h
if the spins are aligned [8, 9, 11] or perpendicular to the orbital
angular momentum [7, 14, 15] (see [16] for a review).

At the same time, however, there are a number of aspects of
the nonlinear processes leading to the recoil that are far from
being clarified even though interesting work has been recently
carried out to investigate such aspects [17–19]. One of these
features, and possibly the most puzzling one, is the generic
presence of an“anti-kick” , namely, of one (or more) deceler-
ations experienced by the recoiling BH. Such anti-kicks take
place after a single apparent horizon (AH) has been found and
have been reported in essentially all of the mergers simulated
so far (see Fig. 8 of ref. [11] for some examples).

This paper is dedicated to elucidate the stages during which
the anti-kick is generated and to provide a simple and qualita-
tive interpretation of the physics underlying this process. Our
focus will be on the head-on collision of two nonspinning BHs
with different mass and although this is the simplest scenario

for a BH-merger, it contains all the important aspects that can
be encountered in more generic conditions. Our qualitative
picture will then be made quantitative and gauge-invariantby
studying the logical equivalent of this process in the evolution
of a Robinson-Trautman (RT) spacetime, with measurements
of the recoil made at future null infinity. As we will comment
below, the insight gained with the RT evolution will be pre-
cious to explain the anti-kick under generic conditions andto
contribute to the understanding of nonlinear BH physics.

The basic picture.Before discussing how to use the RT space-
time to compute the anti-kick, it is useful to illustrate thebasic
BH physics leading to such process and for this we can con-
sider the simple head-on collision of two Schwarzschild BHs
with unequal masses. This is shown in a schematic cartoon
in Fig. 1, where we have considered a coordinate system cen-
tred in the total centre of mass of the system and where the
smaller black hole is initially on the positivez-axis, while the
larger one is on the negative axis. As the two BHs free-fall to-
wards each other, the smaller one will move faster and will be
more efficient in “forward-beaming” its GW emission [3]. As
a result, the linear momentum will be radiated mostly down-
wards, thus leading to an upwards recoil of the BH binary
[cf. stage (1) in Fig. 1]. At the merger the BH velocities will
be the largest and so will also be the anisotropic GW emission
and the corresponding recoil of the system. However, when
a single AH is formed comprising the two BHs, the curvature
distribution on this 2-surface will be highlyanisotropic, being
higher in the upper hemisphere (cf. red-blue shading in stage
(2) of Fig. 1). Because the newly formed BH will want to ra-
diate all of its deviations away from the final Schwarzschild
configuration, it will do so more effectively there where the
curvature is larger, thus with a stronger emission of GWs from
the northern hemisphere. As a result, after the merger the lin-
ear momentum will be emitted mostly upwards and this sud-
den sign change will lead to the anti-kick. The anisotropic
GW emission will decay exponentially as the curvature gra-
dients are erased and the quiescent BH will have reached its
final and decelerated recoil velocity [cf. stage (3)].

Although this picture refers to a head-on collision, it is sup-
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FIG. 1: Cartoon of the generation of the anti-kick in the head-on col-
lision of two unequal-mass Schwarzschild BHs. Initially the smaller
BH moves faster and linear momentum is radiated mostly down-
wards, thus leading to an upwards recoil of the system [stage(1)].
At the merger the curvature is higher in the upper hemisphereof the
distorted BH (cf. red-blue shading) and linear momentum is radiated
mostly upwards leading to the anti-kick [stage (2)]. The BH deceler-
ates till a uniform curvature is restored on the horizon [stage (3)].

ported by the findings in the CLA (where the direction of the
ringdown kick is approximately opposite to that of the accu-
mulated inspiral plus plunge kick) [17] and it is straightfor-
ward to generalize it to a situation in which the BHs have dif-
ferent masses, different spins and are merging through an in-
spiral. Also in a more generic case, in fact, the newly formed
AH will have a complicated but overall anisotropic distri-
bution of the curvature, which will determine the direction
(which is in general varying in time) along which the GWs
will be emitted. We next discuss how to use the RT spacetime
to validate, in a gauge-invariant manner, this basic picture.
The Robinson Trautman Spacetime.The RT spacetime is the
class of solutions of the vacuum Einstein equations admit-
ting a congruence of null geodesics which are hypersurface
orthogonal, shear-free but with expansion. As such, it can
be regarded as an isolated nonspherical BH emitting GWs,
thus representing a valuable tool for studying in a fully gauge-
invariant manner, physical conditions that are similar to the
final stages on the dynamics of BH binaries [20].

In a coordinate system{u, r, θ, φ}, the RT metric is [21]

ds2 = −
(

K − 2M∞

r
− 2r∂uQ

Q

)

du2 − 2dudr +
r2

Q2
dΩ2,

(1)
whereQ = Q(u,Ω), u is the standard null coordinate,r is
the affine parameter of the outgoing null geodesics, andΩ =
{θ, φ} are the usual angular coordinates on the unit sphere
S2. HereM∞ is a constant and is related to the mass of the
asymptotic Schwarzschild BH, while the functionK(u,Ω) is
the Gaussian curvature of the surface corresponding tor = 1
andu = constant, and is given by

K(u,Ω) ≡ Q2(1 +∇2
ΩlnQ), (2)

∇2
Ω being the Laplacian operator onS2. The Einstein equa-

tions then lead to the “RT” evolution equation

∂uQ(u,Ω) = −Q3∇2
ΩK(u,Ω)/(12M∞). (3)

Any regular initial dataQ = Q(0,Ω) will smoothly evolve
according to (3) until it achieves a stationary configuration
corresponding to a Schwarzschild BH at rest or moving with
a constant speed [22]. Eq. (3) implies the existence of the con-
stant of motionA ≡

∫

S2 dΩ/Q
2, which clearly represents the

area of the surfaceu, r = constant and can be used to nor-
maliseQ so thatA = 4π. All the physically relevant infor-
mation is contained in the functionQ(u,Ω), and this includes
the gravitational radiation, which can be extracted by relating
Q(u,Ω) to the radiative part of the Riemann tensor [23, 24].

RT spacetimes have a past AH with a vanishing expansion
of the ingoing future-directed null geodesics. Such past AHis
described by the functionR(u,Ω) satisfying [25, 26]

Q2∇2
Ω lnR = K − 2M∞/R. (4)

The mass and momentum of the BH are computed at future
null infinity using the Bondi 4-momentum [21]

Pα(u) ≡ M∞

4π

∫

S2

ηα

Q3
dΩ, (5)

with {ηα} = {1, sin θ cosφ, sin θ sinφ, cos θ}. Given smooth
initial data, the spacetime will evolve to a stationary non-
radiative solution which, in axisymmetry, has the form [21]

Q(∞, θ) = (1∓ vx)/
√

1− v2, (6)

with x ≡ cos θ. The Bondi 4-momentum associated to (6) is

{P (∞)}α =
(

M∞/
√

1− v2
)

{1, 0, 0,±v} , (7)

so that the parameterv in (6) can be interpreted as the velocity
of the Schwarzschild BH in thez-direction.

One of the difficulties with RT spacetimes is the definition
of physically meaningful initial data. Although we are more
interested in a proof-of-principle than in describing a realistic
configuration, we have adopted the prescription in [24]

Q(0, θ) = Q0

[

1√
1− wx

+
q√

1 + wx

]

−2

, (8)

and which was interpreted to represent the final stages (i.e.af-
ter a common AH is formed) of a head-on collision of two
boosted BHs with opposite velocitiesw and mass ratioq [24].
In practice, to reproduce the situation shown in Fig. 1, we
have setw < 0 and takenq ∈ [0, 1]; a more general class
of initial data and the corresponding phenomenology will be
presented in a longer companion paper [27]. Note thatQ0 is
chosen so that toA = 4π and that in general the deformed BH
will not be initially at rest. As a result, given the initial veloc-
ity v0 ≡ P 3(0)/P 0(0), we perform a boost transformation

P
α

= Λα
β(v0)P

β so thatP
3
(0) = 0 by construction. The

numerical solution of eq. (3) with initial data (8) is performed
using a Galerkin decomposition as discussed in detail in [21].

Discussion.Figure 2 reports the typical evolution of a RT
spacetime with the lower panel showing the evolution of the
curvature of the past horizonK

AH
≡ 2M∞/R3(x) at the

north (x = 1) and south pole (x = −1), and with the upper
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FIG. 2: Typical evolution of a RT spacetime. Shown in the lower
panel is the evolution of the curvatureK

AH
at the north (x = 1) and

south pole (x = −1). Shown in the upper panel is the evolution of
the recoil, which stops decreasing when the curvature difference is
erased by the emitted radiation (dotted line). Note that thecurvature
decays exponentially to that of a Schwarzschild BH (inset).

panel showing the evolution of the recoil velocity. Note that
the two local curvatures are different initially, with the one in
the upper hemisphere being larger than the on in the lower
hemisphere (cf. Fig. 1). However, as the gravitational radia-
tion is emitted, this difference is erased. When this happens,
the deceleration stops and the BH attains its asymptotic recoil
velocity. The inset reports the curvature difference relative to
the asymptotic Schwarzschild one,K

AH
− 1, whose exponen-

tially decaying behaviour is the one expected in a ringing BH.
As mentioned before, that shown in Fig. 2 is a typical evo-

lution of a RT spacetime and is not specific of the initial
data (8) [27]. By varying the values ofw, in fact, it is possi-
ble to increase or decreases the final recoil and a sign change
in w simply inverts the curvature at the poles so that, for in-
stance, initial data withw > 0 would yield a BH accelerating
in the positivez-direction. Interestingly, it is even possible to
fine-tune the parameterw so that the recoil produced for a RT
spacetime mimics that produced by the quasi-circular inspi-
ral of nonspinning binaries. This is shown in Fig. 3, which
reports the recoil forw = −0.425 as a function of the sym-
metric mass ratioν ≡ q/(1 + q)2, and where the dashed line
refers to the anti-kick for the inspiral of nonspinning binaries
in the CLA with r12 = 2M [17]. Considering that the two
curves are related only logically and that the CLA one con-
tains all the information about inspiralling BHs, including the
orbital rotation, the match is surprisingly good.

It is also suggestive to think that the curve in Fig. 3 is actu-
ally composed of two different branches, one of which is char-
acterized by large curvature gradients across the AH but small
values of the curvature (this is the low-ν branch and is indi-
cated with squares), while the other is characterized by small
curvature gradients and large values of the curvature (thisis

FIG. 3: Recoil velocity shown as a function of the symmetric mass
ratio ν whenw = −0.425, with the dashed line refers to the anti-
kick from the inspiral of nonspinning binaries in the CLA [17]. Note
that the curve can be thought as composed of two different branches.

the high-ν branch and is indicated with circles). Recalling
that in electromagnetism the same electric current can be pro-
duced in two circuits having different potential jumps and re-
sistances, it is then plausible that the same recoil velocity can
be produced by two different values ofν, for which the effects
of large curvature gradients and small local curvatures arethe
same as those produced by small curvature gradients but large
local curvatures. When cast in these terms, the otherwise cu-
rious result that two different mass ratios should lead to the
same recoil, becomes instead rather obvious.

To go from this intuition to a mathematically well-defined
measure we have computed the mass multipoles of the intrin-
sic curvature of the initial data using the formalism developed
in [28] for dynamical horizons. Namely, we compute the mass
moments as (the mass-current are obviously zero)

Mn ≡
∮

Pn(x̃)

Q2(θ)R(θ)
dΩ, (9)

wherePn(x̃) is the Legendre polynomial in terms of the coor-
dinatex̃(θ) which obeys∂θx̃ = − sin θR(θ)2/(R2

AH
Q(θ)2),

with R
AH

≡
√

A
AH

/(4π) and x̃(0) = 1 [27]. Using these
multipoles it is possible to construct an effective curvature
numberKeff that represents a measure of the global curvature
properties of the initial data and from which the recoil de-
pends in an injective way. Recognisizing even and odd multi-
poles in (9), respectively, as capturing geometrically theresis-
tance and the potential jumps in the electromagnetic analogy
built around Fig. 3, we have computed an effective curvature
Keff = M2|

∑

n=1
M2n+1/3

n−1|, which reproduces exactly
what expected (noteM1 = 0 to machine precision). This is
shown in Fig. 4, which reports the recoil velocity as a function
of Keff . As predicted, and in contrast with Fig. 3, the relation
between the curvature and the recoil is now injective, with the
maximum recoil velocity being given by the maximum value



4

FIG. 4: Recoil velocity shown as a function of the effective curvature.
In contrast with Fig. 3, which uses the same symbols employedhere,
the relation between the curvature and the recoil is now injective.

of Keff (see inset), and with the two branches coinciding. We
do not expect the expression found here forKeff to be unique
and indeed a more generic one will have to include also the
mass-current multipoles to account for the spin contributions.
However, lacking a rigorous mathematical guidance, our phe-
nomenologicalKeff is a reasonable, intuitive approximation.

Conclusions.We have outlined a simple picture to explain
the deceleration observed during the merger of binary BHs in

terms of the dissipation of an anisotropic distribution of cur-
vature on the horizon of the newly formed BH. We have ana-
lyzed this picture for the head-on collision of two nonspinning
BHs with unequal mass but its extension to generic systems is
direct as the same features will be present also when including
the spin and the orbital contributions: mass current multipoles
will either add/substract in prograde/retrograde orbits.The
qualitative arguments made on the head-on collision have then
been made quantitative by analyzing the gauge-independent
dynamics of RT spacetimes. More specifically we have shown
that the deceleration is associated to the radiation of curvature
differences and persists as long as the gradients are not erased.
Furthermore, the directionality of the recoil is dictated by the
north-south curvature gradients and a one-to-one mapping be-
tween the recoil and an effective curvature is possible. These
results presented here can help in understanding the nonlinear
of curved spacetimes and will be extended to include more
generic initial data and a comparison with simulations [27].

We finally note that an alternative interpretation of the re-
coil phenomenology can be given in terms of the momen-
tum flux coming from the Landau-Lifshitz pseudotensor [29],
where the recoil is the result of the cancellation of large and
opposite fluxes of momentum, part of which are “swallowed”
by the BH. While this interesting route may help in explor-
ing the dynamics of BHs, it also relies on gauge-dependent
measurements which may themselves be counter-intuitive.
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